首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The question of how local image features on the retina are integrated into perceived global shapes is central to our understanding of human visual perception. Psychophysical investigations have suggested that the emergence of a coherent visual percept, or a "good-Gestalt", is mediated by the perceptual organization of local features based on their similarity. However, the neural mechanisms that mediate unified shape perception in the human brain remain largely unknown. Using human fMRI, we demonstrate that not only higher occipitotemporal but also early retinotopic areas are involved in the perceptual organization and detection of global shapes. Specifically, these areas showed stronger fMRI responses to global contours consisting of collinear elements than to patterns of randomly oriented local elements. More importantly, decreased detection performance and fMRI activations were observed when misalignment of the contour elements disturbed the perceptual coherence of the contours. However, grouping of the misaligned contour elements by disparity resulted in increased performance and fMRI activations, suggesting that similar neural mechanisms may underlie grouping of local elements to global shapes by different visual features (orientation or disparity). Thus, these findings provide novel evidence for the role of both early feature integration processes and higher stages of visual analysis in coherent visual perception.  相似文献   

2.
3.
Spatial context in images induces perceptual phenomena associated with salience and modulates the responses of neurons in primary visual cortex (V1). However, the computational and ecological principles underlying contextual effects are incompletely understood. We introduce a model of natural images that includes grouping and segmentation of neighboring features based on their joint statistics, and we interpret the firing rates of V1 neurons as performing optimal recognition in this model. We show that this leads to a substantial generalization of divisive normalization, a computation that is ubiquitous in many neural areas and systems. A main novelty in our model is that the influence of the context on a target stimulus is determined by their degree of statistical dependence. We optimized the parameters of the model on natural image patches, and then simulated neural and perceptual responses on stimuli used in classical experiments. The model reproduces some rich and complex response patterns observed in V1, such as the contrast dependence, orientation tuning and spatial asymmetry of surround suppression, while also allowing for surround facilitation under conditions of weak stimulation. It also mimics the perceptual salience produced by simple displays, and leads to readily testable predictions. Our results provide a principled account of orientation-based contextual modulation in early vision and its sensitivity to the homogeneity and spatial arrangement of inputs, and lends statistical support to the theory that V1 computes visual salience.  相似文献   

4.
One of the most fundamental properties of human primary visual cortex (V1) is its retinotopic organization, which makes it an ideal candidate for encoding spatial properties, such as size, of objects. However, three-dimensional (3D) contextual information can lead to size illusions that are reflected in the spatial pattern of activity in V1 [1]. A critical question is how complex 3D contextual information can influence spatial activity patterns in V1. Here, we assessed whether changes in the spatial distribution of activity in V1 depend on the focus of attention, which would be suggestive of feedback of 3D contextual information from higher visual areas. We presented two 3D rings at close and far apparent depths in a 3D scene. When subjects fixated its center, the far ring appeared to be larger and occupy a more eccentric portion of the visual field, relative to the close ring. Using functional magnetic resonance imaging, we found that the spatial distribution of V1 activity induced by the far ring was also shifted toward a more eccentric representation of the visual field, whereas that induced by the close ring was shifted toward the foveal representation, consistent with their perceptual appearances. This effect was significantly reduced when the focus of spatial attention was narrowed with a demanding central fixation task. We reason that focusing attention on the fixation task resulted in reduced activity in--and therefore reduced feedback from--higher visual areas that process the 3D depth cues.  相似文献   

5.
Primary visual cortex (V1) was implicated as an important candidate for the site of perceptual suppression in numerous psychophysical and imaging studies. However, neurophysiological results in awake monkeys provided evidence for competition mainly between neurons in areas beyond V1. In particular, only a moderate percentage of neurons in V1 were found to modulate in parallel with perception with magnitude substantially smaller than the physical preference of these neurons. It is yet unclear whether these small modulations are rooted from local circuits in V1 or influenced by higher cognitive states. To address this question we recorded multi-unit spiking activity and local field potentials in area V1 of awake and anesthetized macaque monkeys during the paradigm of binocular flash suppression. We found that a small but significant modulation was present in both the anesthetized and awake states during the flash suppression presentation. Furthermore, the relative amplitudes of the perceptual modulations were not significantly different in the two states. We suggest that these early effects of perceptual suppression might occur locally in V1, in prior processing stages or within early visual cortical areas in the absence of top-down feedback from higher cognitive stages that are suppressed under anesthesia.  相似文献   

