首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Formation of a bipolar spindle is essential for faithful chromosome segregation at mitosis. Because centrosomes define spindle poles, defects in centrosome number and structural organization can lead to a loss of bipolarity. In addition, microtubule-mediated pulling and pushing forces acting on centrosomes and chromosomes are also important for bipolar spindle formation. Polo-like kinase 1 (Plk1) is a highly conserved Ser/Thr kinase that has essential roles in the formation of a bipolar spindle with focused poles. However, the mechanism by which Plk1 regulates spindle-pole formation is poorly understood. Here, we identify a novel centrosomal substrate of Plk1, Kizuna (Kiz), depletion of which causes fragmentation and dissociation of the pericentriolar material from centrioles at prometaphase, resulting in multipolar spindles. We demonstrate that Kiz is critical for establishing a robust mitotic centrosome architecture that can endure the forces that converge on the centrosomes during spindle formation, and suggest that Plk1 maintains the integrity of the spindle poles by phosphorylating Kiz.  相似文献   

2.
CDC25 dual-specificity phosphatases play a central role in cell cycle control through the activation of Cyclin-Dependent Kinases (CDKs). Expression during mitosis of a stabilized CDC25B mutant (CDC25B-DDA), which cannot interact with the F-box protein βTrCP for proteasome-dependent degradation, causes mitotic defects and chromosome segregation errors in mammalian cells. We found, using the same CDC25B mutant, that stabilization and failure to degrade CDC25B during mitosis lead to the appearance of multipolar spindle cells resulting from a fragmentation of pericentriolar material (PCM) and abolish mitotic Plk1-dependent phosphorylation of Kizuna (Kiz), which is essential for the function of Kiz in maintaining spindle pole integrity. Thus, in mitosis Kiz is a new substrate of CDC25B whose dephosphorylation following CDC25B stabilization leads to the formation of multipolar spindles. Furthermore, endogenous Kiz and CDC25B interact only in mitosis, suggesting that Kiz phosphorylation depends on a balance between CDC25B and Plk1 activities. Our data identify a novel mitotic substrate of CDC25B phosphatase that plays a key role in mitosis control.  相似文献   

3.
Bipolar mitotic spindle organization is fundamental to faithful chromosome segregation. Furry (Fry) is an evolutionarily conserved protein implicated in cell division and morphology. In human cells, Fry localizes to centrosomes and spindle microtubules in early mitosis, and depletion of Fry causes multipolar spindle formation. However, it remains unknown how Fry controls bipolar spindle organization. This study demonstrates that Fry binds to polo-like kinase 1 (Plk1) through the polo-box domain of Plk1 in a manner dependent on the cyclin-dependent kinase 1-mediated Fry phosphorylation at Thr-2516. Fry also binds to Aurora A and promotes Plk1 activity by binding to the polo-box domain of Plk1 and by facilitating Aurora A-mediated Plk1 phosphorylation at Thr-210. Depletion of Fry causes centrosome and centriole splitting in mitotic spindles and reduces the kinase activity of Plk1 in mitotic cells and the accumulation of Thr-210-phosphorylated Plk1 at the spindle poles. Our results suggest that Fry plays a crucial role in the structural integrity of mitotic centrosomes and in the maintenance of spindle bipolarity by promoting Plk1 activity at the spindle poles in early mitosis.  相似文献   

4.
Coordination of cell growth and proliferation in response to nutrient supply is mediated by mammalian target of rapamycin (mTOR) signaling. In this study, we report that Mio, a highly conserved member of the SEACAT/GATOR2 complex necessary for the activation of mTORC1 kinase, plays a critical role in mitotic spindle formation and subsequent chromosome segregation by regulating the proper concentration of active key mitotic kinases Plk1 and Aurora A at centrosomes and spindle poles. Mio-depleted cells showed reduced activation of Plk1 and Aurora A kinase at spindle poles and an impaired localization of MCAK and HURP, two key regulators of mitotic spindle formation and known substrates of Aurora A kinase, resulting in spindle assembly and cytokinesis defects. Our results indicate that a major function of Mio in mitosis is to regulate the activation/deactivation of Plk1 and Aurora A, possibly by linking them to mTOR signaling in a pathway to promote faithful mitotic progression.  相似文献   

