首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
PURPOSE OF REVIEW: To summarize recent data indicating that glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1 (GPIHBP1) plays a key role in the lipolytic processing of chylomicrons. RECENT FINDINGS: Lipoprotein lipase hydrolyses triglycerides in chylomicrons at the luminal surface of the capillaries in heart, adipose tissue, and skeletal muscle. The endothelial cell molecule that facilitates the lipolytic processing of chylomicrons has never been clearly defined. Mice lacking GPIHBP1 manifest chylomicronemia, with plasma triglyceride levels as high as 5000 mg/dl. In wild-type mice, GPIHBP1 is expressed on the luminal surface of capillaries in heart, adipose tissue, and skeletal muscle. Cells transfected with GPIHBP1 bind both chylomicrons and lipoprotein lipase avidly. SUMMARY: The chylomicronemia in Gpihbp1-deficient mice, the fact that GPIHBP1 is located within the lumen of capillaries, and the fact that GPIHBP1 binds lipoprotein lipase and chylomicrons suggest that GPIHBP1 is a key platform for the lipolytic processing of triglyceride-rich lipoproteins.  相似文献   

2.
3.
4.
GPIHBP1-deficient mice (Gpihbp1(-/-)) exhibit severe chylomicronemia. GPIHBP1 is located within capillaries of muscle and adipose tissue, and expression of GPIHBP1 in Chinese hamster ovary cells confers upon those cells the ability to bind lipoprotein lipase (LPL). However, there has been absolutely no evidence that GPIHBP1 actually interacts with LPL in vivo. Heparin is known to release LPL from its in vivo binding sites, allowing it to enter the plasma. After an injection of heparin, we reasoned that LPL bound to GPIHBP1 in capillaries would be released very quickly, and we hypothesized that the kinetics of LPL entry into the plasma would differ in Gpihbp1(-/-) and control mice. Indeed, plasma LPL levels peaked very rapidly (within 1 min) after heparin in control mice. In contrast, plasma LPL levels in Gpihbp1(-/-) mice were much lower 1 min after heparin and increased slowly over 15 min. In keeping with that result, plasma triglycerides fell sharply within 10 min after heparin in wild-type mice, but were negligibly altered in the first 15 min after heparin in Gpihbp1(-/-) mice. Also, an injection of Intralipid released LPL into the plasma of wild-type mice but was ineffective in releasing LPL in Gpihbp1(-/-) mice. The observed differences in LPL release cannot be ascribed to different tissue stores of LPL, as LPL mass levels in tissues were similar in Gpihbp1(-/-) and control mice. The differences in LPL release after intravenous heparin and Intralipid strongly suggest that GPIHBP1 represents an important binding site for LPL in vivo.  相似文献   

5.
Glycosylphosphatidylinositol-anchored HDL-binding protein (GPIHBP1) binds both LPL and chylomicrons, suggesting that GPIHBP1 is a platform for LPL-dependent processing of triglyceride (TG)-rich lipoproteins. Here, we investigated whether GPIHBP1 affects LPL activity in the absence and presence of LPL inhibitors angiopoietin-like (ANGPTL)3 and ANGPTL4. Like heparin, GPIHBP1 stabilized but did not activate LPL. ANGPTL4 potently inhibited nonstabilized LPL as well as heparin-stabilized LPL but not GPIHBP1-stabilized LPL. Like ANGPTL4, ANGPTL3 inhibited nonstabilized LPL but not GPIHBP1-stabilized LPL. ANGPTL3 also inhibited heparin-stabilized LPL but with less potency than nonstabilized LPL. Consistent with these in vitro findings, fasting serum TGs of Angptl4−/−/Gpihbp1−/− mice were lower than those of Gpihbp1−/− mice and approached those of wild-type littermates. In contrast, serum TGs of Angptl3−/−/Gpihbp1−/− mice were only slightly lower than those of Gpihbp1−/− mice. Treating Gpihbp1−/− mice with ANGPTL4- or ANGPTL3-neutralizing antibodies recapitulated the double knockout phenotypes. These data suggest that GPIHBP1 functions as an LPL stabilizer. Moreover, therapeutic agents that prevent LPL inhibition by ANGPTL4 or, to a lesser extent, ANGPTL3, may benefit individuals with hyperlipidemia caused by gene mutations associated with decreased LPL stability.  相似文献   

