首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been speculated that hypoxia might cause vasodilation of the ductus arteriosus by enhancing the relaxing action of endogenous prostaglandins. Using isolated rings of lamb ductus arteriosus, we measured immunoreactive PGE2 released into the bath solution. We found that after a period of stabilization following suspension of the rings in low PO2, only a negligible amount of PGE2 was released by the rings (1.15 ± 0.52 pg PGE2/mg wet weight per 45 min, n14, ±SEM). When rings were exposed to a high PO2, significant amounts of PGE2 were released (32.3 ± 12.6 pg PGE2/mg wet weight per 45 min). These observations were supported by our findings that indomethacin had a negligible contractile effect (0.11 ± 0.09 g/mm2, n=11) on rings equilibrated in a low PO2, but caused a significant contraction (0.55 ± 0.12 g/mm2, n=11) in rings incubated in a high PO2. These findings do not support the hypothesis that low PO2 increases PGE2 production by the lamb ductus arteriosus. They are consistent with the hypothesis that endogenous PGE2 inhibits the ability of the vessel to contract in response to oxygen. In addition (if these results can be extrapolated to the situation), the demonstration that the ductus arteriosus needs an oxygen tension greater than that present to produce effective amounts of PGE2, strengthens the hypothesis that circulating levels of PGE2 may be important in the prenatal maintenance of ductal patency.  相似文献   

2.
Prostaglandin(PG) I2 and its stable metabolite, 6-keto-PGF, were tested on the isolated ductus arteriosus from mature fetal lambs. PGI2 relaxed the ductus in high doses (threshold 10−6M) and its activity disappeared on standing at room temperature for 30 minutes. 6-keto-PGF was inactive at all doses. By contrast, PGE2 produced a dose-dependent relaxation over a range between 10−10 and 10−6 M. These findings confirm that PGE2 is the most potent ductal relaxant among the known derivatives of arachidonic acid. PGE2 probably maintains ductus patency in the fetus and, together with PGE1, remains the compound of choice in the management of newborns requiring a viable ductus for survival.  相似文献   

3.
It has been shown in vitro that the lamb ductus arteriosus forms prostaglandins PGE2, PGF2α, 6 keto PGF1α (and its unstable precursor PGI2). In this study the relative potencies of these endogenous prostaglandins were investigated on isolated lamb ductus arteriosus preparations contracted by exposure to elevated PO2 and indomethacin. All the prostaglandins (except PGF2α) relaxed the vessel. This is consistent with the hypothesis that endogenous prostaglandins inhibit the tendency of the vessel to contract in response to oxygen. Only PGE2, however, relaxed the vessel at concentrations below 10−8M. PGI2 and 6 keto PGF had approximately 0.001 and 0.0001 times the activity of PGE2. Although PGE2 has been observed to be a minor product of prostaglandin production in the lamb ductus arteriosus, the tissue's marked sensitivity to PGE2 might make it the most significant prostaglandin in regulating the patency of the vessel.  相似文献   

4.
The relative potencies of the prostaglandins A1, A2, E1, E2, F and their 15-keto-, 15-keto-13,14-dihydro-, and 13,14-dihydro-metabolites were investigated on isolated lamb ductus arteriosus preparations contracted by exposure to elevated PO2. All the prostaglandins (except PGF and its 15-keto-metabolites) relaxed the tissue. However, only PGE1, E2, and their 13,14-dihydro-metabolites, were effective at concentrations below 10−8 M. Therefore, events that alter metabolism of circulating PGs in the perinatal period may have significant effects on the relative patency or closure of the ductus arteriosus.  相似文献   