5.
Bipolar spindle formation is essential for faithful chromosome segregation at mitosis. Because centrosomes define spindle poles, abnormal number and structural organization of centrosomes can lead to loss of spindle bipolarity and genetic integrity. ASAP (aster-associated protein or MAP9) is a centrosome- and spindle-associated protein, the deregulation of which induces severe mitotic defects. Its phosphorylation by Aurora A is required for spindle assembly and mitosis progression. Here, we show that ASAP is localized to the spindle poles by Polo-like kinase 1 (Plk1) (a mitotic kinase that plays an essential role in centrosome regulation and mitotic spindle assembly) through the γ-TuRC-dependent pathway. We also demonstrate that ASAP is a novel substrate of Plk1 phosphorylation and have identified serine 289 as the major phosphorylation site by Plk1 in vivo. ASAP phosphorylated on serine 289 is localized to centrosomes during mitosis, but this phosphorylation is not required for its Plk1-dependent localization at the spindle poles. We show that phosphorylated ASAP on serine 289 contributes to spindle pole stability in a microtubule-dependent manner. These data reveal a novel function of ASAP in centrosome integrity. Our results highlight dual ASAP regulation by Plk1 and further confirm the importance of ASAP for spindle pole organization, bipolar spindle assembly, and mitosis.  相似文献   

6.
Roles of polo-like kinase 1 in the assembly of functional mitotic spindles   总被引:13,自引:0,他引:13  
BACKGROUND: The stable association of chromosomes with both poles of the mitotic spindle (biorientation) depends on spindle pulling forces. These forces create tension across sister kinetochores and are thought to stabilize microtubule-kinetochore interactions and to silence the spindle checkpoint. Polo-like kinase 1 (Plk1) has been implicated in regulating centrosome maturation, mitotic entry, sister chromatid cohesion, the anaphase-promoting complex/cyclosome (APC/C), and cytokinesis, but it is unknown if Plk1 controls chromosome biorientation. RESULTS: We have analyzed Plk1 functions in synchronized mammalian cells by RNA interference (RNAi). Plk1-depleted cells enter mitosis after a short delay, accumulate in a preanaphase state, and subsequently often die by apoptosis. Spindles in Plk1-depleted cells lack focused poles and are not associated with centrosomes. Chromosomes attach to these spindles, but the checkpoint proteins Mad2, BubR1, and CENP-E are enriched at many kinetochores. When Plk1-depleted cells are treated with the Aurora B inhibitor Hesperadin, which silences the spindle checkpoint by stabilizing microtubule-kinetochore interactions, cells degrade APC/C substrates and exit mitosis without chromosome segregation and cytokinesis. Experiments with monopolar spindles that are induced by the kinesin inhibitor Monastrol indicate that Plk1 is required for the assembly of spindles that are able to generate poleward pulling forces. CONCLUSIONS: Our results imply that Plk1 is not essential for mitotic entry and APC/C activation but is required for proper spindle assembly and function. In Plk1-depleted cells spindles may not be able to create enough tension across sister kinetochores to stabilize microtubule-kinetochore interactions and to silence the spindle checkpoint.  相似文献   

7.
The spatial and temporal coordination of chromosome segregation with cytokinesis is essential to ensure that each daughter cell receives the correct complement of chromosomal and cytoplasmic material. In yeast, mitotic exit and cytokinesis are coordinated by signaling cascades whose terminal components include a nuclear Dbf2-related family kinase and a noncatalytic subunit, Mps one binding (Mob) 1. There are five human Mob1 isoforms, all of which display redundant localization patterns at the spindle poles and kinetochores in early mitosis, and the spindle midzone during cytokinesis. Mob1 shares similar localization patterns to Polo-like kinase (Plk1) and the chromosomal passenger complex (CPC), and although depletion of Plk1 resulted in a loss of Mob1 from the spindle poles, Mob1 recruitment to kinetochores was unaffected. Conversely, disruption of CPC signaling resulted in a loss of Mob1 from kinetochores without disrupting recruitment to the spindle poles. In Mob1-depleted cells, the relocalization of the CPC and mitotic kinesin-like protein (MKLP) 2 to the spindle midzone was delayed during early anaphase, and as a consequence, the midzone recruitment of MKLP1 also was affected. Together, these results suggest that Mob1 and the other mammalian orthologues of the mitotic exit network regulate mitotic progression by facilitating the timely mobilization of the CPC to the spindle midzone.  相似文献   

