首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Endothelial nitric oxide synthase (eNOS) activation with subsequent inducible NOS (iNOS), cytosolic phospholipase A2 (cPLA2), and cyclooxygenase-2 (COX2) activation is essential to statin inhibition of myocardial infarct size (IS). In the rat, the peroxisome proliferator-activated receptor-gamma agonist pioglitazone (Pio) limits IS, upregulates and activates cPLA2 and COX2, and increases myocardial 6-keto-PGF1alpha levels without activating eNOS and iNOS. We asked whether Pio also limits IS in eNOS-/- and iNOS-/- mice. Male C57BL/6 wild-type (WT), eNOS-/-, and iNOS-/- mice received 10 mg.kg(-1).day(-1) Pio (Pio+) or water alone (Pio-) for 3 days. Mice underwent 30 min coronary artery occlusion and 4 h reperfusion, or hearts were harvested and subjected to ELISA and immunoblotting. As a result, Pio reduced IS in the WT (15.4+/-1.4% vs. 39.0+/-1.1%; P<0.001), as well as in the eNOS-/- (32.0+/-1.6% vs. 44.2+/-1.9%; P<0.001) and iNOS-/- (18.0+/-1.2% vs. 45.5+/-2.3%; P<0.001) mice. The protective effect of Pio in eNOS-/- mice was smaller than in the WT (P<0.001) and iNOS-/- (P<0.001) mice. Pio increased myocardial Ser633 and Ser1177 phosphorylated eNOS levels in the WT and iNOS-/- mice. iNOS was undetectable in all six groups. Pio increased cPLA2, COX2, and PGI2 synthase levels in the WT, as well as in the eNOS-/- and iNOS-/-, mice. Pio increased the myocardial 6-keto-PGF1alpha levels and cPLA2 and COX2 activity in the WT, eNOS-/-, and iNOS-/- mice. In conclusion, the myocardial protective effect of Pio is iNOS independent and may be only partially dependent on eNOS. Because eNOS activity decreases with age, diabetes, and advanced atherosclerosis, this effect may be relevant in a clinical setting and should be further characterized.  相似文献   

2.
Increased nitric oxide (NO) production is the cause of hypotension and shock during sepsis. In the present experiments, we have measured the contribution of endothelial (e) and inducible (i) nitric oxide synthase (NOS) to systemic NO production in mice under baseline conditions and upon LPS treatment (100 microg/10 g ip LPS). NO synthesis was measured by the rate of conversion of l-[guanidino-15N2]arginine to l-[ureido-15N]citrulline, and the contribution of the specific NOS isoforms was evaluated by comparing NO production in eNOS-deficient [(-/-)] and iNOS(-/-) mice with that in wild-type (WT) mice. Under baseline conditions, NO production was similar in WT and iNOS(-/-) mice but lower in eNOS(-/-) mice [WT: 1.2 +/- 0.2; iNOS(-/-): 1.2 +/- 0.2; eNOS(-/-): 0.6 +/- 0.3 nmol. 10 g body wt-1. min-1]. In response to the challenge with LPS (5 h), systemic NO production increased in WT and eNOS(-/-) mice but fell in iNOS(-/-) mice [WT: 2.7 +/- 0.3; eNOS(-/-): 2.2 +/- 0.6; iNOS(-/-): 0.7 +/- 0.1 nmol. 10 g body wt-1. min-1]. After 5 h of LPS treatment, blood pressure had dropped 14 mmHg in WT but not in iNOS(-/-) mice. The present findings provide firm evidence that, upon treatment with bacterial LPS, the increase of NO production is solely dependent on iNOS, whereas that mediated by cNOS is reduced. Furthermore, the data show that the LPS-induced blood pressure response is dependent on iNOS.  相似文献   

