首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It was shown in experiments on rats that the selective blocker of GABA receptors bicuculline (2 mg/kg) does not decrease the activating effect of diazepam as to the reaction of self-stimulation. The GABA-mimetic muscimol (0.5 and 1 mg/kg) had no effect on self-stimulation rate, while in the dose of 2 mg/kg causing behavioral changes produced a powerful decrease in it (by 93.3%). During the combined administration of diazepam and muscimol (1 mg/kg and 0.5 mg/kg, respectively) no potentiation of diazepam effect was observed. It is suggested that diazepam-induced facilitation of the reaction of self-stimulation is not due to the alteration in the activity of GABA-ergic processes.  相似文献   

2.
Only very high doses of naloxone (≥40 mg/kg) were effective in attenuating intracranial self-stimulation elicited from the caudate nucleus and lateral hypothalamus. Naloxone did not differentially effect self-stimulation in the two brain areas. The results provide no evidence for an important role of the endogenous opioid-opiate receptor mechanism in self-stimulation, and suggest an independence of the opiate reinforcement and electrical self-stimulation systems in the rat brain.  相似文献   

3.
In an attempt to evaluate the possible existence of alpha- and/or beta- adrenergic components of the self-stimulation reward system, rats were injected (i.p.) with chlorpromazine hydrochloride (2.5 mg/kg), phentolamine hydrochloride (5 mg/kg), and propranolol hydrochloride (10 mg/kg). The alpha- adrenergic antagonists (chlorpromazine and pehntolamine) inhibited self-stimulation but the beta-adrenergic blocker (propranolol) was without significant effect. Self-stimulation is apparently mediated by the alpha-adrenergic system.  相似文献   

4.
To analyse the interaction between endogenous opioid systems and brain reward, the influence of repeated treatment for 3 weeks with morphine and the opioid antagonist naloxone was investigated in rats with self-stimulation electrodes in the ventral tegmental area. Changes in threshold of self-stimulation determined by a response rate insensitive two lever method were considered as changes in reward. Morphine induced a temporary decrease of the response rate which lasted 3 days, and decreased the threshold for self-stimulation. The effect on threshold remained present till morphine treatment was discontinued, indicating that tolerance does not develop to this effect of morphine. Repeated naloxone treatment gradually increased the threshold for self-stimulation. This effect persisted after discontinuation of naloxone treatment. It is concluded that blockade of opioid receptors induces long term changes in the setpoint of self-stimulation reward.  相似文献   

5.
A significant enhancement of the analgetic effect of morphine (6 mg/kg, subcutaneously; tail withdrawal reflex at 60 degrees C) was observed in rats 3-4 hours after single naloxone (1 mg/kg) administration. Periodical naloxone injection (0.5 mg/kg, subcutaneously, 3 times per day at 3.5-hour intervals for 3 days) led to a prominent and long-term (testing on the 20th and 105th hour after the last naloxone administration) enhancement of morphine analgesia (2.6 mg/kg subcutaneously) and insignificant inhibition of stress analgesia during two-hour immobilization of animals. These modifications of morphine and stress analgetic effects are considered a result of adaptive changes of opiate receptors after their blockade.  相似文献   

6.
Wistar male rats were implanted with bipolar electrodes in the lateral hypothalamus to study self-stimulation reaction in the Skinner box. Simultaneously, the microcanules were implanted into the central nucleus of the amygdala to inject the drugs studied (1 microl in volume for each injection). The blockade of CRF receptors (astressin 1 microg) or sodium influx ionic currents (xycaine, or lidocain 1 microg) by means of intrastructural administration of drugs into the amygdala descreased self-stimulation reaction of the lateral hypothalamus in rats by 29-55%. The inhibition of D2 and D2 dopamine receptors in the amygdala with SCH23390 (1 microg) or sulpiride (1 microg), respectively. reduced self-stimulation too, but in less degree. On the background of blockade of CRF (astressin) and dopamine (sulpiride) receptors, as well as sodium influx ionic currents (lidocain) in the amygdala neurons, psychomotor stimulant amphetamine (1 mg/kg) and barbiturate sodium ethaminal (5 mg/kg) supported their psychoactivating effect on self-stimulation (+30-37%), but fentanyl (0.1 mg/kg) had got no effect. Fentanyl activated self-stimulation moderately only after blockade D1 dopamine receptors with SCH23390. After blockade of CRF receptors, leu-enkephaline strengthened its depressant effect on self-stimulation reaction (-89%). Therefore, if the modulating influence of the amygdala on the hypothalamus is diminished, the reinforcing effects of opiated (fentanyl) and opioids (leuencephaline) will block, but there will be no effect for psychomotor stimulant amphetamine and barbiturate sodium ethaminal.  相似文献   