8.
《The Journal of cell biology》1995,129(6):1617-1628
Correct assembly and function of the mitotic spindle during cell division is essential for the accurate partitioning of the duplicated genome to daughter cells. Protein phosphorylation has long been implicated in controlling spindle function and chromosome segregation, and genetic studies have identified several protein kinases and phosphatases that are likely to regulate these processes. In particular, mutations in the serine/threonine-specific Drosophila kinase polo, and the structurally related kinase Cdc5p of Saccharomyces cerevisae, result in abnormal mitotic and meiotic divisions. Here, we describe a detailed analysis of the cell cycle-dependent activity and subcellular localization of Plk1, a recently identified human protein kinase with extensive sequence similarity to both Drosophila polo and S. cerevisiae Cdc5p. With the aid of recombinant baculoviruses, we have established a reliable in vitro assay for Plk1 kinase activity. We show that the activity of human Plk1 is cell cycle regulated, Plk1 activity being low during interphase but high during mitosis. We further show, by immunofluorescent confocal laser scanning microscopy, that human Plk1 binds to components of the mitotic spindle at all stages of mitosis, but undergoes a striking redistribution as cells progress from metaphase to anaphase. Specifically, Plk1 associates with spindle poles up to metaphase, but relocalizes to the equatorial plane, where spindle microtubules overlap (the midzone), as cells go through anaphase. These results indicate that the association of Plk1 with the spindle is highly dynamic and that Plk1 may function at multiple stages of mitotic progression. Taken together, our data strengthen the notion that human Plk1 may represent a functional homolog of polo and Cdc5p, and they suggest that this kinase plays an important role in the dynamic function of the mitotic spindle during chromosome segregation.  相似文献   

9.
Polo-like kinases (Plks) are a family of serine/threonine protein kinases that regulate multiple stages of mitosis. Expression and distribution of polo-like kinase 1 (Plk1) were characterized during porcine oocyte maturation, fertilization and early embryo development in vitro, as well as after microtubule polymerization modulation. The quantity of Plk1 protein remained stable during meiotic maturation. Plk1 accumulated in the germinal vesicles (GV) in GV stage oocytes. After germinal vesicle breakdown (GVBD), Plk1 was localized to the spindle poles at metaphase I (MI) stage, and then translocated to the middle region of the spindle at anaphase-telophase I. Plk1 was also localized in MII spindle poles and on the spindle fibers and on the middle region of anaphase-telophase II spindles. Plk1 was not found in the spindle region when colchicine was used to inhibit microtubule organization, while it accumulated as several dots in the cytoplasm after taxol treatment. After fertilization, Plk1 concentrated around the female and male pronuclei. During early embryo development, Plk1 was found to be in association with the mitotic spindle at metaphase, but distributed diffusely in the cytoplasm at interphase. Our results suggest that Plk1 is a pivotal regulator of microtubule organization and cytokinesis during porcine oocyte meiotic maturation, fertilization, and early embryo cleavage in pig oocytes.  相似文献   

10.
Shugoshin 1 (Sgo1) functions as a protector of centromeric cohesion of sister chromatids in higher eukaryotes. Here, we provide evidence for a previously unrecognized role for Sgo1 in centriole cohesion. Sgo1 depletion via RNA interference induces the formation of multiple centrosome-like structures in mitotic cells that result from the separation of paired centrioles. Sgo1+/- mitotic murine embryonic fibroblasts display split centrosomes. Localization study of two major endogenous splice variants of Sgo1 indicates that the smaller variant, sSgo1, is found at the centrosome in interphase and at spindle poles in mitosis. sSgo1 interacts with Plk1 and its spindle pole localization is Plk1 dependent. Centriole splitting induced by Sgo1 depletion or expression of a dominant negative mutant is suppressed by ectopic expression of sSgo1 or by Plk1 knockdown. Our studies strongly suggest that sSgo1 plays an essential role in protecting centriole cohesion, which is partly regulated by Plk1.  相似文献   