5.
In this study, the hydraulic conductivity (Lp), Me2SO permeability ( Me2SO), and the reflection coefficients (ς) and their activation energies were determined for Metaphase II (MII) mouse oocytes by exposing them to 1.5 M Me2SO at temperatures of 30, 20, 10, 3, 0, and −3°C. These data were then used to calculate the intracellular concentration of Me2SO at given temperatures. Individual oocytes were immobilized using a holding pipette in 5 μl of an isosmotic PBS solution and perfused with precooled or prewarmed 1.5 M Me2SO solutions. Oocyte images were video recorded. The cell volume changes were calculated from the measurement of the diameter of the oocytes, assuming a spherical shape. The initial volume of the oocytes in the isoosmotic solution was considered 100%, and relative changes in the volume of the oocytes after exposure to the Me2SO were plotted against time. Mean (means ± SEM) Lpvalues in the presence of Me2SO ( Me2SOp) at 30, 20, 10, 3, 0, and −3°C were determined to be 1.07 ± 0.03, 0.40 ± 0.02, 0.18 ± 0.01, 7.60 × 10−2± 0.60 × 10−2, 5.29 × 10−2± 0.40 × 10−2, and 3.69 × 10−2± 0.30 × 10−2μm/min/atm, respectively. The Me2SOvalues were 3.69 × 10−3± 0.3 × 10−3, 1.07 × 10−3± 0.1 × 10−3, 2.75 × 10−4± 0.15 × 10−4, 7.83 × 10−5± 0.50 × 10−5, 5.24 × 10−5± 0.50 × 10−5, and 3.69 × 10−5± 0.40 × 10−5cm/min, respectively. The ς values were 0.70 ± 0.03, 0.77 ± 0.04, 0.81 ± 0.06, 0.91 ± 0.05, 0.97 ± 0.03, and 1 ± 0.04, respectively. The estimated activation energies (Ea) for Me2SOp, Me2SO, and ς were 16.39, 23.24, and −1.75 Kcal/mol, respectively. These data may provide the fundamental basis for the development of more optimal cryopreservation protocols for MII mouse oocytes.  相似文献   

6.
To ascertain whether prostaglandins (PG) may play a role in the secretion of glucagon and in an attempt to elucidate the conflicting observations on the effects of PG on insulin release, the isolated intact rat pancreas was perfused with solutions containing 1.1 × 10−9 to 1.8 × 10−5M PGE2. In the presence of 5.6 mM glucose significant increments in portal venous effluent levels of glucagon and insulin were observed in response to minimal concentrations of 2.8 × 10−8 and 1.4 × 10−7M PGE2, respectively; a dose-response relationship was evident for both hormones at higher concentrations of PGE2. When administered over 60 seconds, 1.4 × 10−6M PGE2 resulted in a significant increase in glucagon levels within 24 seconds and in insulin within 48 seconds. Ten-minute perfusions of 1.4 × 10−6M PGE2 elicited biphasic release of both islet hormones; Phase I glucagon release preceded that of insulin. Both phases of the biphasic glucagon and insulin release which occurred in response to 15-minute perfusions of 10 mM arginine were augmented by PGE2. These observations indicate that PGE2 can evoke glucagon and insulin release at concentrations close to those observed by others in the extracts of rat pancreas. We conclude that PG may be involved in the regulation of secretion of glucagon and insulin and may mediate and/or modify the pancreatic islet hormone response to other secretagogues.  相似文献   

7.
Prostaglandins (PGs) E1 or F (1.4−8.4 × 10−8 M) contracted strips of rabbit aorta and increased the contractions produced by 1−6 × 10−7 M phenylephrine (PE). The addition of the PGs simultaneously with PE or after a low concentration of PE (2 × 10−7 M) significantly increased the PE-induced contractions. However, when the PGs were added after a higher concentration of PE (6 × 10−7 M) an additional increase in the PE-induced contraction was produced with PGF but not with PGE1. Isobolic plots of the data obtained from the simultaneous addition of PE and the PGs indicate that both PGs interact with PE in a synergistic or potentiative manner, suggesting that their effects are mediated through different receptor mechanisms. Addition of the PGs after a high dose of PE indicates that there may also be either qualitative or quantitative differences between PGE1 and PGF.  相似文献   