7.
Previous studies have shown that naloxone causes a decrease in food and water intake; however, the site of this action has not been determined. We investigated this problem by giving bilateral injections of 15 μg/rat of naloxone into the lateral ventricles of cannulated, food and water deprived rats. This treatment caused a significant decrease in food intake when compared to saline injected controls. Water intake in naloxone-treated animals did not differ significantly from that of saline-treated controls during the one hour test period. The total dose of naloxone given centrally, 15 μg, did not produce a change in eating or drinking if given peripherally. The findings imply that naloxone exerts its effect on food intake at a central site. A dose-related and significant suppression of water intake was seen after treatment with nalaxone peripherally (1, 3, and 10 mg/kg, i.p.) in rats with either subdiaphragmatic vagotomy (vag) or a sham vagotomy (sham). Although a significant suppression of food intake was seen in the sham rats, no supression of food intake was seeen in the vag rats at any dose of naloxone tested. In rats pretreated with methyl atropine (5 mg/kg, i.p.), naloxone (3 mg/kg, i.p.) was equivalent to saline in that it did not decrease food intake. However, nalaxone did cause a significant decrease in water intake in methylatropine pre-treated rats. These results suggest that the suppression of food intake by naloxone has a central site of action which is mediated by the vagus, and specifically by vagal efferents, since the effect was blocked by methylatropine. The results also suggest that naloxone's effect on water intake is mediated by a different mechanism than that involved with food intake.  相似文献   

8.
Systemically administered beta-endorphin was tested in rats for its ability to modify the hypothermia and hypermotility induced by d-amphetamine. Colonic temperature and motor activity were measured in a cold (4°C) ambient temperature in animals given IP injections of beta-endorphin (0.1, 1.0, or 3.0 mg/kg), naloxone (10 mg/kg), or morphine (30 mg/kg). The same measurements were taken in animals given beta-endorphin (1.0 mg/kg) in combination with naloxone or saline pretreatment and d-amphetamine (15 mg/kg) or saline post-treatment. Morphine alone had a biphasic effect on thermoregulation, but did not affect d-amphetamine-induced hypothermia. Activity scores were decreased by morphine, in both d-amphetamine and saline treated animals. The thermal response of rats to beta-endorphin alone was variable, depending on dosage, but all 3 dosages partially blocked the hypothermic effect of d-amphetamine. Naloxone blocked the thermal effects of both beta-endorphin and d-amphetamine. Motor activity tended to be decreased by naloxone, regardless of amphetamine treatment, but beta-endorphin tended to increase activity in amphetamine-treated animals and reduce it in saline-treated controls. In their actions on both thermoregulation and activity, naloxone and beta-endorphin appeared to interact independently with d-amphetamine, often producing effects in the same direction, but in combination, they tended to be mutually inhibitory.  相似文献   

9.
Low doses of morphine (0.30–2.5 mg/kg) decrease in a dose-dependent manner spontaneous climbing behaviour in mice. This effect is not modified by administration of naloxone at doses up to 1.25 mg/kg. These morphine doses do not modify the locomotor activity but, when they are associated with naloxone (0.5 mg/kg), an obvious inhibition occurs. In rats, a hyperactivity follows the akinesia produced by a morphine administration (10 mg/kg). This hyperactivity is changed into a significant hypokinesia when the animals are treated with naloxone (0.05 mg/kg). These results might reveal a dual effect of low doses of morphine, the excitatory effect of morphine being antagonized by naloxone whereas no action on the sedative effect is observed.  相似文献   