11.
Polo-like kinases (Plks) are a family of serine/threonine protein kinases that have been activated through phosphorylation. The activity of these kinases has been shown to be required for regulating multiple stages of mitotic progression in somatic cells. In this experiment, the changes in Plk1 expression were detected in mouse oocytes through Western blotting. The subcellular localization of Plk1 during oocyte meiotic maturation, fertilization, and early cleavage as well as after antibody microinjection or microtubule assembly disturbance was studied by confocal microscopy. The quantity of Plk1 protein remained stable during meiotic maturation and decreased gradually after fertilization. Plk1 was localized to the spindle poles of both meiotic and mitotic spindles at the early M phase and then translocated to the middle region. At anaphase and telophase, Plk1 was concentrated at the midbody of cytoplasmic cleavages. Plk1 was concentrated between the male and female pronuclei after fertilization. Plk1 disappeared at the spindle region when microtubule formation was inhibited by colchicine or staurosporine, while it was concentrated as several dots in the cytoplasm after taxol treatment. Plk1 antibody injection decreased the germinal vesicle breakdown rate and distorted MI spindle organization. Our results indicate that Plk1 is a pivotal regulator of microtubule organization during mouse oocyte meiosis, fertilization, and cleavage and that its functions may be regulated by other kinases, such as staurosporine-sensitive kinases.  相似文献   

12.
Polo-like kinase 1 (Plk1) is a family of serine/threonine protein kinases that play important regulatory roles during mitotic cell cycle progression. In this study, Plk1 expression, subcellular localization, and possible functions during rat oocyte meiotic maturation, fertilization, and embryonic cleavages were studied by using RT-PCR, Western blot, confocal microscopy, drug-treatments, and antibody microinjection. Both the mRNA and protein of this kinase were detected in rat maturing oocytes and developing embryos. Confocal microscopy revealed that Plk1 distributed abundantly in the nucleus at the germinal vesicle (GV) stage, was associated with spindle poles during the formation of M-phase spindle, and was translocated to the spindle mid-zone at anaphase. In fertilized eggs, Plk1 was strongly stained in the cytoplasm between the apposing male and female pronuclei, from where microtubules radiated. Throughout cytokinesis, Plk1 was localized to the division plane, both during oocyte meiosis and embryonic mitosis. The specific subcellular distribution of Plk1 was distorted after disrupting the M-phase spindle, while additional aggregation dots could be induced in the cytoplasm by taxol, suggesting its intimate association with active microtubule assembly. Plk1 antibody microinjection delayed the meiotic resumption and blocked the emission of polar bodies. In conclusion, Plk1 may be a multifunctional kinase that plays pivotal regulatory roles in microtubule assembly during rat oocyte meiotic maturation, fertilization, and early embryonic mitosis.  相似文献   

13.
Wnt signalling is known to promote G1/S progression through the stimulation of gene expression, but whether this signalling regulates mitotic progression is not clear. Here, the function of dishevelled 2 (Dvl2), which transmits the Wnt signal, in mitosis was examined. Dvl2 localized to the spindles and spindle poles during mitosis. When cells were treated with nocodazole, Dvl2 was observed at the kinetochores (KTs). Dvl2 bound to and was phosphorylated at Thr206 by a mitotic kinase, Polo‐like kinase 1 (Plk1), and this phosphorylation was required for spindle orientation and stable microtubule (MT)‐KT attachment. Dvl2 was also found to be involved in the activation of a spindle assembly checkpoint (SAC) kinase, Mps1, and the recruitment of other SAC components, Bub1 and BubR1, to the KTs. However, the phosphorylation of Dvl2 by Plk1 was dispensable for SAC. Furthermore, Wnt receptors were involved in spindle orientation, but not in MT‐KT attachment or SAC. These results suggested that Dvl2 is involved in mitotic progression by regulating the dynamics of MT plus‐ends and the SAC in Plk1‐dependent and ‐independent manners.  相似文献   