8.
Mouse calvaria were maintained in organ culture without serum additives. Basal active resorption, as measured by 45Ca and hydroxyproline release, was significantly inhibited to 74% control levels by indomethacin (1.4 × 10−7 M). Prostaglandin F and prostaglandin E2 production, determined by radioimmunoassay, were both significantly lowered by this concentration of indomethacin. DNA, protein and hydroxyproline synthesis, as indices of cell toxicity, were unaffected by low concentrations of indomethacin, while concentrations of 1.4 × 10−6M inhibited protein synthesis (p<0.005). In the presence of indomethacin (1.4 × 10−7M) both PGE2 and PGF stimulated resorption in a dose-dependent manner, with PGE2 being the more potent. Neither prostaglandin affected hydroxyproline synthesis at low concentrations, but PGE2 had a marked inhibitory action at a higher concentration (10−6M). In combination, the effects of PGE2 and PGF showed no evidence of synergism or any antagonistic action. The study shows that in vitro calcium and hydroxyproline resorption in the unstimulated mouse calvaria are inhibited by indomethacin at concentrations measured in serum during human therapy. The decreased PGF and PGE2 production associated with this decreased bone resorption in the presence of non-toxic concentrations of indomethacin would suggest a role for these prostaglandins in maintaining the basal resorption of cultured bone.  相似文献   

9.
The effects of prostaglandin E2 (PGE2) and indomethacin on excitatory neuro-effector transmission in the human bronchus were investigated by tension recording and microelectrode methods. PGE2 (10−10–10−9M) suppressed the amplitude of twitch contractions and excitatory junction potentials (e.j.ps) evoked by field stimulation at a steady level of basal tension obtained by the combined application of indomethacin (10−5M) and FPL55712 (10−6M). In doses over 10−8M, PGE2 reduced the muscle tone and dose-dependently suppressed the amplitude of twitch contractions. Indomethacin (10−5 or 5 × 10−5M) reduced the muscle tone and enhanced the amplitude of twitch contractions and e.j.ps evoked by field stimulation in the presence of FPL55712. PGE2 (10−9M) had no effect on the post-junctional response of smooth muscle cells to exogenously applied acetylcholine (ACh) (4 × 10−7M). However, indomethacin (10−5M) significantly enhanced the ACh-induced contraction of the human bronchus. These results indicate that PGE2 in low concentrations has a pre-junctional action to inhibit excitatory neuro-effector transmission in addition to a post-junctional action, presumably by suppressing transmitter release from the vagus nerve terminals in the human bronchial tissues.  相似文献   

10.
To ascertain whether prostaglandins (PG) may play a role in the secretion of glucagon and in an attempt to elucidate the conflicting observations on the effects of PG on insulin release, the isolated intact rat pancreas was perfused with solutions containing 1.1 × 10−9 to 1.8 × 10−5M PGE2. In the presence of 5.6 mM glucose significant increments in portal venous effluent levels of glucagon and insulin were observed in response to minimal concentrations of 2.8 × 10−8 and 1.4 × 10−7M PGE2, respectively; a dose-response relationship was evident for both hormones at higher concentrations of PGE2. When administered over 60 seconds, 1.4−10−6M PGE2 resulted in a significant increase in glucagon levels within 24 seconds and in insulin within 48 seconds. Ten-minute perfusions of 1.4 × 10−6M PGE2 elicited biphasic release of both islet hormones; Phase I glucagon release preceded that of insulin. Both phases of the biphasic glucagon and insulin release which occurred in response to 15-minute perfusions of 10 mM arginine were augmented by PGE2. These observations indicate that PGE2 can evoke glucagon and insulin release at concentrations close to those observed by others in the extracts of rat pancreas. We conclude that PG may be involved in the regulation of secretion of glucagon and insulin and may mediate and/or modify the pancreatic islet hormone response to other secretagogues.  相似文献   