6.
GPIHBP1 is a glycosylphosphatidylinositol-anchored protein in the lymphocyte antigen 6 (Ly-6) family that recently was identified as a platform for the lipolytic processing of triglyceride-rich lipoproteins. GPIHBP1 binds both LPL and chylomicrons and is expressed on the luminal face of microvascular endothelial cells. Here, we show that mouse GPIHBP1 is N-glycosylated at Asn-76 within the Ly-6 domain. Human GPIHBP1 is also glycosylated. The N-linked glycan could be released from mouse GPIHBP1 with N-glycosidase F, endoglycosidase H, or endoglycosidase F1. The glycan was marginally sensitive to endoglycosidase F2 digestion but resistant to endoglycosidase F3 digestion, suggesting that the glycan on GPIHBP1 is of the oligomannose type. Mutating the N-glycosylation site in mouse GPIHBP1 results in an accumulation of GPIHBP1 in the endoplasmic reticulum and a markedly reduced amount of the protein on the cell surface. Consistent with this finding, cells expressing a nonglycosylated GPIHBP1 lack the ability to bind LPL or chylomicrons. Eliminating the N-glycosylation site in a truncated soluble version of GPIHBP1 causes a modest reduction in the secretion of the protein. These studies demonstrate that N-glycosylation of GPIHBP1 is important for the trafficking of GPIHBP1 to the cell surface.  相似文献   

7.
GPIHBP1, a glycosylphosphatidylinositol-anchored endothelial cell protein of the lymphocyte antigen 6 (Ly6) family, plays a key role in the lipolysis of triglyceride-rich lipoproteins (e.g. chylomicrons). GPIHBP1 is expressed along the luminal surface of endothelial cells of heart, skeletal muscle, and adipose tissue, and GPIHBP1-expressing cells bind lipoprotein lipase (LPL) and chylomicrons avidly. GPIHBP1 contains an amino-terminal acidic domain (amino acids 24-48) that is enriched in aspartate and glutamate residues, and we previously speculated that this domain might be important in binding ligands. To explore the functional importance of the acidic domain, we tested the ability of polyaspartate or polyglutamate peptides to block the binding of ligands to pgsA-745 Chinese hamster ovary cells that overexpress GPIHBP1. Both polyaspartate and polyglutamate blocked LPL and chylomicron binding to GPIHBP1. Also, a rabbit antiserum against the acidic domain of GPIHBP1 blocked LPL and chylomicron binding to GPIHBP1-expressing cells. Replacing the acidic amino acids within GPIHBP1 residues 38-48 with alanine eliminated the ability of GPIHBP1 to bind LPL and chylomicrons. Finally, mutation of the positively charged heparin-binding domains within LPL and apolipoprotein AV abolished the ability of these proteins to bind to GPIHBP1. These studies indicate that the acidic domain of GPIHBP1 is important and that electrostatic interactions play a key role in ligand binding.  相似文献   