3.
This report demonstrates that mice deficient in Flt-1 failed to establish ischemic preconditioning (PC)-mediated cardioprotection in isolated working buffer-perfused ischemic/reperfused (I/R) hearts compared to wild type (WT) subjected to the same PC protocol. WT and Flt-1+/- mice were divided into four groups: (1) WT I/R, (2) WT + PC, (3) Flt-1+/- I/R, and (4) Flt-1+/- + PC. Group 1 and 3 mice were subjected to 30 min of ischemia followed by 2 h of reperfusion and group 2 and 4 mice were subjected to four episodes of 4-min global ischemia followed by 6 min of reperfusion before ischemia/reperfusion. For both wild-type and Flt-1+/- mice, the postischemic functional recovery for the hearts was lower than the baseline, but the recovery for the knockout mice was less compared to the WT mice even in preconditioning. The myocardial infarction and apoptosis were higher in Flt-1+/- compared to wild-type I/R. Flt-1+/- KO mice demonstrated pronounced inhibition of the expression of iNOS, p-AKT & p-eNOS. Significant inhibition of STAT3 & CREB were also observed along with the inhibition of HO-1 mRNA. Results demonstrate that Flt-1+/- mouse hearts are more susceptible to ischemia/reperfusion injury and also document that preconditioning is not as effective as found in WT and therefore suggest the importance of VEGF/Flt-1 signaling in ischemic/reperfused myocardium.  相似文献   

4.
Previous studies indicate that deficiency of endothelial nitric oxide (NO) synthase (eNOS)-derived NO exacerbates myocardial reperfusion injury. We hypothesized that overexpression of eNOS would reduce the extent of myocardial ischemia-reperfusion (MI/R) injury. We investigated two distinct strains of transgenic (TG) mice overexpressing the eNOS gene (eNOS TG). Bovine eNOS was overexpressed in one strain (eNOS TG-Kobe), whereas the human eNOS gene was overexpressed in the other strain (eNOS TG-RT). Non-TG (NTG) and eNOS TG mice were subjected to 30 min of coronary artery occlusion followed by 24 h of reperfusion, and the extent of myocardial infarction was determined. Myocardial infarct size was reduced by 33% in the eNOS TG-Kobe strain (P < 0.05 vs. NTG) and by 32% in the eNOS TG-RT strain (P < 0.05 vs. NTG). However, postischemic cardiac function (cardiac output, fractional shortening) was not improved in the eNOS TG-Kobe mouse at 24 h of reperfusion [P = not significant (NS) vs. NTG]. In additional studies, eNOS TG-Kobe mice were subjected to 30 min of myocardial infarction and 7 days of reperfusion. Fractional shortening and the first derivative of left ventricular pressure were measured in eNOS TG-Kobe and NTG mice, and no significant differences in contractility were observed (P = NS) between the eNOS TG mice and NTG controls. Left ventricular end-diastolic pressure was significantly (P < 0.05 vs. NTG) reduced in the eNOS TG-Kobe strain at 7 days of reperfusion. The cardioprotective effects of eNOS overexpression on myocardial infarct size were ablated by Nomega-nitro-l-arginine methyl ester (300 mg/kg) pretreatment. Thus genetic overexpression of eNOS in mice attenuates myocardial infarction after MI/R but fails to significantly protect against postischemic myocardial contractile dysfunction in mice.  相似文献   

5.
Pretreatment with atorvastatin (ATV) reduces infarct size (IS) and increases myocardial expression of phosphorylated endothelial nitric oxide synthase (p-eNOS), inducible NOS (iNOS), and cyclooxygenase-2 (COX2) in the rat. Inhibiting COX2 abolished the ATV-induced IS limitation without affecting p-eNOS and iNOS expression. We investigated 1) whether 3-day ATV pretreatment limits IS in eNOS(-/-) and iNOS(-/-) mice and 2) whether COX2 expression and/or activation by ATV is eNOS, iNOS, and/or NF-kappaB dependent. Male C57BL/6 wild-type (WT), University of North Carolina eNOS(-/-) and iNOS(-/-) mice received ATV (10 mg.kg(-1).day(-1); ATV(+)) or water alone (ATV(-)) for 3 days. Mice underwent 30 min of coronary artery occlusion and 4 h of reperfusion, or hearts were harvested and subjected to ELISA, immunoblotting, biotin switch, and electrophoretic mobility shift assay. As a result, ATV reduced IS only in the WT mice. ATV increased eNOS, p-eNOS, iNOS, and COX2 levels and activated NF-kappaB in WT mice. It also increased myocardial COX2 activity. In eNOS(-/-) mice, ATV increased COX2 expression but not COX2 activity or iNOS expression. NF-kappaB was not activated by ATV in the eNOS(-/-) mice. In the iNOS(-/-) mice, eNOS and p-eNOS levels were increased but not iNOS and COX2 levels; however, NF-kappaB was activated. In conclusion, both eNOS and iNOS are essential for the IS-limiting effect of ATV. The expression of COX2 by ATV is iNOS, but not eNOS or NF-kappaB, dependent. Activation of COX2 is dependent on iNOS.  相似文献   