14.
RAF kinases regulate cell proliferation and survival and can be dysregulated in tumors. The role of RAF in cell proliferation has been linked to its ability to activate mitogen-activated protein kinase kinase 1 (MEK) and mitogen-activated protein kinase 1 (ERK). Here we identify a MEK-independent role for RAF in tumor growth. Specifically, in mitotic cells, CRAF becomes phosphorylated on Ser338 and localizes to the mitotic spindle of proliferating tumor cells in vitro as well as in murine tumor models and in biopsies from individuals with cancer. Treatment of tumors with allosteric inhibitors, but not ATP-competitive RAF inhibitors, prevents CRAF phosphorylation on Ser338 and localization to the mitotic spindle and causes cell-cycle arrest at prometaphase. Furthermore, we identify phospho-Ser338 CRAF as a potential biomarker for tumor progression and a surrogate marker for allosteric RAF blockade. Mechanistically, CRAF, but not BRAF, associates with Aurora kinase A (Aurora-A) and Polo-like kinase 1 (Plk1) at the centrosomes and spindle poles during G2/M. Indeed, allosteric or genetic inhibition of phospho-Ser338 CRAF impairs Plk1 activation and accumulation at the kinetochores, causing prometaphase arrest, whereas a phospho-mimetic Ser338D CRAF mutant potentiates Plk1 activation, mitosis and tumor progression in mice. These findings show a previously undefined role for RAF in tumor progression beyond the RAF-MEK-ERK paradigm, opening new avenues for targeting RAF in cancer.  相似文献   

15.
Mitotic entry requires a major reorganization of the microtubule cytoskeleton. Nlp, a centrosomal protein that binds gamma-tubulin, is a G(2)/M target of the Plk1 protein kinase. Here, we show that human Nlp and its Xenopus homologue, X-Nlp, are also phosphorylated by the cell cycle-regulated Nek2 kinase. X-Nlp is a 213-kDa mother centriole-specific protein, implicating it in microtubule anchoring. Although constant in abundance throughout the cell cycle, it is displaced from centrosomes upon mitotic entry. Overexpression of active Nek2 or Plk1 causes premature displacement of Nlp from interphase centrosomes. Active Nek2 is also capable of phosphorylating and displacing a mutant form of Nlp that lacks Plk1 phosphorylation sites. Importantly, kinase-inactive Nek2 interferes with Plk1-induced displacement of Nlp from interphase centrosomes and displacement of endogenous Nlp from mitotic spindle poles, while active Nek2 stimulates Plk1 phosphorylation of Nlp in vitro. Unlike Plk1, Nek2 does not prevent association of Nlp with gamma-tubulin. Together, these results provide the first example of a protein involved in microtubule organization that is coordinately regulated at the G(2)/M transition by two centrosomal kinases. We also propose that phosphorylation by Nek2 may prime Nlp for phosphorylation by Plk1.  相似文献   

16.
OBJECTIVE: Both RhoA (Rho1) and polo-like kinase 1 (Plk1) are implicated in the regulation of cytokinesis, a cellular process that marks the division of cytoplasm of a parent cell into daughter cells after nuclear division. Cytokinesis failure is often accompanied by the generation of cells with an unstable tetraploid content, which predisposes it to chromosomal instability and oncogenic transformation. Several studies using lower eukaryotic systems demonstrate that RhoA and Plk1 are essential for mitotic progression and cytokinesis. MATERIALS AND METHODS: Physical and functional interactions between RhoA and Plk-1 were analyzed using subcellular localization of RhoA and Plk1 in HeLa cells by immunofluorescence and co-precipitation techniques, followed by Western blotting in RhoA transfected cells. RESULTS: Plk1 localizes to kinetochores as well as to spindle poles during prophase and metaphase; it translocates to the midbody during telophase. RhoA is also enriched at the midbody region during telophase and colocalizes with Plk1. Recombinant RhoA, expressed as a GFP fusion protein, is enriched in the nucleus of HeLa and U2OS cells. Ectopically expressed GFP-RhoA does not cause significant cell death, although there exist a group of cells that appear to exhibit a delay in mitotic exit or in impaired cytokinesis. CONCLUSION: Co-immunoprecipitation reveals that RhoA and Plk1 physically interact and that their interaction appears to be enhanced during mitosis. Given the role of RhoA and Plk1 in cytokinesis, our findings suggest that regulated activation of RhoA is important for cytokinesis and that Plk1 may alter activation of RhoA during mitotic cytokinesis.  相似文献   

