首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
Two anthranilate synthase gene pairs have been identified in Pseudomonas aeruginosa. They were cloned, sequenced, inactivated in vitro by insertion of an antibiotic resistance gene, and returned to P. aeruginosa, replacing the wild-type gene. One anthranilate synthase enzyme participates in tryptophan synthesis; its genes are designated trpE and trpG. The other anthranilate synthase enzyme, encoded by phnA and phnB, participates in the synthesis of pyocyanin, the characteristic phenazine pigment of the organism. trpE and trpG are independently transcribed; homologous genes have been cloned from Pseudomonas putida. The phenazine pathway genes phnA and phnB are cotranscribed. The cloned phnA phnB gene pair complements trpE and trpE(G) mutants of Escherichia coli. Homologous genes were not found in P. putida PPG1, a non-phenazine producer. Surprisingly, PhnA and PhnB are more closely related to E. coli TrpE and TrpG than to Pseudomonas TrpE and TrpG, whereas Pseudomonas TrpE and TrpG are more closely related to E. coli PabB and PabA than to E. coli TrpE and TrpG. We replaced the wild-type trpE on the P. aeruginosa chromosome with a mutant form having a considerable portion of its coding sequence deleted and replaced by a tetracycline resistance gene cassette. This resulted in tryptophan auxotrophy; however, spontaneous tryptophan-independent revertants appeared at a frequency of 10(-5) to 10(6). The anthranilate synthase of these revertants is not feedback inhibited by tryptophan, suggesting that it arises from PhnAB. phnA mutants retain a low level of pyocyanin production. Introduction of an inactivated trpE gene into a phnA mutant abolished residual pyocyanin production, suggesting that the trpE trpG gene products are capable of providing some anthranilate for pyocyanin synthesis.  相似文献   

11.
12.
13.
McDonald and Burke (J. Bacteriol. 149:391-394, 1982) previously cloned a sulfanilamide-resistance gene, sul, residing on a 4.9-kb segment of Bacillus subtilis chromosomal DNA, into plasmid pUB110. In this study we determined the nucleotide sequence of the entire 4.9-kb fragment. Genes identified on the fragment include pab, trpG, pabC, sul, one complete unidentified open reading frame, and one incomplete unidentified open reading frame. The first three of these genes, pab, trpG, and pabC, are required for synthesis of p-aminobenzoic acid. The trpG gene encodes an amphibolic glutamine amidotransferase required for synthesis of both p-aminobenzoate and anthranilate, the latter an intermediate in the tryptophan biosynthetic pathway. The pabC gene may encode a B. subtilis analog of enzyme X, an enzyme needed for p-aminobenzoate synthesis in Escherichia coli. The sul gene probably encodes dihydropteroate synthase, the enzyme responsible for formation of 7,8-dihydropteroate, the immediate precursor of folic acid. All six of the cloned genes are arranged in a single operon. Since all four of the identified genes are needed for folate biosynthesis, we refer to this operon as a folic acid operon. Expression of the trpG gene is known to be negatively controlled by tryptophan. We propose that this regulation is at the level of translation. This hypothesis is supported by the finding of an apparent Mtr-binding site which overlaps with the trpG ribosome-binding site.  相似文献   

14.
The trpE gene of Thermus thermophilus HB8 was cloned by complementation of an Escherichia coli tryptophan auxotroph. The E. coli harboring the cloned gene produced the anthranilate synthase I, which was heat-stable and enzymatically active at higher temperature. The nucleotide sequence of the trpE gene and its flanking regions was determined. The trpE gene was preceded by an attenuator-like structure and followed by the trpG gene, with a short gap between them. No other gene essential for tryptophan biosynthesis was observed after the trpG gene. The amino-acid sequences of the T. themophilus anthranilate synthase I and II deduced from the nucleotide sequence were compared with those of other organisms.  相似文献   

15.
We have determined the DNA sequence of the distal 148 codons of trpE and all of trpG in Pseudomonas aeruginosa. These genes encode, respectively, the large and small (glutamine amidotransferase) subunits of anthranilate synthase, the first enzyme in the tryptophan synthetic pathway. The sequenced region of trpE is homologous with the distal portion of E. coli and Bacillus subtilis trpE, whereas the trpG sequence is homologous to the glutamine amidotransferase subunit genes of a number of bacterial and fungal anthranilate synthases. The two coding sequences overlap by 23 bp. Codon usage in these Pseudomonas genes shows a marked preference for codons ending in G or C, thereby resembling that of trpB, trpA, and several other chromosomal loci from this species and others with a high G + C content in their DNA. The deduced amino acid sequence for the P. aeruginosa trpG gene product differs to a surprising extent from the directly determined amino acid sequence of the glutamine amidotransferase subunit of P. putida anthranilate synthase (Kawamura et al. 1978). This suggests that these two proteins are encoded by loci that duplicated much earlier in the phylogeny of these organisms but have recently assumed the same function. We have also determined 490 bp of DNA sequence distal to trpG but have not ascertained the function of this segment, though it is rich in dyad symmetries.   相似文献   

16.
17.
18.
19.
依据珊瑚藻 (CorallinaofficinalisL .)藻红蛋白rpeA和rpeB的DNA序列 (AF5 1 0 986 )设计引物 ,通过PCR RACE方法扩增得到rpeA和rpeB的cDNA序列 .序列分析表明 ,该序列采用多顺反子转录策略 ,全长 2 2 5 7bp(AF5 42 5 5 4) ,排布顺序为 5′UTR rpeB 间隔区 rpeA 3′UTR .5′非编码区 4 93bp ,rpeB基因 5 34bp ,基因间隔区 1 0 1bp ,rpeA基因 4 95bp ,3′非编码区 6 34bp .在rpeA和rpeB的基因起始密码子上游均存在类似原核核糖体结合的Shine Dalgarno (SD)序列 .在rpeA基因终止密码子下游 1 1 0bp处还存在着一个可能的开放阅读框架 .经检索GenBank发现 ,真核红藻藻红蛋白中尚无有关cDNA序列的报道  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号