8.
There is evidence that elevated plasma triglycerides (TG) serve as an independent risk factor for coronary heart disease. Plasma TG levels are determined by the balance between the rate of production of chylomicrons and VLDL in intestine and liver, respectively, and their rate of clearance in peripheral tissues. Lipolytic processing of TG-rich lipoproteins is mediated by the enzyme lipoprotein lipase (LPL), which is tethered to the capillary endothelium via heparin sulphate proteoglycans. In recent years the Angiopoietin-like proteins ANGPTL3 and ANGPTL4 have emerged as novel modulators of LPL activity. Studies in transgenic animals supported by in vitro experiments have demonstrated that ANGPTL3 and ANGPTL4 impair plasma TG clearance by inhibiting LPL activity. In humans, genetic variation within the ANGPTL3 and ANGPTL4 genes contributes to variation in plasma TG and HDL levels, thereby validating the importance of ANGPTLs in the regulation of lipoprotein metabolism in humans. Combined with the discovery of GPIHBP1 as a likely LPL anchor, these findings have led to a readjustment of the mechanism of LPL function. This review provides an overview of our current understanding of the role and regulation of ANGPTL3, ANGPTL4 and GPIHBP1, and places the newly acquired knowledge in the context of the established function and mechanism of LPL-mediated lipolysis.  相似文献   

9.
GPIHBP1 is an endothelial cell protein that serves as a platform for lipoprotein lipase-mediated processing of triglyceride-rich lipoproteins within the capillaries of heart, adipose tissue, and skeletal muscle. The absence of GPIHBP1 causes severe chylomicronemia. A hallmark of GPIHBP1 is the ability to bind lipoprotein lipase, chylomicrons, and apolipoprotein (apo-) AV. A homozygous G56R mutation in GPIHBP1 was recently identified in two siblings with chylomicronemia, and the authors of that study suggested that the G56R substitution was responsible for the hyperlipidemia. In this study, we created a human GPIHBP1 expression vector, introduced the G56R mutation, and tested the ability of the mutant GPIHBP1 to reach the cell surface and bind lipoprotein lipase, chylomicrons, and apo-AV. Our studies revealed that the G56R substitution did not affect the ability of GPIHBP1 to reach the cell surface, nor did the amino acid substitution have any discernible effect on the binding of lipoprotein lipase, chylomicrons, or apo-AV.  相似文献   

10.
Ory DS 《Cell metabolism》2007,5(4):229-231
At the endothelial cell surface, binding of chylomicrons and lipoprotein lipase (LpL), the major enzyme involved in the processing of these triglyceride-rich lipoproteins, is thought to involve electrostatic interactions with glycosaminoglycans. A new study published in this issue of Cell Metabolism (Beigneux et al., 2007) provides evidence for a specific chylomicron/LpL receptor, which may serve as a platform for LpL-mediated processing of chylomicrons on the capillary endothelium.  相似文献   

11.
Hypertriglyceridemia (HTG) is an independent risk factor for atherosclerosis. However, its impact on non-atherosclerotic cardiovascular diseases remains largely unknown. Glycosylphosphatidylinositol anchored high-density lipoprotein binding protein 1 (GPIHBP1) is essential for the hydrolysis of circulating triglycerides and loss of functional GPIHBP1 causes severe HTG. In this study, we used Gpihbp1 knockout (GKO) mice to investigate the potential effects of HTG on non-atherosclerotic vascular remodeling. We compared the aortic morphology and gene expressions between three-month-old and ten-month-old GKO mice and their age-matched wild-type controls. We also conducted similar comparisons between GKO mice and wild-type controls in an angiotensin II (AngII)-induced vascular remodeling model. Our data showed that the intima-media wall of ten-month-old GKO mice but not three-month-olds was significantly thickened compared to wild-type controls. Moreover, ten-month-old GKO mice but not three-month-olds had increased aortic macrophage infiltration and perivascular fibrosis, along with increased endothelial activation and oxidative stress. Similarly, the AngII-induced vascular remodeling, as well as endothelial activation and oxidative stress, were also exacerbated in the GKO mice compared to wild-type controls. In conclusion, we demonstrated that severe HTG caused by Gpihbp1 deficiency could facilitate the onset and progression of non-atherosclerotic vascular remodeling through endothelial activation and oxidative stress in mice.  相似文献   