6.
Inducible nitric oxide synthase (iNOS) plays an important role in the inflammatory process of certain major cardiac disorders including myocardial infarction and allograft rejection. However, the role of iNOS in acute myocardial ischemia has not been well defined. We determined the effects of genetically disruption of the intact iNOS system on cardiac tolerance to ischemia/reperfusion injury. Adult male wild-type (WT) and iNOS knockout (KO) B6,129 mice were subjected to 20 min global ischemia and 30 min reperfusion in a Langendorff isolated perfused heart model (37 degrees C, n = 10/each group). Ventricular contractile function, heart rate, coronary flow, and leakage of intracellular enzymes (CK and LDH) were not significantly different between the groups during pre-ischemia as well as reperfusion period (P > 0.05). Myocardial infarct size was also not significantly different between WT (20.2+/-2.0% of risk area) and KO mice (23.5+/-3.8%; Mean+/-SEM, P > 0.05). However, the post-ischemic heart rate was significantly preserved in KO as compared to WT (P < 0.05). We conclude that disruption of iNOS gene does not exacerbate ischemia/ reperfusion injury in the heart.  相似文献   

7.
Sildenafil, a potent inhibitor of phosphodiesterase type 5, has recently been investigated in animal models of myocardial ischemia-reperfusion (MI/R) injury. Previous studies have suggested that the protective effects of sildenafil are mediated via activation of endothelial nitric oxide (NO) synthesis (eNOS) and inducible NOS (iNOS). To further investigate the protective mechanism of sildenafil, we subjected wild-type, eNOS, and iNOS null animals to 30 min of myocardial ischemia and 24 h of reperfusion. Treatment with 0.06 mg/kg sildenafil 5 min before reperfusion significantly reduced myocardial infarct size in wild-type, eNOS null mice (eNOS(-/-)), and iNOS(-/-) animals. Additionally, the low dose utilized in this study did not alter myocardial cGMP. These results suggest that acute low-dose sildenafil-mediated cardioprotection is independent of eNOS, iNOS, and cGMP. In a second series of experiments, we investigated sildenafil in db/db diabetic mice subjected to MI/R. We found that sildenafil failed to protect diabetic mice against MI/R. However, NO(.) donor therapy was found to significantly protect against MI/R injury in both nondiabetic and diabetic mice, suggesting that protection could be conferred in diabetic mice and that the upstream modulator of soluble guanylyl cyclase, NO(.), may mediate protection independent of cGMP signaling. The present study suggests that further research is needed to delineate the precise mechanisms by which sildenafil exerts cardioprotection.  相似文献   