10.
The effect of naloxone upon neurologic deficit was evaluated in a model of transient forebrain ischemia in rats. Awake male Wistar rats were subjected to a 30 minute ischemia by occluding both common carotid arteries 8 days after cauterizing vertebral arteries. Administration of naloxone 1 or 5 mg/kg iv 10 minutes after carotid occlusion or 1 mg/kg iv one hour after clamp removal failed to reduce immediate and tardive neurologic postischemic deficits. On the other hand, in rats treated by a dose of 1 mg/kg naloxone 10 minutes after carotid occlusion and perfused with an additional dose of 2 mg/kg/h for 80 minutes, neurologic score was improved one hour after ischemia. However mortality was not decreased whatever was the modality of naloxone administration. This result confirms previous data showing that naloxone exerts a protective effect when given at sufficiently high dosage.  相似文献   

11.
The effect on systolic blood pressure and heart rate of the acute and chronic intraperitoneal (i.p.) administration of d- and dl-propranolol was investigated on unanesthetised spontaneously hypertensive rats. The effect of naloxone on the propranolol induced hypotension was also studied to test the hypothesis that the antihypertensive effect of propranolol involves the release of an endogenous opiate. On i.p. administration, 3 mg/kg d-propranolol was inactive; 3 and 30 mg/kg dl-propranolol decreased blood pressure and heart rate in a dose-dependent manner. When the rats were pretreated with 2 mg/kg naloxone i.p., the effect of propranolol on the blood pressure was nearly completely abolished, while that on the heart rate was only partially blocked. Chronic administration of dl-propranolol (30 mg/kg b.i.d.) to spontaneously hypertensive rats from the age of 6 weeks (prehypertensive phase) for 29 days prevented the development of hypertension while the rats treated with physiological saline for 29 days (control group) developed hypertension. Naloxone (2 mg/kg i.p.) administered on the 29th day to chronically treated rats induced a reversal of the propranolol action on systolic blood pressure and heart rate, i.e., blood pressure and heart rate increased. Naloxone had no such effect in the control group. We suggest that the release of an endogenous opioid contributes to the acute and chronic antihypertensive action of i.p. propranolol in spontaneously hypertensive rats and that the secretion of endogenous opioids participating in the control of cardiovascular functions is influenced by adrenergic mechanisms.  相似文献   

12.
《Journal of Physiology》1997,91(3-5):189-197
There exists a considerable controversy in the literature with regard to the effect of either opiate receptor blockade or that of morphine in different gastric and intestinal ulcer models in the rat. We performed experiments to evaluate the effects of naloxone and morphine on gastric acid secretion and gastric mucosal damage in different experimental models of gastric mucosal injury, namely in indomethacin-, HCl (0.6N)- and ethanol (96%)-models. We found that: 1) 10 mg/kg naloxone ip given twice, effectively protected gastric mucosa against indomethacin (30 mg/kg ip) and against the acid-dependent injury caused by 0.6 N HCl (1 mL ig), but not against the non acid-dependent injury caused by 96% ethanol (1 mL ig); 2) morphine (10 + 10 mg/kg ip) increased ulcers in the HCl-model, but had no effect in the two other models; 3) this ulcer-aggravating effect of morphine in the HCl-model was blocked by pretreatment of 2 mg/kg ip naloxone; and 4) both naloxone (5 + 5 and 10 + 10 mg/kg ip) significantly decreased gastric acid secretion in 1-h pylorus ligated rats. We conclude that: 1) naloxone dose-dependently protects against the indomethacin- and HCl-, but not against the ethanol-induced gastric mucosal damage; 2) morphine aggravates the HCl-induced ulcerogenesis; and 3) both opiod receptor agonist and antagonist decrease gastric acid secretion.  相似文献   

13.
The effect of naloxone on the L-leucinaminopeptidase (LAP) activity has been determined in the hypothalamus of normal female rats or after different periods of time from ovariectomy (15th or 30th day). Castration at 15th and 30th days produced a not very important fall of LAP activity. The naloxone injections (2.5 or 5 mg/kg vía i.p.) determined a significant decrease in LAP activity in the intact and ovariectomized rats, greater for 5 mg/kg. A significant LAP activity decrease was found only after a 30 day postcastration period when naloxone treated intact animals were compared with the castrated rats. These data are discussed in relation to the physiological significance of brain peptidases and the pharmacological effect of naloxone on the function of the hypothalamic-pituitary-gonadal axis.  相似文献   