12.
Approximately 25% of postprandial retinoid is cleared from the circulation by extrahepatic tissues. Little is known about physiologic factors important to this uptake. We hypothesized that lipoprotein lipase (LpL) contributes to extrahepatic clearance of chylomicron vitamin A. To investigate this, [3H]retinyl ester-containing rat mesenteric chylomicrons were injected intravenously into induced mutant mice and nutritionally manipulated rats. The tissue sites of uptake of 3H label by wild type mice and LpL-null mice overexpressing human LpL in muscle indicate that LpL expression does influence accumulation of chylomicron retinoid. Skeletal muscle from mice overexpressing human LpL accumulated 1.7- to 2.4-fold more 3H label than wild type. Moreover, heart tissue from mice overexpresssing human LpL, but lacking mouse LpL, accumulated less than half of the 3H-label taken up by wild type heart. Fasting and heparin injection, two factors that increase LpL activity in skeletal muscle, increased uptake of chylomicron [3H] retinoid by rat skeletal muscle. Using [3H]retinyl palmitate and its non-hydrolyzable analog retinyl [14C]hexadecyl ether incorporated into Intralipid emulsions, the importance of retinyl ester hydrolysis in this process was assessed. We observed that 3H label was taken up to a greater extent than 14C label by rat skeletal muscle, suggesting that retinoid uptake requires hydrolysis.In summary, for each of our experiments, the level of lipoprotein lipase expression in skeletal muscle, heart, and/or adipose tissue influenced the amount of [3H]retinoid taken up from chylomicrons and/or their remnants.  相似文献   

13.
The S447X polymorphism in lipoprotein lipase (LPL), which shortens LPL by two amino acids, is associated with low plasma triglyceride levels and reduced risk for coronary heart disease. S447X carriers have higher LPL levels in the pre- and post-heparin plasma, raising the possibility that the S447X polymorphism leads to higher LPL levels within capillaries. One potential explanation for increased amounts of LPL in capillaries would be more avid binding of S447X-LPL to GPIHBP1 (the protein that binds LPL dimers and shuttles them to the capillary lumen). This explanation seems plausible because sequences within the carboxyl terminus of LPL are known to mediate LPL binding to GPIHBP1. To assess the impact of the S447X polymorphism on LPL binding to GPIHBP1, we compared the ability of internally tagged versions of wild-type LPL (WT-LPL) and S447X-LPL to bind to GPIHBP1 in both cell-based and cell-free binding assays. In the cell-based assay, we compared the binding of WT-LPL and S447X-LPL to GPIHBP1 on the surface of cultured cells. This assay revealed no differences in the binding of WT-LPL and S447X-LPL to GPIHBP1. In the cell-free assay, we compared the binding of internally tagged WT-LPL and S447X-LPL to soluble GPIHBP1 immobilized on agarose beads. Again, no differences in the binding of WT-LPL and S447X-LPL to GPIHBP1 were observed. We conclude that increased binding of S447X-LPL to GPIHBP1 is unlikely to be the explanation for more efficient lipolysis and lower plasma triglyceride levels in S447X carriers.  相似文献   

14.
Although very low density lipoprotein (VLDL) receptor (VLDLr) knockout mice have been reported to have no lipoprotein abnormalities, they develop less adipose tissue than control mice when fed a high calorie diet. Mice that are deficient in adipose tissue expression of lipoprotein lipase (LpL) also have less fat, but only when crossed with ob/ob mice. We hypothesized that the VLDLr, a protein that will bind and transport LpL, is required for optimal LpL actions in vivo and that hypertriglyceridemia due to VLDLr deficiency is exacerbated by either LpL deficiency or VLDL overproduction. Fasted VLDLr knockout (VLDLr0) mice were more hypertriglyceridemic than controls (2-fold greater triglyceride levels). The hypertriglyceridemia due to VLDLr0 was even more evident when VLDLr0 mice were crossed with heterozygous LpL-deficient (LpL1) and human apolipoprotein B (apoB) transgenic mice. This was due to an increase in apoB48-containing VLDL. [(3)H]VLDL turnover studies showed that VLDL-triglyceride clearance in VLDLr0/LpL1 mice was impaired by 50% compared with LpL1 mice. VLDLr0/LpL1 mice had less LpL activity in postheparin plasma, heart, and skeletal muscle. Infection of mice with an adenovirus-expressing receptor-associated protein, an inhibitor of the VLDLr, reduced LpL activity in wild type but not VLDLr0 mice. Therefore, the VLDLr is required for normal LpL regulation in vivo, and the disruption of VLDLr results in hypertriglyceridemia associated with decreased LpL activity.  相似文献   