6.
The human visual system uses texture information to automatically, or pre-attentively, segregate parts of the visual scene. We investigate the neural substrate underlying human texture processing using a computational model that consists of a hierarchy of bi-directionally linked model areas. The model builds upon two key hypotheses, namely that (i) texture segregation is based on boundary detection--rather than clustering of homogeneous items--and (ii) texture boundaries are detected mainly on the basis of a large scenic context that is analyzed by higher cortical areas within the ventral visual pathway, such as area V4. Here, we focus on the interpretation of key results from psychophysical studies on human texture segmentation. In psychophysical studies, texture patterns were varied along several feature dimensions to systematically characterize human performance. We use simulations to demonstrate that the activation patterns of our model directly correlate with the psychophysical results. This allows us to identify the putative neural mechanisms and cortical key areas which underlie human behavior. In particular, we investigate (i) the effects of varying texture density on target saliency, and the impact of (ii) element alignment and (iii) orientation noise on the detectability of a pop-out bar. As a result, we demonstrate that the dependency of target saliency on texture density is linked to a putative receptive field organization of orientation-selective neurons in V4. The effect of texture element alignment is related to grouping mechanisms in early visual areas. Finally, the modulation of cell activity by feedback activation from higher model areas, interacting with mechanisms of intra-areal center-surround competition, is shown to result in the specific suppression of noise-related cell activities and to improve the overall model capabilities in texture segmentation. In particular, feedback interaction is crucial to raise the model performance to the level of human observers.  相似文献   

7.
Visual perceptual learning, a manifestation of neural plasticity, refers to improvements in performance on a visual task achieved by training. Attention is known to play an important role in perceptual learning, given that the observer''s discriminative ability improves only for those stimulus feature that are attended. However, the distribution of attention can be severely constrained by perceptual grouping, a process whereby the visual system organizes the initial retinal input into candidate objects. Taken together, these two pieces of evidence suggest the interesting possibility that perceptual grouping might also affect perceptual learning, either directly or via attentional mechanisms. To address this issue, we conducted two experiments. During the training phase, participants attended to the contrast of the task-relevant stimulus (oriented grating), while two similar task-irrelevant stimuli were presented in the adjacent positions. One of the two flanking stimuli was perceptually grouped with the attended stimulus as a consequence of its similar orientation (Experiment 1) or because it was part of the same perceptual object (Experiment 2). A test phase followed the training phase at each location. Compared to the task-irrelevant no-grouping stimulus, orientation discrimination improved at the attended location. Critically, a perceptual learning effect equivalent to the one observed for the attended location also emerged for the task-irrelevant grouping stimulus, indicating that perceptual grouping induced a transfer of learning to the stimulus (or feature) being perceptually grouped with the task-relevant one. Our findings indicate that no voluntary effort to direct attention to the grouping stimulus or feature is necessary to enhance visual plasticity.  相似文献   

8.
Face inversion produces a detrimental effect on face recognition. The extent to which the inversion of faces and other kinds of objects influences the perceptual binding of visual information into global forms is not known. We used a behavioral method and functional MRI (fMRI) to measure the effect of face inversion on visual persistence, a type of perceptual memory that reflects sustained awareness of global form. We found that upright faces persisted longer than inverted versions of the same images; we observed a similar effect of inversion on the persistence of animal stimuli. This effect of inversion on persistence was evident in sustained fMRI activity throughout the ventral visual hierarchy, including the lateral occipital area (LO), two face-selective visual areas--the fusiform face area (FFA) and the occipital face area (OFA)--and several early visual areas. V1 showed the same initial fMRI activation to upright and inverted forms but this activation lasted longer for upright stimuli. The inversion effect on persistence-related fMRI activity in V1 and other retinotopic visual areas demonstrates that higher-tier visual areas influence early visual processing via feedback. This feedback effect on figure-ground processing is sensitive to the orientation of the figure.  相似文献   

