首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cervical carcinoma is the predominant cancer among malignancies in women throughout the world, and human papillomavirus (HPV) 16 is the most common agent linked to human cervical carcinoma. The present study was performed to investigate the mechanisms of immune escape in HPV-induced cervical cancer cells. The presence of HPV oncoproteins E6 and E7 in the extracellular fluids of HPV-containing cervical cancer cell lines SiHa and CaSki was demonstrated by ELISA. The effect of HPV 16 oncoproteins E6 and E7 on the production of IFN-gamma by IL-18 was assessed. E6 and E7 proteins reduced IL-18-induced IFN-gamma production in both primary PBMCs and the NK0 cell line. FACS analysis revealed that the viral oncoproteins reduced the binding of IL-18 to its cellular surface receptors on NK0 cells, whereas there was no effect of oncoproteins on IL-1 binding to its surface IL-1 receptors on D10S, a subclone of the murine Th cell D10.G4.1. In vitro pull-down assays also revealed that the viral oncoproteins and IL-18 bound to IL-18R alpha-chain competitively. These results suggest that the extracellular HPV 16 E6 and E7 proteins may inhibit IL-18-induced IFN-gamma production locally in HPV lesions through inhibition of IL-18 binding to its alpha-chain receptor. Down-modulation of IL-18-induced immune responses by HPV oncoproteins may contribute to viral pathogenesis or carcinogenesis.  相似文献   

2.
The human DEK proto-oncogene is a nucleic acid binding protein with suspected roles in human carcinogenesis, autoimmune disease, and viral infection. Intracellular DEK functions, however, are poorly understood. In papillomavirus-positive cervical cancer cells, downregulation of viral E6/E7 oncogene expression results in cellular senescence. We report here the specific repression of DEK message and protein levels in senescing human papillomavirus type 16- (HPV16-) and HPV18-positive cancer cell lines as well as in primary cells undergoing replicative senescence. Cervical cancer cell senescence was partially overcome by DEK overexpression, and DEK overexpression was sufficient for extending the life span of primary keratinocytes, supporting critical roles for this molecule as a senescence regulator. In order to determine whether DEK is a bona fide HPV oncogene target in primary cells, DEK expression was monitored in human keratinocytes transduced with HPV E6 and/or E7. The results identify high-risk HPV E7 as a positive DEK regulator, an activity that is not shared by low-risk HPV E7 protein. Experiments in mouse embryo fibroblasts recapitulated the observed E7-mediated DEK induction and demonstrated that both basal and E7-induced regulation of DEK expression are controlled by the retinoblastoma protein family. Taken together, our results suggest that DEK upregulation may be a common event in human carcinogenesis and may reflect its senescence inhibitory function.  相似文献   

3.
Human cervical carcinoma cell lines that harbor human papillomavirus (HPV) have been reported to retain selectively and express HPV sequences which could encode viral E6 and E7 proteins. The potential importance of HPV E6 to tumors is suggested further by the observation that bovine papillomavirus (BPV) E6 can induce morphologic transformation of mouse cells in vitro. To identify HPV E6 protein, a polypeptide encoded by HPV-16 E6 was produced in a bacterial expression vector and used to raise antisera. The antisera specifically immunoprecipitated the predicted 18-kd protein in two human carcinoma cell lines known to express HPV-16 RNA and in mouse cells morphologically transformed by HPV-16 DNA. The 18-kd E6 protein was distinct from a previously identified HPV-16 E7 protein. The HPV-16 E6 antibodies were found to be type specific in that they did not recognize E6 protein in cells containing HPV-18 sequences and reacted weakly, if at all, to BPV E6 protein. The results demonstrate that human tumors containing HPV-16 DNA can express an E6 protein product. They are consistent with the hypothesis that E6 may contribute to the transformed phenotype in human cervical cancers that express this protein.  相似文献   