15.
GPIHBP1 is an endothelial membrane protein that transports lipoprotein lipase (LPL) from the subendothelial space to the luminal side of the capillary endothelium. Here, we provide evidence that two regions of GPIHBP1, the acidic N-terminal domain and the central Ly6 domain, interact with LPL as two distinct binding sites. This conclusion is based on comparative binding studies performed with a peptide corresponding to the N-terminal domain of GPIHBP1, the Ly6 domain of GPIHBP1, wild type GPIHBP1, and the Ly6 domain mutant GPIHBP1 Q114P. Although LPL and the N-terminal domain formed a tight but short lived complex, characterized by fast on- and off-rates, the complex between LPL and the Ly6 domain formed more slowly and persisted for a longer time. Unlike the interaction of LPL with the Ly6 domain, the interaction of LPL with the N-terminal domain was significantly weakened by salt. The Q114P mutant bound LPL similarly to the N-terminal domain of GPIHBP1. Heparin dissociated LPL from the N-terminal domain, and partially from wild type GPIHBP1, but was unable to elute the enzyme from the Ly6 domain. When LPL was in complex with the acidic peptide corresponding to the N-terminal domain of GPIHBP1, the enzyme retained its affinity for the Ly6 domain. Furthermore, LPL that was bound to the N-terminal domain interacted with lipoproteins, whereas LPL bound to the Ly6 domain did not. In summary, our data suggest that the two domains of GPIHBP1 interact independently with LPL and that the functionality of LPL depends on its localization on GPIHBP1.  相似文献   

16.
17.
GPIHBP1, an endothelial cell transporter for lipoprotein lipase   总被引:1,自引:0,他引:1  
Interest in lipolysis and the metabolism of triglyceride-rich lipoproteins was recently reignited by the discovery of severe hypertriglyceridemia (chylomicronemia) in glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1 (GPIHBP1)-deficient mice. GPIHBP1 is expressed exclusively in capillary endothelial cells and binds lipoprotein lipase (LPL) avidly. These findings prompted speculation that GPIHBP1 serves as a binding site for LPL in the capillary lumen, creating "a platform for lipolysis." More recent studies have identified a second and more intriguing role for GPIHBP1-picking up LPL in the subendothelial spaces and transporting it across endothelial cells to the capillary lumen. Here, we review the studies that revealed that GPIHBP1 is the LPL transporter and discuss which amino acid sequences are required for GPIHBP1-LPL interactions. We also discuss the human genetics of LPL transport, focusing on cases of chylomicronemia caused by GPIHBP1 mutations that abolish GPIHBP1's ability to bind LPL, and LPL mutations that prevent LPL binding to GPIHBP1.  相似文献   