11.
We have established primary colonic epithelial cell culture from adult rabbits and examined effects of anti-inflammatory drugs on prostaglandin (PG) E2 production. Colonic epithelium of adult rabbits was scraped and minced into small pieces. They were incubated for isolation in Hanks' balanced salt solution with 0.35 % collagenase and Earle's solution with 1 mM EDTA. Isolated cells were cultured in Coon's modified Ham's F-12 medium with 10 % fetal bovine serum and antibiotics on collagen coated cell wells. The medium was refed twice a week. The production of PGs was assessed by high pressure liquid chromatography (HPLC). PGE2 and PGF were measured by radioimmunoassay. Within 24 hours after inoculation, the cell clumps attached to the surface of the wells and cells began to spread out and grow. Monolayer cultures became confluent in 4 days. Phase contrast microscopy showed that these cells consisted of a homogeneous population of epithelial cells with large oval nuclei, polyhedral shape, and organized sheet-like growth pattern. HPLC profile showed synthesis of 6-keto-PGF, thromboxane B2, PGF, PGE2, and PGD2 by cultured cells. Quantitatively, 117±7 ng/mg-protein/hour PGE2 by 7.4±0.7 ng/mg-protein/hour PGF were produced. While hydrocortisone (10−4-10−2 M) did not show a significant effect on PGE2 production, indomethacin (10−8-10−6 M), and 5-aminosalicylic acid (2×10−4-5×10−3 M) inhibited PGE2 production. We have established relatively convenient procedure for primary culture of colonic epithelial cells from adult rabbits. Different actions of anti-inflammatory drugs on PGE2 synthesis suggest that these cultured cells might be a good tool for the various cellular functional studies of normal colonic epithelial cells.  相似文献   

12.
It has been suggested that ineffective constriction in response to an increase in PO2 is the primary cause for delayed closure of the ductus arteriosus in preterm infants. We studied the isometric contractile effects of increased PO2 and indomethacin on isolated rings of lamb ductus arteriosus from animals of different gestational ages (87 to 147 days, term is 150 days). Rings from animals less than 110 days have a significantly smaller oxygen-induced contraction (2.53 ± .30 g/mm2, n = 16) when compared with rings from animals near term (4.59 ± .69 g/mm2, n = 9). Oxygen contracted rings from all gestational ages contract further upon addition of 1 μg/ml indomethacin. Rings from animals less than 110 days have a significantly larger indomethacin induced contraction (1.10 ± .17 g/mm2, n = 16) than vessels near term (0.52 ± .12 g/mm2, n = 9). Inhibition of prostaglandin production in rings less than 110 days results in a total combined oxygen and indomethacin induced tension that is not significantly different from the oxygen or oxygen and indomethacin induced tension developed in rings from animals near term. This is consistent with the hypothesis that, early during gestation, endogenous prostaglandins inhibit the vessel's ability to contract in response to oxygen. These observations are also consistent with the ability of indomethacin to constrict the patient ductus arteriosus in pre-term infants.  相似文献   

13.
The effects of various II-deoxyprostaglandin E analogs on the basal and prostaglandin E2 (PGE2)-induced cyclic AMP accumulation in the rat anterior pituitary were studied in vitro. 13-Hydroxy-9-oxoprost-14-ynoic acid at 5 × 10−4M, but not 5 × 10−5M, decreased (45%) the induced accumulation and did not alter the basal accumulation; 15-hydroxy-9-oxoprost-13-ynoic acid at 5 × 10−4M caused less of a decrease (29%) in the induced and also did not alter the basal accumulation. (14Z)-13-Hydroxy-9-oxoprost-14-enoic acid at 5 × 10−4M did not alter the induced and caused a slight increase (5 fold) in the basal accumulation. 7-Oxa-13-prostynoic acid increased slightly the basal accumulation at 5 × 10−5M (2 fold) and 2.33 × 10−4M (6 fold) and did not antagonize the induced accumulation. Thus, the 9-ketoprostynoic acids are effective PGE2 antagonists in this system.  相似文献   