4.
In most cervical cancers, DNAs of high-risk mucosotropic human papillomaviruses (HPVs), such as types 16 and 18, are maintained so as to express two viral proteins, E6 and E7, suggesting that they play important roles in carcinogenesis. The carboxy-terminal PDZ domain-binding motif of the E6 proteins is in fact essential for transformation of rodent cells and induction of hyperplasia in E6-transgenic mouse skin. To date, seven PDZ domain-containing proteins, including DLG1/hDLG, which is a human homologue of the Drosophila discs large tumor suppressor (Dlg), have been identified as targets of high-risk HPV E6 proteins. Here, we describe DLG4/PSD95, another human homologue of Dlg, as a novel E6 target. DLG4 was found to be expressed in normal human cells, including cervical keratinocytes, but only to a limited extent in both HPV-positive and HPV-negative cervical cancer cell lines. Expression of HPV18 E6 in HCK1T decreased DLG4 levels more strongly than did HPV16 E6, the carboxy-terminal motif of the proteins being critical for binding and degradation of DLG4 in vitro. DLG4 levels were restored by expression of either E6AP-specific short hairpin RNA or bovine papillomavirus type 1 E2 in HeLa but not CaSki or SiHa cells, reflecting downregulation of DLG4 mRNA as opposed to protein by an HPV-independent mechanism in HPV16-positive cancer lines. The tumorigenicity of CaSki cells was strongly inhibited by forced expression of DLG4, while growth in culture was not inhibited at all. These results suggest that DLG4 may function as a tumor suppressor in the development of HPV-associated cancers.  相似文献   

5.
6.
Human papillomavirus type 16 (HPV16) is an oncogenic virus that causes persistent infections in cervical epithelium. The chronic nature of HPV16 infections suggests that this virus actively evades the host immune response. Intraepithelial Langerhans cells (LC) are antigen-presenting cells that are critical in T-cell priming in response to viral infections of the skin. Here we show that HPV16 infection is directly associated with a reduction in the numbers of LC in infected epidermis. Adhesion between keratinocytes (KC) and LC, mediated by E-cadherin, is important in the retention of LC in the skin. Cell surface E-cadherin is reduced on HPV16-infected basal KC, and this is directly associated with the reduction in numbers of LC in infected epidermis. Expression of a single viral early protein, HPV16 E6, in KC reduces levels of cell surface E-cadherin thereby interfering with E-cadherin-mediated adhesion. Through this pathway, E6 expression in HPV16-infected KC may limit presentation of viral antigens by LC to the immune system, thus preventing the initiation of a cell-mediated immune response and promoting survival of the virus.  相似文献   

7.
8.
9.
'High risk' genotypes of the human papillomavirus (HPV), particularly HPV type 16, are the primary etiologic agent of cervical cancer. Thus, HPV-associated cervical malignancies might be prevented or treated by induction of the appropriate virus-specific immune responses in patients. Sexual transmission of HPV may be prevented by the generation of neutralizing antibodies that are specific for the virus capsid. In ongoing clinical trials, HPV virus-like particles (VLPs) show great promise as prophylactic HPV vaccines. Since the capsid proteins are not expressed at detectable levels by basal keratinocytes, therapeutic vaccines generally target other nonstructural viral antigens. Two HPV oncogenic proteins, E6 and E7, are important in the induction and maintenance of cellular transformation and are coexpressed in the majority of HPV-containing carcinomas. Therefore, therapeutic vaccines targeting these proteins may provide an opportunity to control HPV-associated malignancies. Various candidate therapeutic HPV vaccines are currently being tested whereby E6 and/or E7 are administered in live vectors, in peptides or protein, in nucleic acid form, as components of chimeric VLPs, or in cell-based vaccines. Encouraging results from experimental vaccination systems in animal models have led to several prophylactic and therapeutic vaccine clinical trials. Should they fulfill their promise, these vaccines may prevent HPV infection or control its potentially life-threatening consequences in humans.  相似文献   

10.
Cervical cancer cells express high-risk human papillomavirus (HPV) E6 and E7 proteins, and repression of HPV gene expression causes the cells to cease proliferation and undergo senescence. However, it is not known whether both HPV proteins are required to maintain the proliferative state of cervical cancer cells, or whether mutations that accumulate during carcinogenesis eliminate the need for one or the other of them. To address these questions, we used the bovine papillomavirus E2 protein to repress the expression of either the E6 protein or the E7 protein encoded by integrated HPV18 DNA in HeLa cervical carcinoma cells. Repression of the E7 protein activated the Rb pathway but not the p53 pathway and triggered senescence, whereas repression of the E6 protein activated the p53 pathway but not the Rb pathway and triggered both senescence and apoptosis. Telomerase activity, cyclin-dependent kinase activity, and expression of c-myc were markedly inhibited by repression of either E6 or E7. These results demonstrate that continuous expression of both the E6 and the E7 protein is required for optimal proliferation of cervical carcinoma cells and that the two viral proteins exert distinct effects on cell survival and proliferation. Therefore, strategies that inhibit the expression or activity of either viral protein are likely to inhibit the growth of HPV-associated cancers.  相似文献   