8.
In this study, the cardioprotective effects of nitric oxide (NO)-aspirin, the nitroderivative of aspirin, were compared with those of aspirin in an anesthetized rat model of myocardial ischemia-reperfusion. Rats were given aspirin or NO-aspirin orally for 7 consecutive days preceding 25 min of myocardial ischemia followed by 48 h of reperfusion (MI/R). Treatment groups included vehicle (Tween 80), aspirin (30 mg.kg(-1).day(-1)), and NO-aspirin (56 mg.kg(-1).day(-1)). NO-aspirin, compared with aspirin, displayed remarkable cardioprotection in rats subjected to MI/R as determined by the mortality rate and infarct size. Mortality rates for vehicle (n = 23), aspirin (n = 22), and NO-aspirin groups (n = 22) were 34.8, 27.3, and 18.2%, respectively. Infarct size of the vehicle group was 44.5 +/- 2.7% of the left ventricle (LV). In contrast, infarct size of the LV decreased in the aspirin- and NO-aspirin-pretreated groups, 36.7 +/- 1.8 and 22.9 +/- 4.3%, respectively (both P < 0.05 compared with vehicle group; P < 0.05, NO-aspirin vs. aspirin ). Moreover, NO-aspirin also improved ischemia-reperfusion-induced myocardial contractile dysfunction on postischemic LV developed pressure. In addition, NO-aspirin downregulated inducible NO synthase (iNOS; 0.37-fold, P < 0.01) and cyclooxygenase-2 (COX-2; 0.61-fold, P < 0.05) gene expression compared with the vehicle group after 48 h of reperfusion. Treatment with N(G)-nitro-L-arginine methyl ester (L-NAME; 20 mg/kg), a nonselective NOS inhibitor, aggravated myocardial damage in terms of mortality and infarct size but attenuated effects when coadministered with NO-aspirin. L-NAME administration did not alter the increase in iNOS and COX-2 expression but did reverse the NO-aspirin-induced inhibition of expression of the two genes. The beneficial effects of NO-aspirin appeared to be derived largely from the NO moiety, which attenuated myocardial injury to limit infarct size and better recovery of LV function following ischemia and reperfusion.  相似文献   

9.
Male and female Hartley strain guinea pigs weighing 280 +/- 10 g were given acetaminophen-treated water ad libitum for 10 days. Sham-treated control animals were given similar quantities of untreated tap water (vehicle-treated control group). On Day 10, hearts were extracted, instrumented, and exposed to an ischemia (low-flow, 20 min)/reperfusion protocol. Our objective was to compare and contrast ventricular function, coronary circulation, and selected biochemical and histological indices in the two treatment groups. Left ventricular developed pressure in the early minutes of reperfusion was significantly greater in the presence of acetaminophen, e.g., at 1 min, 40 +/- 4 vs 21 +/- 3 mmHg (P < 0.05). Coronary perfusion pressure was significantly less from 3 to 40 min of reperfusion in the presence of acetaminophen. Creatine kinase release in vehicle-treated hearts rose from 42 +/- 14 (baseline) to 78 +/- 25 units/liter by the end of ischemia. Corresponding values in acetaminophen-treated hearts were 36 +/- 8 and 44 +/- 14 units/liter. Acetaminophen significantly (P < 0.05) attenuated release of creatine kinase. Chemiluminescence, an indicator of the in vitro production of peroxynitrite via the in vivo release of superoxide and nitric oxide, was also significantly attenuated by acetaminophen. Electron microscopy indicated a well-preserved myofibrillar ultrastructure in the postischemic myocardium of acetaminophen-treated hearts relative to vehicle-treated hearts (e.g., few signs of contraction bands, little or no evidence of swollen mitochondria, and well-defined light and dark bands in sarcomeres with acetaminophen; opposite with vehicle). We conclude that chronic administration of acetaminophen provides cardioprotection to the postischemic, reperfused rodent myocardium.  相似文献   

10.
Zhu DY  Deng Q  Yao HH  Wang DC  Deng Y  Liu GQ 《Life sciences》2002,71(17):1985-1996
The present observations examined the hypothesis that the iNOS expression in the ischemic penumbra after a transient focal ischemic insult is involved in the recruitment of penumbra into infarction. The middle cerebral artery in mice was occluded for 2 h by an intraluminal filament and then recirculated. The measurement of iNOS activity, iNOS protein formation and NO concentration in the ischemic core and penumbra, and the determination of infarct volume were performed at 6, 12, 24 and 48 h after reperfusion. iNOS protein and iNOS enzymatic activity appeared at 6 h, peaked at 24 h, and declined at 48 h in the penumbra after reperfusion. iNOS protein was not detectable in contralateral area and in sham-operated brains. The time course of iNOS protein, enzymatic activity and NO concentration in the penumbra but not in the core matched the process of infarct maturation. Treatment with iNOS inhibitor aminoguanidine (100 mg.kg(-1), i.p.) at 6 and 12 h after reperfusion inhibited iNOS activity by 88.0 +/- 10.4% and reduced NO concentration by 48.5 +/- 8.3% in the penumbra, and lessened infarct size by 48.8 +/- 7.2%. The iNOS activity and NO level in the core were not affected by the administration of aminoguanidine. These results suggest that iNOS expression in the ischemic penumbra is involved in the recruitment of penumbra into infarction and thereby contributing to the enlargement of infarct.  相似文献   