18.
The release of fatty acids from plasma triglycerides for tissue uptake is critically dependent on the enzyme lipoprotein lipase (LPL). Hydrolysis of plasma triglycerides by LPL can be disrupted by the protein angiopoietin-like 4 (ANGPTL4), and ANGPTL4 has been shown to inactivate LPL in vitro. However, in vivo LPL is often complexed to glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1 (GPIHBP1) on the surface of capillary endothelial cells. GPIHBP1 is responsible for trafficking LPL across capillary endothelial cells and anchors LPL to the capillary wall during lipolysis. How ANGPTL4 interacts with LPL in this context is not known. In this study, we investigated the interactions of ANGPTL4 with LPL-GPIHBP1 complexes on the surface of endothelial cells. We show that ANGPTL4 was capable of binding and inactivating LPL complexed to GPIHBP1 on the surface of endothelial cells. Once inactivated, LPL dissociated from GPIHBP1. We also show that ANGPTL4-inactivated LPL was incapable of binding GPIHBP1. ANGPTL4 was capable of binding, but not inactivating, LPL at 4 °C, suggesting that binding alone was not sufficient for ANGPTL4''s inhibitory activity. We observed that although the N-terminal coiled-coil domain of ANGPTL4 by itself and full-length ANGPTL4 both bound with similar affinities to LPL, the N-terminal fragment was more potent in inactivating both free and GPIHBP1-bound LPL. These results led us to conclude that ANGPTL4 can both bind and inactivate LPL complexed to GPIHBP1 and that inactivation of LPL by ANGPTL4 greatly reduces the affinity of LPL for GPIHBP1.  相似文献   

19.
GPIHBP1, a glycosylphosphatidylinositol-anchored glycoprotein of microvascular endothelial cells, binds lipoprotein lipase (LPL) within the interstitial spaces and transports it across endothelial cells to the capillary lumen. The ability of GPIHBP1 to bind LPL depends on the Ly6 domain, a three-fingered structure containing 10 cysteines and a conserved pattern of disulfide bond formation. Here, we report a patient with severe hypertriglyceridemia who was homozygous for a GPIHBP1 point mutation that converted a serine in the GPIHBP1 Ly6 domain (Ser-107) to a cysteine. Two hypertriglyceridemic siblings were homozygous for the same mutation. All three homozygotes had very low levels of LPL in the preheparin plasma. We suspected that the extra cysteine in GPIHBP1-S107C might prevent the trafficking of the protein to the cell surface, but this was not the case. However, nearly all of the GPIHBP1-S107C on the cell surface was in the form of disulfide-linked dimers and multimers, whereas wild-type GPIHBP1 was predominantly monomeric. An insect cell GPIHBP1 expression system confirmed the propensity of GPIHBP1-S107C to form disulfide-linked dimers and to form multimers. Functional studies showed that only GPIHBP1 monomers bind LPL. In keeping with that finding, there was no binding of LPL to GPIHBP1-S107C in either cell-based or cell-free binding assays. We conclude that an extra cysteine in the GPIHBP1 Ly6 motif results in multimerization of GPIHBP1, defective LPL binding, and severe hypertriglyceridemia.  相似文献   

20.
The role of macrophage lipoprotein lipase (LpL) in the development of atherosclerosis and adiposity was examined in macrophage LpL knockout (MLpLKO) mice. MLpLKO mice were generated using cre-loxP gene targeting. Loss of LpL in macrophages did not alter plasma LpL activity or lipoprotein levels. Incubation of apolipoprotein E (ApoE)-deficient β-VLDL with peritoneal macrophages from ApoE knockout mice lacking macrophage LpL (MLpLKO/ApoEKO) led to less cholesteryl ester formation than that found with ApoEKO macrophages. MLpLKO/ApoEKO macrophages had reduced intracellular triglyceride levels, with decreased CD36 and carnitine palmitoyltransferase-1 mRNA levels compared with ApoEKO macrophages, when incubated with VLDL. Although both MLpLKO/ApoEKO and ApoEKO mice developed comparable hypercholesterolemia in response to feeding with a Western-type diet for 12 weeks, atherosclerosis was less in MLpLKO/ApoEKO mice. Epididymal fat mass and gene expression levels associated with inflammation did not differ between the two groups. In conclusion, macrophage LpL plays an important role in the development of atherosclerosis but not adiposity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号