11.
12.
13.
Although human papillomavirus (HPV) infections are the primary cause of cervical cancer, the molecular mechanism by which HPV induces cervical cancer remains largely unclear. We used two-dimensional electrophoresis with mass spectrometry to study protein expression profiling between HPV16-positive cervical mucosa epithelial H8 cells and cervical cancer Caski cells to identify 18 differentially expressed proteins. Among them, retinoblastoma-binding protein 4 (RbAp48) was selected, and its differentiation expression was verified with both additional cervical cancer-derived cell lines and human tissues of cervical intraepithelial neoplasia and cervical cancer. Suppression of RbAp48 using small interfering RNA approach in H8 cells significantly stimulated cell proliferation and colony formation and inhibited senescence-like phenotype. Remarkably, H8 cells acquired transforming activity if RpAp48 was suppressed, because H8 cells stably transfected with RbAp48 small interfering RNA led to tumor formation in nude mice. In addition, overexpression of RbAp48 significantly inhibited cell growth and tumor formation. This RbAp48-mediated transformation of HPV16 is probably because of the regulation by RbAp48 of tumor suppressors retinoblastoma and p53, apoptosis-related enzymes caspase-3 and caspase-8, and oncogenic genes, including E6, E7, cyclin D1 (CCND1), and c-MYC. In brief, RbAp48, previously unknown in cervical carcinogenesis, was isolated in a global screen and identified as a critical mediator controlling the transforming activity of HPV16 in cervical cancer.  相似文献   

14.
15.
A point mutational analysis of human papillomavirus type 16 E7 protein.   总被引:44,自引:23,他引:21       下载免费PDF全文
The E7 open reading frame of human papillomavirus type 16 (HPV16) has been shown to be selectively retained in cervical tumors and to encode both transforming and trans-activating functions in murine cells, supporting the notion that expression of E7 contributes towards the progression of premalignant cervical lesions. A comparison among E7 sequences of different HPV types reveals some homology at the amino acid level. Of particular interest are two regions, one which contains significant homology to a region of adenovirus E1a and simian virus 40 large T (LT), and a second region which contains two conserved Cys-X-X-Cys motifs. To determine the importance of these domains to the function of the E7 protein, a series of mutants carrying substitutions at amino acids in the region of E1a-LT homology and at the Cys-X-X-Cys motifs were constructed. The mutated E7 sequences were placed under the control of a strong heterologous promoter (Moloney long terminal repeat), and the activity of the mutants was assayed in NIH 3T3 cells, a cell line in which both the transforming function and the trans-activating function of E7 could be determined. A single amino acid substitution analogous to a mutation in E1a which destroys the transforming ability of this protein abolished both transformation and trans-activation by E7. Mutations at the Cys-X-X-Cys motifs demonstrated that this region contributes to the transforming potential of E7, although proteins in which both motifs were interrupted retained a low level of transforming activity. Mutations in the region of E1a-LT homology which occur within a recognition sequence for casein kinase II did not markedly affect transforming activity of E7 but severely reduced trans-activating ability. This indicates that efficient trans-activation is not required for transformation by HPV16 E7 in these cells.  相似文献   