11.
Ingestion of low levels of ethanol 24 h before [ethanol preconditioning (EPC)] ischemia and reperfusion (I/R) prevents postischemic leukocyte rolling (LR) and adhesion (LA), effects that were abolished by adenosine A(2) receptor (ADO-A(2)R) antagonists or nitric oxide (NO) synthase (NOS) inhibitors. The aims of this study were to determine whether NO derived from endothelial NOS (eNOS) during the period of ethanol exposure triggered entrance into this preconditioned state and whether these events were initiated by an ADO-A(2)R-dependent mechanism. Ethanol or distilled water vehicle was administered to C57BL/6J [wild type (WT)] or eNOS-deficient (eNOS-/-) mice by gavage. Twenty-four hours later, the superior mesenteric artery was occluded for 45 min. LR and LA were quantified by intravital microscopy after 30 and 60 min of reperfusion. I/R increased LR and LA in WT mice, effects that were abolished by EPC or NO donor preconditioning (NO-PC). NO-PC was not attenuated by coincident administration of an ADO-A(2)R antagonist. I/R increased LR and LA in eNOS-/- mice to levels comparable with those noted in WT animals. However, EPC only slightly attenuated postischemic LR and LA, whereas NO-PC remained effective as a preconditioning stimulus in eNOS-/- mice. Preconditioning with an ADO-A(2)R agonist (which we previously demonstrated prevents I/R-induced LR and LA in WT animals) failed to attenuate these postischemic adhesive responses in eNOS-/- mice. Our results indicate that EPC is triggered by NO formed secondary to ADO-A(2)R-dependent eNOS activation during the period of ethanol exposure 24 h before I/R.  相似文献   

12.
目的:研究大鼠肢体缺血/再灌注后急性肺损伤时,内皮型一氧化氮合酶(eNOS)和诱导型一氧化氮合酶(i-NOS)的表达及其在急性肺损伤发生中的作用。方法:雄性Wistar大鼠于后肢根部阻断血流后松解(4h/4h),分别给予L-Arg和氨基胍(AG)预先干预,分为control、IR、L-Arg和AG组,免疫组织化学方法检测肺组织中iNOS和eNOS的表达,同时检测肺组织中MDA、MPO、W/D和NO2^-/NO3^-值,肺组织形态学观察以评价肺损伤的程度。结果:与control组比较,I/R组eNOS表达降低,iNOS表达增强,MDA、MPO、W/D和NO2^-/NO3^-值增加。肺组织充血、炎细胞浸润,肺泡腔渗液;与I/R组比较,L-Arg组eNOS、iNOS表达无明显变化,NO2^-/NO3^-增加。MDA、MPO、W/D降低,肺组织损伤有减轻趋势,AG组eNOS表达无明显变化,iNOS活性降低,NO2^-/NO3^-减少,MDA、MPO、W/D增加,肺组织损伤有加重趋势。结论:肢体缺血/再灌注急性肺损伤过程中,iNOS表达增加,NO生成增多,在肺损伤发生中有一定的保护作用。  相似文献   

13.
Short-term hibernating myocardium is characterized by reduced contractile function during persistent moderate ischemia, the recovery of metabolic parameters, and the absence of necrosis. To study the afterload dependence of regional wall excursion in short-term hibernating myocardium, in 11 enflurane-anesthetized swine the left anterior descending coronary artery was cannulated and hypoperfused for 90 min to reduce anterior systolic wall thickening (WT, sonomicrometry) by 60%. Under control conditions, at 5 and 90 min ischemia the descending thoracic aorta was acutely constricted to increase left ventricular (LV) pressure by 30 mmHg. Under control conditions, increased LV pressure resulted in decreased WT [i.e., a negative slope of the relationship between WT and LV end-systolic pressure: -11.2 +/- 4.2 (SD) microm/mmHg]. This slope was further significantly decreased at 5 min ischemia (-26.5 +/- 8.8 microm/mmHg) but returned toward control values in short-term hibernating myocardium at 90 min ischemia (-17.2 +/- 6.6 microm/mmHg). At 30 min reperfusion, the slope was once more significantly decreased (-27.8 +/- 8.1 microm/mmHg). In conclusion, WT in short-term hibernating myocardium is less afterload dependent than in acutely ischemic and reperfused myocardium.  相似文献   