14.
The effects of naloxone pretreatment on opiate agonist-induced depressions in serum luteinizing hormone (LH) levels were examined in male rats. Our results demonstrated a pronounced enhancement of morphine's actions 6 hours after the administration of naloxone (0.5 mg/kg). This effect was characterized by a 10 fold reduction in the ED50 (1.26 mg/kg versus 0.13 mg/kg in saline- and naloxone-pretreated rats, respectively) and much greater depressions in serum LH levels at each dose of morphine. The actions of naloxone were not confined to morphine, since similar increased potencies were found for opioid agonists with selectivity for a variety of opioid receptor subtypes. Because naloxone did not alter the uptake of subsequently administered morphine into brain, our results cannot be explained on the basis of an increased availability of the agonist. Rather, it appears that naloxone pretreatment induces a change in the sensitivity of those receptors involved in the effects of opioid agonists on LH.  相似文献   

15.
G A Higgins  P Nguyen  E M Sellers 《Life sciences》1992,50(21):PL167-PL172
The non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist dizocilpine has recently been reported to antagonize certain overt withdrawal signs in morphine dependent rats. The purpose of the present study was to reassess this response and examine the effect of this drug in a model presumably reflective of the motivational impact of withdrawal using the place conditioning technique. Rats were made opiate dependent by the subcutaneous implantation of a 75 mg morphine pellet. Three-4 days later withdrawal was precipitated by naloxone 0.5 mg/kg. Dizocilpine (0.1-0.5 mg/kg) attenuated many of the subsequent behaviours elicited by naloxone, notably diarrhoea, mouth movements, paw shakes and ptosis. In a separate group of morphine dependent rats, naloxone (0.05 mg/kg) precipitated withdrawal produced a clear place aversion. This place aversion was blocked by dizocilpine (0.02-0.1 mg/kg) pre-treatment prior to conditioning. Therefore dizocilpine may modify both motivational and somatic aspects of opioid withdrawal.  相似文献   

16.
The effects of the narcotic antagonist, naloxone, on various types of stress- related feeding in rats were examined. Tail pinch-induced eating of a palatable substance, and 3 hr daytime rat chow intake following acute 2-deoxy-D-glucose (2-DG, 400 mg/kg) administration or 24 hr food deprivation were significantly decreased by low doses (1 mg/kg) of naloxone. Night time food intake was likewise decreased by naloxone (4 mg/kg). In contrast, hyperphagia induced by insulin (10 U/kg) was not decreased by naloxone (0.06–16 mg/kg). These findings suggest that narcotic antagonists should be considered as possible anorexics selective for stress-induced eating, and that endogenous opiates may prove to be another significant factor involved in the control of food intake.  相似文献   

17.
Whole body hyperthermia induces heat shock proteins (HSPs), which confer cardioprotection. Several opioid receptor subtypes are expressed in the heart and are linked to cardioprotection; however, no one has attempted to link the protection elicited by heat stress (HS) to opioids. Therefore, we investigated the effect of an opiate receptor antagonist, naloxone, on HS-induced cardioprotection. Anesthetized Sprague-Dawley rats were subjected to HS (42 degrees C for 20 min) with and without naloxone pretreatment and were allowed to recover for 48 h. They then underwent 30 min of ischemia followed by 2 h of reperfusion. An acute HS group was given an intravenous bolus of naloxone (3 mg/kg) 10 min before index ischemia. Infarct size (IS), expressed as a percentage of the area at risk (IS/AAR), was determined. The right heart was excised for analysis of HSP content by Western blot. Heat-shocked rats showed significant reductions in IS/AAR versus control (16 +/- 3 vs. 58 +/- 4%, P < 0.001). Pretreatment with naloxone before HS attenuated the protective effects in a dose-dependent fashion, with significant attenuation of protection occurring at 15 mg/kg naloxone versus heat shock (42 +/- 6 vs. 16 +/- 3%, P < 0.001). Acute treatment with naloxone (3 mg/kg) 48 h after recovery from HS also significantly attenuated the delayed protective effect (47 +/- 4 vs. 16 +/- 3%, P < 0.001). No difference was seen in the level of HSP70 induced in the different groups. We conclude that heat shock-induced cardioprotection can be attenuated by naloxone, an opiate receptor antagonist, without reducing the levels of certain HSPs. These results suggest there may be a link between the endogenous release of opioids and HS that mediates cardioprotection.  相似文献   