9.
The neural correlates of binocular rivalry have been actively debated in recent years, and are of considerable interest as they may shed light on mechanisms of conscious awareness. In a related phenomenon, monocular rivalry, a composite image is shown to both eyes. The subject experiences perceptual alternations in which the two stimulus components alternate in clarity or salience. The experience is similar to perceptual alternations in binocular rivalry, although the reduction in visibility of the suppressed component is greater for binocular rivalry, especially at higher stimulus contrasts. We used fMRI at 3T to image activity in visual cortex while subjects perceived either monocular or binocular rivalry, or a matched non-rivalrous control condition. The stimulus patterns were left/right oblique gratings with the luminance contrast set at 9%, 18% or 36%. Compared to a blank screen, both binocular and monocular rivalry showed a U-shaped function of activation as a function of stimulus contrast, i.e. higher activity for most areas at 9% and 36%. The sites of cortical activation for monocular rivalry included occipital pole (V1, V2, V3), ventral temporal, and superior parietal cortex. The additional areas for binocular rivalry included lateral occipital regions, as well as inferior parietal cortex close to the temporoparietal junction (TPJ). In particular, higher-tier areas MT+ and V3A were more active for binocular than monocular rivalry for all contrasts. In comparison, activation in V2 and V3 was reduced for binocular compared to monocular rivalry at the higher contrasts that evoked stronger binocular perceptual suppression, indicating that the effects of suppression are not limited to interocular suppression in V1.  相似文献   

10.
Human observers tend to group oriented line segments into full contours if they follow the Gestalt rule of ''good continuation''. It is commonly assumed that contour grouping emerges automatically in early visual cortex. In contrast, recent work in animal models suggests that contour grouping requires learning and thus involves top-down control from higher brain structures. Here we explore mechanisms of top-down control in perceptual grouping by investigating synchronicity within EEG oscillations. Human participants saw two micro-Gabor arrays in a random order, with the task to indicate whether the first (S1) or the second stimulus (S2) contained a contour of collinearly aligned elements. Contour compared to non-contour S1 produced a larger posterior post-stimulus beta power (15–21 Hz). Contour S2 was associated with a pre-stimulus decrease in posterior alpha power (11–12 Hz) and in fronto-posterior theta (4–5 Hz) phase couplings, but not with a post-stimulus increase in beta power. The results indicate that subjects used prior knowledge from S1 processing for S2 contour grouping. Expanding previous work on theta oscillations, we propose that long-range theta synchrony shapes neural responses to perceptual groupings regulating lateral inhibition in early visual cortex.  相似文献   

11.
Under conditions of visual fixation, perceptual fading occurs when a stationary object, though present in the world and continually casting light upon the retina, vanishes from visual consciousness. The neural correlates of the consciousness of such an object will presumably modulate in activity with the onset and cessation of perceptual fading.

Method

In order to localize the neural correlates of perceptual fading, a green disk that had been individually set to be equiluminant with the orange background, was presented in one of the four visual quadrants; Subjects indicated with a button press whether or not the disk was subjectively visible as it perceptually faded in and out.

Results

Blood oxygen-level dependent (BOLD) signal in V1 and ventral retinotopic areas V2v and V3v decreases when the disk subjectively disappears, and increases when it subjectively reappears. This effect occurs in early visual areas both ipsilaterally and contralaterally to the fading figure. That is, it occurs regardless of whether the fading stimulus is presented inside or outside of the corresponding portion of visual field. In addition, we find that the microsaccade rate rises before and after perceptual transitions from not seeing to seeing the disk, and decreases before perceptual transitions from seeing to not seeing the disk. These BOLD signal changes could be driven by a global process that operates across contralateral and ipsilateral visual cortex or by a confounding factor, such as microsaccade rate.  相似文献   