14.
The roles of nitric oxide (NO) and nitric oxide synthase (NOS) in reproduction were studied by examining the estrous cycle of wild-type (WT) mice, inducible NOS (iNOS)-, and endothelial NOS (eNOS)-knockout mice. We observed an average estrous cycle of 4.8 +/- 0.2 days in WT mice. While we observed no significant influence of iNOS deficiency on cycle length, eNOS-knockout females showed a significantly longer estrous cycle (6.6 +/- 0.6 days; p < 0.03) than WT females, due to an extension of diestrus (p < 0.03). There was no influence of iNOS deficiency on ovulation rate compared with that in WT females; however, eNOS-knockout mice showed a significant reduction (p < 0.05) in ovulatory efficiency relative to WT or iNOS-knockout females. In contrast to WT females, in which the highest level of estradiol (E2) was observed at 1500 h of proestrus, iNOS-knockout females reached a peak of E2 at 1830 h of proestrus. In eNOS-knockout females, the peak of E2 occurred at 1830 h, as in iNOS-knockout mice; however, E2 levels were 5-fold and 3-fold higher (p < 0.05) than levels observed in WT and iNOS-knockout females, respectively. There was no effect of genotype on the plasma LH concentrations at proestrus. On the first day of diestrus, eNOS-knockout females showed significantly higher plasma E2 and progesterone levels (p < 0.05) relative to WT and iNOS-knockout females. The dysfunction in cyclicity, ovulation rate, ovarian morphology, and steroidogenesis in eNOS-knockout female mice strongly supports the concept that eNOS/NO plays critical roles in ovulation and follicular development.  相似文献   

15.
Preconditioning (PC) with nitric oxide (NO) donors or agents that increase endothelial NO synthase (eNOS) activity 24 h before ischemia-reperfusion (I/R) prevents postischemic leukocyte rolling (LR) and stationary leukocyte adhesion (LA). Since 5'-AMP-activated protein kinase (AMPK) phosphorylates eNOS at Ser1177, resulting in activation, we postulated that AMPK activation may trigger the development of a preconditioned anti-inflammatory phenotype similar to that induced by NO donors. Wild-type (WT) C57BL/6J and eNOS(-/-) mice were treated with the AMPK agonist 5-aminoimidazole-4-carboxamide 1-beta-d-furanoside (AICAR) 30 min (early AICAR PC) or 24 h (late AICAR PC) before I/R; LR and LA were quantified in single postcapillary venules in the jejunum using intravital microscopy. I/R induced comparable marked increases in LR and LA in WT and eNOS(-/-) mice relative to sham-operated (no ischemia) animals. Late AICAR PC prevented postischemic LR and LA, whereas early AICAR PC prevented LA in WT mice. Late AICAR PC was ineffective in preventing I/R-induced LR but not LA in the eNOS(-/-) mice, and the same pattern was seen in WT animals treated with the NOS inhibitor N(omega)-nitro-l-arginine. Early AICAR PC remained effective in preventing LA in eNOS(-/-) mice. Our results indicate that both early and late PC with an AMPK agonist produces an anti-inflammatory phenotype in postcapillary venules. Since the protection afforded by late AICAR PC on postischemic LR was prevented by NOS inhibition in WT mice and absent in eNOS-deficient mice, it appears that eNOS triggers this protective effect. In stark contrast, antecedent AMPK activation prevented I/R-induced LA by an eNOS-independent mechanism.  相似文献   