16.
There is strong evidence implicating human papillomavirus type 16 (HPV16) in the genesis of human genital cancer. Viral DNA has been identified in invasive carcinoma of the uterine cervix and in cell lines derived from cervical carcinomas. These sequences are actively transcribed, and translation products corresponding to the early (E)-region genes have been identified. The most abundant viral protein is the E7 protein, which has been shown to possess transforming activity for both established and primary cells. In addition, it has been shown to bind to a cellular tumor suppressor, the retinoblastoma gene product (pRb-105). In view of these properties, we have undertaken the immunological analysis of this protein and have identified four T-cell epitopes and three B-cell epitopes by using a series of overlapping peptides spanning the entire HPV16 E7 sequence. Two of the B-cell epitopes were recognized by antisera from mice with three different murine (H-2) haplotypes (k, d, and s) immunized with two different E7 fusion proteins and from Fischer rats seeded with baby rat kidney cells transformed by HPV16 E7 and ras. A third B-cell epitope was recognized by antisera from CBA mice seeded with HPV16 E7-expressing L cells. Two regions of the protein contain common B- and T-cell epitopes, one of which appears to be particularly immunodominant.  相似文献   

17.
人乳头瘤病毒(Humanpapillomavirus)HPV是发生宫颈癌的必要条件,人乳头瘤病毒16E5癌基因突变与宫颈癌的发生有密切的相关性。人乳头瘤病毒E5是一种转化作用的癌蛋白,是细胞膜或内膜整合蛋白。人乳头瘤病毒E5在感染的细胞中表达。主要在感染细胞克隆早期的繁殖,扩张中起重要作用。它干预生长因子受体,干扰周期蛋白和周期蛋白激酶,促进病毒癌基因转化,抑制抑癌基因表达,激活启动子促进病毒繁殖,并通过多种机制促使损伤细胞,通过细胞周期,使宿主细胞增殖,分化延缓,恶性化。E5基因变异意味着功能有可能改变,可能机体或细胞对病毒变异株的免疫能力,与宫颈癌的发生和HPV的嗜上皮性有关,因此对人乳头瘤病毒16E5基因变异的研究对于人乳头瘤病毒16在宫颈癌发病中的作用有着不可忽略的意义。本文对人乳头瘤病毒16E5突变株在宫颈癌组织中的作用及其基因突变的研究现状进行分析。  相似文献   

18.
Human papillomaviruses (HPV) of the high-risk type are causally involved in human tumors, in particular cervical carcinoma. Expression of the viral oncogenes E6 and E7 is maintained in HPV-positive tumors, and it was shown that E6 and E7 of HPV-16 can immortalize human keratinocytes, the natural host cells of the virus. Expression of the viral genes is also required for maintenance of the transformed phenotype. The oncogenic activity of the E6 and E7 oncoproteins is mediated by their physical and functional interaction with cellular regulatory proteins. To knock out the function of the E7 protein in living cells, we have developed peptide aptamers with high specific binding activity for the E7 protein of HPV-16. We show here that E7-binding peptide aptamers induce programmed cell death (apoptosis) in E7-expressing cells, whereas E7-negative cells are not affected. Furthermore, E7-binding peptide aptamers induce apoptosis in HPV-16-positive tumor cells derived from cervical carcinoma. The data suggest that E7-binding peptide aptamers may be useful tools to specifically eliminate HPV-positive tumors.  相似文献   

19.
20.
Cervical cancer is rated the second most common malignant tumour globally, and is aetiologically linked to human papillomavirus (HPV) infection. Here the cellular pathology under consideration of stem/progenitor cell carcinogenesis is reviewed. Of the three causative molecular mechanisms of cervical cancer, two are associated with HPV: firstly, the effect of the viral oncogenes, E6 and E7; and secondly, integration of the viral DNA into chromosomal regions of tumour phenotype. The third process involved is the repetitive loss of heterozygosity in some chromosomal regions. HPV can be classified into high- and low-risk types; the high-risk types encode two oncoproteins, E6 and E7, which interact with tumour suppressor proteins. The association results in the inactivation of tumour suppressor proteins and the abrogation of apoptosis. Apoptosis is referred to as programmed cell death, whereby a cell deliberately commits suicide, and thus regulates cell numbers during development and maintenance of cellular homeostasis. This review attempts to elucidate the role of apoptotic genes, and considers external factors that interact with HPV in the development and progression of cervical cancer. Therefore, an in-depth understanding of the apoptotic genes that control molecular mechanisms in cervical cancer are of critical importance. Useful targets for therapeutic strategies would be those that alter apoptotic pathways in a manner where the escape of HPV from surveillance by the host immune system is prevented. Such an approach directed at the apoptotic genes maybe useful in the treatment of cervical cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号