12.
Computations in the early visual cortex.   总被引:1,自引:0,他引:1  
This paper reviews some of the recent neurophysiological studies that explore the variety of visual computations in the early visual cortex in relation to geometric inference, i.e. the inference of contours, surfaces and shapes. It attempts to draw connections between ideas from computational vision and findings from awake primate electrophysiology. In the classical feed-forward, modular view of visual processing, the early visual areas (LGN, V1 and V2) are modules that serve to extract local features, while higher extrastriate areas are responsible for shape inference and invariant object recognition. However, recent findings in primate early visual systems reveal that the computations in the early visual cortex are rather complex and dynamic, as well as interactive and plastic, subject to influence from global context, higher order perceptual inference, task requirement and behavioral experience. The evidence argues that the early visual cortex does not merely participate in the first stage of visual processing, but is involved in many levels of visual computation.  相似文献   

13.
Yotsumoto Y  Watanabe T  Sasaki Y 《Neuron》2008,57(6):827-833
Perceptual learning is regarded as a manifestation of experience-dependent plasticity in the sensory systems, yet the underlying neural mechanisms remain unclear. We measured the dynamics of performance on a visual task and brain activation in the human primary visual cortex (V1) across the time course of perceptual learning. Within the first few weeks of training, brain activation in a V1 subregion corresponding to the trained visual field quadrant and task performance both increased. However, while performance levels then saturated and were maintained at a constant level, brain activation in the corresponding areas decreased to the level observed before training. These findings indicate that there are distinct temporal phases in the time course of perceptual learning, related to differential dynamics of BOLD activity in visual cortex.  相似文献   

14.
Several domains of neuroscience offer map-like models that link location on the cortical surface to properties of sensory representation. Within cortical visual areas V1, V2, and V3, algebraic transformations can relate position in the visual field to the retinotopic representation on the flattened cortical sheet. A limit to the practical application of this structure-function model is that the cortex, while topologically a two-dimensional surface, is curved. Flattening of the curved surface to a plane unavoidably introduces local geometric distortions that are not accounted for in idealized models. Here, we show that this limitation is overcome by correcting the geometric distortion induced by cortical flattening. We use a mass-spring-damper simulation to create a registration between functional MRI retinotopic mapping data of visual areas V1, V2, and V3 and an algebraic model of retinotopy. This registration is then applied to the flattened cortical surface anatomy to create an anatomical template that is linked to the algebraic retinotopic model. This registered cortical template can be used to accurately predict the location and retinotopic organization of these early visual areas from cortical anatomy alone. Moreover, we show that prediction accuracy remains when extrapolating beyond the range of data used to inform the model, indicating that the registration reflects the retinotopic organization of visual cortex. We provide code for the mass-spring-damper technique, which has general utility for the registration of cortical structure and function beyond the visual cortex.  相似文献   

15.
Attentional mechanisms are a crucial prerequisite to organize behavior. Most situations may be characterized by a 'competition' between salient, but irrelevant stimuli and less salient, relevant stimuli. In such situations top-down and bottom-up mechanisms interact with each other. In the present fMRI study, we examined how interindividual differences in resolving situations of perceptual conflict are reflected in brain networks mediating attentional selection. Doing so, we employed a change detection task in which subjects had to detect luminance changes in the presence and absence of competing distractors. The results show that good performers presented increased activation in the orbitofrontal cortex (BA 11), anterior cingulate (BA 25), inferior parietal lobule (BA 40) and visual areas V2 and V3 but decreased activation in BA 39. This suggests that areas mediating top-down attentional control are stronger activated in this group. Increased activity in visual areas reflects distinct neuronal enhancement relating to selective attentional mechanisms in order to solve the perceptual conflict. Opposed to good performers, brain areas activated by poor performers comprised the left inferior parietal lobule (BA 39) and fronto-parietal and visual regions were continuously deactivated, suggesting that poor performers perceive stronger conflict than good performers. Moreover, the suppression of neural activation in visual areas might indicate a strategy of poor performers to inhibit the processing of the irrelevant non-target feature. These results indicate that high sensitivity in perceptual areas and increased attentional control led to less conflict in stimulus processing and consequently to higher performance in competitive attentional selection.  相似文献   