18.
P Limonta  C W Bardin  E F Hahn  R B Thau 《Steroids》1985,46(6):955-965
In order to gain additional information on the role of brain opioid peptides in the regulation of the hypothalamic-pituitary-gonadal axis, we studied the effects of nalmefene, a new opiate antagonist, on gonadotropin and testosterone secretion in male rats. The results were compared with those obtained with naloxone, a well-studied antagonist. Acute injections of either nalmefene or naloxone (2 mg/kg) produced 4-fold increases in LH and testosterone secretion. In castrated male rats treated with testosterone propionate (TP), nalmefene (10 mg/kg) reversed the androgen negative feedback on LH secretion; surprisingly, when higher doses (25 and 50 mg/kg) were injected, the compound lost its ability to antagonize the testosterone-induced inhibition of LH levels. In contrast, naloxone was able to increase LH levels in TP-treated castrated rats even at the highest dose tested (50 mg/kg). Chronic administration of these antagonists resulted in suppression of the acute release of LH and T secretion in nalmefene-treated but not in naloxone-injected animals. These data are consistent with previous observations suggesting that opioid peptides a) exert a tonic inhibitory effect on LH and testosterone production and b) participate in the negative androgen-induced feedback control of LH secretion. Our results also show that the antagonistic action of nalmefene, but not naloxone, is reversed when higher doses are used or following chronic administration.  相似文献   

19.
Wang PF  Zhang YQ  Qiu ZB  Zhao ZQ 《生理学报》2004,56(3):295-300
实验以清醒大鼠的缩腿潜伏期为指标,观察了腹腔注射美普他酚及其同分异构体112824和112825对角叉菜胶引起的热痛敏的影响.外周炎症由单侧足底注射角叉菜胶(2 mg/100 μl)引起.注射角叉菜胶3 h后,注射侧后肢局部红肿及热痛过敏反应达到高峰,持续数小时.腹腔注射0.1 mg/kg美普他酚对炎症和非炎症侧后肢的缩腿潜伏期无明显影响(P>0.05,n=8).腹腔注射1mg/kg和10 mg/kg美普他酚对炎症和非炎症侧后肢产生明显的抗痛敏和抗伤害效应,且对炎症侧缩腿反应的抑制(抗痛敏)作用明显强于非炎症侧(抗伤害)(P<0.05,n=8~11).预先腹腔注射1.5 mg/kg纳洛酮明显阻断美普他酚引起的抗伤害和抗痛敏效应.腹腔注射美普他酚的同分异构体112824(1 mg/kg)和112825(1.5 ms/kg)可产生与美普他酚类似的抗痛敏作用,该效应可被预先腹腔注射1.5 mg/kg纳洛酮完全阻断.提示美普他酚及其同分异构体具有明显抗伤害和抗痛敏作用,且以后者为强.该作用主要通过mu阿片受体介导.本研究为扩展美普他酚及其同分异构体在临床上的应用提供了依据.  相似文献   

20.
S G Holtzman 《Life sciences》1979,24(3):219-226
Naloxone (0.3–10 mg/kg) produced a dose-related suppression of eating and drinking in rats that had been deprived of food for 48 hr or water for 24 hr. The suppression of water intake by naloxone was unaltered in rats that had been physically dependent upon morphine one week earlier and which were tolerant to the analgesic effect of morphine at the time naloxone was tested. These results confirm the ability of naloxone to suppress appetitive behavior in the rat but do not resolve the issue of whether or not this effect of naloxone is the consequence of an interaction with an endogenous opioid system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号