14.
The effects of various 11-deoxyprostaglandin E analogs on the basal and prostaglandin E2 (PGE2)-induced cyclic AMP accumulation in the rat anterior pitutiary were studied . 13-Hydroxy-9-oxoprost-14-ynoic acid at 5 × 10−4M, but not 5 × 10−5M, decreased (45%) the induced accumulation and did not alter the basal accumulation; 15-hydroxy-9-oxoprost-13-ynoic acid at 5 × 10−4M caused less of a decrease (29%) in the induced and also did not alter the basal accumulation. (14Z)-13-Hydroxy-9-oxoprost-14-enoic acid at 5 × 10−4M did not alter the induced and caused a slight increase (5 fold) in the basal accumulation. 7-Oxa-13-prostynoic acid increased slightly the basal accumulation at 5 × 10−5M (2 fold) and 2.33 × 10−4M (6 fold) and did not antagonize the induced accumulation. Thus, the 9-ketoprostynoic acids are effective PGE2 antagonists in this system.  相似文献   

15.
Specificity of the effect of prostaglandins (PGs) on hormone release by the anterior pituitary gland was studied using cells in primary culture. Growth hormone (GH) release is stimulated by all eight PGs studied, PGE1 and E2 being 1000-fold more potent than the corresponding PGFs. The release of luteinizing hormone (LH), follicle-stimulating hormone (FSH), and prolactin (PRL) remains unchanged upon addition of PGEs. While the basal release of thyrotropin (TSH) is only slightly stimulated by concentrations of PGEs above 10−6M, an important potentiation of the stimulatory effect of thyrotropin-releasing hormone on TSH release is observed. The release of GH, TSH and LH is stimulated equally well by PGAs and PGBs at concentrations higher than 10−6M, 3 × 10−6M, and 10−5M, respectively. PGFs do not affect the release of any of the measured pituitary hormones at concentrations below 10−4M. The stimulation of GH release by PGE2 can be inhibited by the PG antagonist 7-oxa-13-prostynoic acid, a half-maximal inhibition being found at a concentration of 4 × 10−5M of the antagonist in the presence of 10−6M PGE2. In the presence of somatostatin (10−8M), the inhibition of GH release cannot be reversed by PGE2 at concentrations up to 10−4M. 8-bromo-cyclic AMP-induced GH release is additive with that produced by PGE2.The present data show that 1) of the five pituitary hormones measured, only GH release is stimulated by prostaglandins at relatively low concentrations, 2) the PGE-induced GH release can be competitively inhibited by 7-oxa-13-prostynoic acid, 3) the inhibition of GH release by somatostatin cannot be reversed by PGE2 and 4) the PGEs increase the responsiveness of the thyrotrophs to TRH.  相似文献   

16.
Oviduct segments from infundibulum, magnum, uterus, uterovaginal junction and vagina of actively laying hens at preoviposition time were tested for their contractile reaction to prostaglandin E1 by or methods. Maximum stimulatory response was observed from the muscular strips of the proximal oviduct segment (infundibulum) and a complete relaxation was recorded from the distal part (vagina) at molar concentrations of 1.4 × 10−7, 3.4 × 10−7 and 7.0 × 10−7. The uterine strips reacted with a stimulatory response at higher concentrations (1.4 × 10−6 and 2.8 × 10−6 moles), but lacked any significant change at lower concentrations. The uterovaginal muscular strips showed a mild but prolonged inhibitory response, while the magnum responded with a significant increase in the luminal pressure when tested . It is concluded that PGE1 exerts a stimulatory effect on the uterus to initiate transport of the egg to subsequent segments (uterovaginal junction and vagina), which relax under PGE1 influence and allow passage of the egg by pressure differences.  相似文献   

17.
Sympathetic nerve stimulation of the perfused mesenteric arterial bed of the rabbit, , increase the secretion of prostaglandin (PG)I2 and PGE2. Prazosin (4.8 × 10−6), and α1 adrenergic receptor antagonist, inhibited this inrease in release of PGI2 but not of PGE2 whereas rauwolsin (10−7 M), an α2 adrenergic receptor antagonist, inhibited the increase in release of PGE2 but not of PGI2. Prazosin (10−6 M) completely blocked the vasoconstrictor response to nerve stimulation, and to norepinephrine and phenylephrine administration, suggesting there to be little of an α2 adrenergic receptor component in this response. It is concluded that the increase in PGI2 release follows the activation of α1 adrenergic receptors and is therefore post-junctional in origin, whereas the increase in PGE2 release follows the activation of α2 adrenergic receptors and may be pre- and/or post-junctional in origin.Indomethacin (2.8 × 10−7, 5.6 × 10−7 and 1.12 × 10−6 M did not affect the vasoconstrictor responses to nerve stimulation at 10 Hz, whereas rauwolsin (10−7 M) in the presence of indomethacin substantially increased them. These results indicate that PGE2 does not regulate norepinephrine release following nerve stimulation at 10 Hz to rabbit mesenteric arteries, and that the inhibition of norepinephrine release following stimulation of α2 pre-junctional receptors is independent of PG involvement.  相似文献   