16.
17.
In its early stages, the visual system suffers from a lot of ambiguity and noise that severely limits the performance of early vision algorithms. This article presents feedback mechanisms between early visual processes, such as perceptual grouping, stereopsis and depth reconstruction, that allow the system to reduce this ambiguity and improve early representation of visual information. In the first part, the article proposes a local perceptual grouping algorithm that — in addition to commonly used geometric information — makes use of a novel multi–modal measure between local edge/line features. The grouping information is then used to: 1) disambiguate stereopsis by enforcing that stereo matches preserve groups; and 2) correct the reconstruction error due to the image pixel sampling using a linear interpolation over the groups. The integration of mutual feedback between early vision processes is shown to reduce considerably ambiguity and noise without the need for global constraints.  相似文献   

18.
The visual system is constantly challenged to organize the retinal pattern of stimulation into coherent percepts. This task is achieved by the cortical visual system, which is composed by topographically organized analytic areas and by synthetic areas of the temporal lobe that have more holistic processing. Additional visual areas of the parietal lobe are related to motion perception and visuomotor control. V1 and V2 represent the entire visual field. MT represents only the binocular field, and V4 only the central 30 degrees-40 degrees. The parietal areas represent more of the periphery. For any eccentricity, the receptive field grows at each step of processing, more at anterior areas in the temporal lobe. Minimal point image size increases towards the temporal lobe, but remains fairly constant toward the parietal lobe. Patterns of projection show asymmetries. Central V2 and V4 project mainly to the temporal lobe, while peripherals V2 (more than 30 degrees) and V4 (more than 10 degrees) also project to the parietal lobe. Visual information that arrives at V1 projects to V2, MT and PO, which then project to other areas. Local lateral propagation and recursive loops corroborate to perceptual completion and filling in. Priority connections to temporal, parietal and parieto-temporal cortices help construct crude early representations of objects, trajectories and movements.  相似文献   

19.
How do visual form and motion processes cooperate to compute object motion when each process separately is insufficient? Consider, for example, a deer moving behind a bush. Here the partially occluded fragments of motion signals available to an observer must be coherently grouped into the motion of a single object. A 3D FORMOTION model comprises five important functional interactions involving the brain's form and motion systems that address such situations. Because the model's stages are analogous to areas of the primate visual system, we refer to the stages by corresponding anatomical names. In one of these functional interactions, 3D boundary representations, in which figures are separated from their backgrounds, are formed in cortical area V2. These depth-selective V2 boundaries select motion signals at the appropriate depths in MT via V2-to-MT signals. In another, motion signals in MT disambiguate locally incomplete or ambiguous boundary signals in V2 via MT-to-V1-to-V2 feedback. The third functional property concerns resolution of the aperture problem along straight moving contours by propagating the influence of unambiguous motion signals generated at contour terminators or corners. Here, sparse 'feature tracking signals' from, for example, line ends are amplified to overwhelm numerically superior ambiguous motion signals along line segment interiors. In the fourth, a spatially anisotropic motion grouping process takes place across perceptual space via MT-MST feedback to integrate veridical feature-tracking and ambiguous motion signals to determine a global object motion percept. The fifth property uses the MT-MST feedback loop to convey an attentional priming signal from higher brain areas back to V1 and V2. The model's use of mechanisms such as divisive normalization, endstopping, cross-orientation inhibition, and long-range cooperation is described. Simulated data include: the degree of motion coherence of rotating shapes observed through apertures, the coherent vs. element motion percepts separated in depth during the chopsticks illusion, and the rigid vs. nonrigid appearance of rotating ellipses.  相似文献   

20.
A common view about visual consciousness is that it could arise when and where activity reaches some higher level of processing along the cortical hierarchy. Reports showing that activity in striate cortex can be dissociated from awareness , whereas the latter modulates activity in higher areas , point in this direction. In the specific case of visual motion, a central, "perceptual" role has been assigned to area V5: several human and monkey studies have shown V5 activity to correlate with the motion percept. Here we show that activity in this and other higher cortical areas can be also dissociated from perception and follow the physical stimulus instead. The motion information in a peripheral grating modulated fMRI responses, despite being invisible to human volunteers: under crowding conditions , areas V3A, V5, and parietal cortex still showed increased activity when the grating was moving compared to when it was flickering. We conclude that stimulus-specific activation of higher cortical areas does not necessarily result in awareness of the underlying stimulus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号