16.
Variations in vascular anatomy in knockout mouse strains can influence infarct volume after middle cerebral artery (MCA) occlusion (MCAO). In wild-type (WT) and heme oxygenase-2 gene-deleted (HO2-/-) mice, infarcts were not reproducibly achieved with the standard intraluminal filament technique. The present study characterizes a double-filament model of MCAO, which was developed to produce consistent infarcts in both WT and HO2-/- mice. Diameters of most cerebral arteries were similar in WT and HO2-/- mice, although the posterior communicating artery size was variable. In halothane-anesthetized mice, two 6-0 monofilaments with blunted tips were inserted into the left internal carotid artery 6.0 and 4.5 mm past the pterygopalatine artery junction to reside distal and proximal to the origin of the MCA. The tissue "volume at risk" determined by brief dye perfusion in WT (59 +/- 2% of hemisphere; +/-SE) was similar to HO2-/- (62 +/- 4%). The volume of tissue with cerebral blood flow <50 ml.min(-1).100 g(-1) was similar in WT (35 +/- 9%) and HO2-/- (36 +/- 11%) during MCAO and at 3 h of reperfusion (<2%). After 1 h MCAO, infarct volume was greater in HO2-/- (44 +/- 6%) than WT (25 +/- 3%). After increasing MCAO duration to 2 h, the difference between HO2-/- (47 +/- 4%) and WT (36 +/- 3%) diminished, but infarct volume remained substantially less than the volume at risk. Infusion of tin protoporphyrin IX, an HO inhibitor, during reperfusion after 1 h MCAO increased infarct volume in WT but not significantly in HO2-/- mice, although infarct volume remained less than the volume at risk. Thus greater infarct volume in HO2-/- mice is not attributable to a greater volume at risk, lower intraischemic blood flow, or poor reflow, but rather to a neuroprotective effect of HO2 activity. The double-filament model may be of use as an alternative in other murine knockout strains in which the standard filament model does not yield consistent infarcts.  相似文献   

17.
Our objective was to investigate the potential role of selective endothelial nitric oxide (NO) synthase (eNOS) overexpression in coronary blood vessels in the control of myocardial oxygen consumption (MVO2). Transgenic (Tg) eNOS-overexpressing mice (eNOS Tg) (n=22) and wild-type (WT) mice (n=24) were studied. Western blot analysis indicated greater than sixfold increase of eNOS in cardiac tissue. Echocardiography in awake mice indicated no difference in cardiac function between WT and eNOS Tg; however, systolic pressure in eNOS Tg mice decreased significantly (126 +/- 2.3 to 109 +/- 2.3 mmHg; P <0.05), whereas heart rate (HR) was not different. Total peripheral resistance (TPR) was also decreased (9.8 +/- 0.8 to 7.6 +/- 0.4 4 mmHg.ml(-1).min; P <0.05) in eNOS Tg. Furthermore, female eNOS Tg mice showed even lower TPR (7.2 +/- 0.4 mmHg.ml(-1).min) compared with male eNOS mice (8.6 +/- 0.5, mmHg.ml.min(-1); P <0.05). Left ventricular slices were isolated from WT and eNOS Tg mice. With the use of a Clark-type oxygen electrode in an airtight bath, MVO2 was determined as the percent decrease during increasing doses (10(-10) to 10(-4) mol/l) of bradykinin (BK), carbachol (CCh), forskolin (10(-12) to 10(-6) mol/l), or S-nitroso-N-acetyl penicillamine (SNAP; 10(-7) to 10(-4) mol/l). Baseline MVO2 was not different between WT (181 +/- 13 nmol.g(-1).min(-1)) and eNOS Tg (188 +/- 14 nmol.g(-1).min(-1)). BK decreased MVO2 (10(-4) mol/l) in WT by 17% +/- 1.1 and 33% +/- 2.7 in eNOS Tg (P < 0.05). CCh also decreased MVO2, 10(-4) mol/l, in WT by 20% +/- 1.7 and 31% +/- 2.0 in eNOS Tg (P <0.05). Forskolin (10(-6) mol/l) or SNAP (10(-4) mol/l) also decreased MVO2 in WT by 24% +/- 2.8 and 36% +/- 1.8 versus eNOS 31% +/- 1.8 and 37% +/- 3.5, respectively. N-nitro-L-arginine methyl ester (10(-3) mol/l) inhibited the MVO2 reduction to BK, CCh, and forskolin by a similar degree (P <0.05), but not to SNAP. Thus selective overexpression of eNOS in cardiac blood vessels in mice enhances the control of MVO2 by eNOS-derived NO.  相似文献   