17.
We have examined the dynamics of the localisation of the polo-like kinase 1 (Plk1) during maturation of the mouse oocyte. Levels of Plk1 protein increase following germinal vesicle breakdown, at which time the enzyme begins to accumulate at discrete positions on the condensing chromosomes and, subsequently, at the poles of the meiotic spindle, which moves towards the cortex of the egg. Interestingly, at metaphase in both meiotic divisions, Plk1 shows a punctate localisation along the broad spindle poles. Moreover, the punctate distribution of Plk1 on the meiotic chromosomes appears at early anaphase to correspond to the centromeric regions. The protein relocates to the spindle midzone during late anaphase and then associates with the midbody at telophase. We have confirmed the specific pattern of immuno-localisation seen in fixed preparations by observing the distribution of Plk1 tagged with green fluorescent protein in living oocytes. We discuss the localisation of the enzyme in light of the structure of the spindle poles, which are known to lack centrioles, and the highly asymmetric nature of the meiotic divisions. Received: 8 August 1998 / Accepted: 13 September 1998  相似文献   

18.
During cell division, chromosome segregation must be coordinated with cell cleavage so that cytokinesis occurs after chromosomes have been safely distributed to each spindle pole. Polo-like kinase 1 (Plk1) is an essential kinase that regulates spindle assembly, mitotic entry and chromosome segregation, but because of its many mitotic roles it has been difficult to specifically study its post-anaphase functions. Here we use small molecule inhibitors to block Plk1 activity at anaphase onset, and demonstrate that Plk1 controls both spindle elongation and cytokinesis. Plk1 inhibition did not affect anaphase A chromosome to pole movement, but blocked anaphase B spindle elongation. Plk1-inhibited cells failed to assemble a contractile ring and contract the cleavage furrow due to a defect in Rho and Rho-GEF localization to the division site. Our results demonstrate that Plk1 coordinates chromosome segregation with cytokinesis through its dual control of anaphase B and contractile ring assembly.  相似文献   

19.
Polo-like kinase 1 (Plk1) and Aurora A play key roles in centrosome maturation, spindle assembly, and chromosome segregation during cell division. Here we show that the functions of these kinases during early mitosis are coordinated through Bora, a partner of Aurora A first identified in Drosophila. Depletion of human Bora (hBora) results in spindle defects, accompanied by increased spindle recruitment of Aurora A and its partner TPX2. Conversely, hBora overexpression induces mislocalization of Aurora A and monopolar spindle formation, reminiscent of the phenotype seen in Plk1-depleted cells. Indeed, Plk1 regulates hBora. Following Cdk1-dependent recruitment, Plk1 triggers hBora destruction by phosphorylating a recognition site for [Formula: see text]. Plk1 depletion or inhibition results in a massive accumulation of hBora, concomitant with displacement of Aurora A from spindle poles and impaired centrosome maturation, but remarkably, co-depletion of hBora partially restores Aurora A localization and bipolar spindle formation. This suggests that Plk1 controls Aurora A localization and function by regulating cellular levels of hBora.  相似文献   

20.
Progression through mitosis requires activation of cyclin B/Cdk1 and its downstream targets, including Polo-like kinase and the anaphase-promoting complex (APC), the ubiquitin ligase directing degradation of cyclins A and B. Recent evidence shows that APC activation requires destruction of the APC inhibitor Emi1. In prophase, phosphorylation of Emi1 generates a D-pS-G-X-X-pS degron to recruit the SCF(betaTrCP) ubiquitin ligase, causing Emi1 destruction and allowing progression beyond prometaphase, but the kinases directing this phosphorylation remain undefined. We show here that the polo-like kinase Plk1 is strictly required for Emi1 destruction and that overexpression of Plk1 is sufficient to trigger Emi1 destruction. Plk1 stimulates Emi1 phosphorylation, betaTrCP binding, and ubiquitination in vitro and cyclin B/Cdk1 enhances these effects. Plk1 binds to Emi1 in mitosis and the two proteins colocalize on the mitotic spindle poles, suggesting that Plk1 may spatially control Emi1 destruction. These data support the hypothesis that Plk1 activates the APC by directing the SCF-dependent destruction of Emi1 in prophase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号