18.
Actions of PGE1 and indomethacin on electrically induced vasoconstriction in isolated ear arteries of rabbits were studied. PGE1 (8.5 × 10−9 M) reduced the vasoconstriction; this inhibition was inversely related to the rate of stimulation. Indomethacin (1.5 × 10−6 M) potentiated the constrictor responses to nerve stimulation. The degree of this potentiation was also frequency-dependent being greater at low (1 – 2 Hz) than at high (8 – 16 Hz) rate of stimulation. These findings support the view that prostaglandins, in addition to their action on vascular smooth muscle cells, play a functional role in the regulation of tone of the rabbit ear artery by a negative feed-back control of adrenergic neurotransmission.  相似文献   

19.
Prostaglandin I2 potentiated the paw swelling induced by carrageenin in rats. Prostaglandin I2 (0.1 μg) showed similar activity to PGE1 (0.01 μg). This potentiating property disappeared in 60 minutes and was completely abolished by diphenhydramine (25 mg kg−1, i.p.). In vascular permeability tests, PGI2 itself (2.5 × 10−10 mol, 88 ng) caused no dye leakage reaction, but PGE1 (2.5 × 10−10 mol, 88.5 ng) caused a significant dye leakage. This effect of PGE1 was statistically significant compared with vehicle- or PGI2-treated group (p<0.05). Prostaglandin I2 potentiated the increased vascular permeability induced by 5-hydroxytriptamine (2.5 × 10−10 mol), bradykinin (5 × 10−10 mol) and histamine (2 × 10−10 to 2 × 10−8 mol). The potentiation was the most evidence in the case of histamine.  相似文献   

20.
We studied PGE2 specific binding sites in human myometrial microsomes prepared from uterine specimens obtained by hysterectomy (women between 38 and 55 years of age). Competition experiments showed that the potency order for various prostaglandins (PGs) was : PGE2 ≥ PGE1 PGF > Iloprost ≥ Carbacyclin ZK 110841 (PGD2 analogue). These relative affinities indicated that the receptor was of the EP type.In kinetic experiments GTP, GppNHp and GTPγS increased the rate of PGE2 binding (steady state was reached more rapidly in the presence of nucleotides) but maximal specific binding was not significantly different. Complete dissociation could not be obtained, even in the presence of GTP. Only 50% of maximal binding was readily dissociable. The dissociation rate was 4.56.10−4 sec−1 (half time of about 660 sec) and in the presence of GTP analogues it was slightly increased (k−1 = 7.16 10−4 sec−1 half time 420 sec.). Scatchard analysis of saturation curves showed an increase in ligand receptor affinity in the presence of GTP or nucleotide analogues: the Kd shifted from 9.66 ± 2.8.10−9 M to 4.96 ± 1.25.10−9M, but the number of binding sites did not change significantly (310 ± 37 to 350 ± 17 fmol/mgP). The effect of GTP was observed at a concentration of 5.10−4M. GppNHp and GTPγS were effective at 1.10−5M. Pretreatment of myometrial membranes with pertussis or cholera toxins had no effect on PGE2 binding to membrane sites. Our conclusion is that GTP induced conversion of a population of low affinity sites into a population of higher affinity sites. This effect of guanine nucleotides was described in adipocytes and kidney medulla.Competition studies with PGE2 analogues (sulprostone, 17-phenyl-ω-trinor PGE2, M&B 28,767, misoprostol, butaprost) showed that this receptor mediates a contractile response and is probably an EP3 subtype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号