18.
We investigated the role of inducible heat shock proteins 70.1 and 70.3 (HSP70.1 and HSP70.3, respectively) in myocardial ischemic preconditioning (IP) in mice. Wild-type (WT) mice and HSP70.1- and HSP70.3-null [HSP70.1/3(-/-)] mice were subjected to IP and examined 24 h later during the late phase of protection. IP significantly increased steady-state levels of HSP70.1 and HSP70.3 mRNA and expression of inducible HSP70 protein in WT myocardium. To assess protection against tissue injury, mice were subjected to 30 min of regional ischemia and 3 h of reperfusion. In WT mice, IP reduced infarct size by 43% compared with sham IP-treated mice. In contrast, IP did not reduce infarct size in HSP70.1/3(-/-) mice. Absence of inducible HSP70.1 and HSP70.3 had no effect, however, on classical or early-phase protection produced by IP, which significantly reduced infarct size in HSP70.1/3(-/-) mice. We conclude that inducible HSP70.1 and HSP70.3 are required for late-phase protection against infarction following IP in mice.  相似文献   

19.
Although ischemia-induced late preconditioning (PC) is known to be mediated by inducible nitric oxide (NO) synthase (iNOS), the role of this enzyme in pharmacologically induced late PC remains unclear. We tested whether targeted disruption of the iNOS gene abrogates late PC elicited by three structurally different NO donors [diethylenetriamine/NO (DETA/NO), nitroglycerin (NTG), and S-nitroso-N-acetyl-penicillamine (SNAP)], an adenosine A1 receptor agonist [2-chloro-N6-cyclopentyladenosine (CCPA)], and a delta1-opioid receptor agonist (TAN-670). The mice were subjected to a 30-min coronary occlusion followed by 24 h of reperfusion. In iNOS knockout (iNOS-/-) mice, infarct size was similar to wild-type (WT) controls, indicating that iNOS does not modulate infarct size in the absence of PC. Pretreatment of WT mice with DETA/NO, NTG, SNAP, TAN-670, or CCPA 24 h before coronary occlusion markedly reduced infarct size. In iNOS-/- mice, however, the late PC effect elicited by DETA/NO, NTG, SNAP, TAN-670, and CCPA was completely abrogated. Furthermore, in WT mice pretreated with TAN-670 or CCPA, the selective iNOS inhibitor 1400W also abolished the delayed PC properties of these drugs; 1400W had no effect in WT mice. These data demonstrate that iNOS plays an obligatory role in NO donor-induced, adenosine A1 receptor agonist-induced, and delta1-opioid receptor agonist-induced late PC, underscoring the critical role of this enzyme as a common mediator of cardiac adaptations to stress.  相似文献   

20.
Protein kinase C-betaII (PKCbetaII) is an important modulator of cellular stress responses. To test the hypothesis that PKCbetaII modulates the response to myocardial ischemia-reperfusion (I/R) injury, we subjected mice to occlusion and reperfusion of the left anterior descending coronary artery. Homozygous PKCbeta-null (PKCbeta(-/-)) and wild-type mice fed the PKCbeta inhibitor ruboxistaurin displayed significantly decreased infarct size and enhanced recovery of left ventricular (LV) function and reduced markers of cellular necrosis and serum creatine phosphokinase and lactate dehydrogenase levels compared with wild-type or vehicle-treated animals after 30 min of ischemia followed by 48 h of reperfusion. Our studies revealed that membrane translocation of PKCbetaII in LV tissue was sustained after I/R and that gene deletion or pharmacological blockade of PKCbeta protected ischemic myocardium. Homozygous deletion of PKCbeta significantly diminished phosphorylation of c-Jun NH(2)-terminal mitogen-activated protein kinase and expression of activated caspase-3 in LV tissue of mice subjected to I/R. These data implicate PKCbeta in I/R-mediated myocardial injury, at least in part via phosphorylation of JNK, and suggest that blockade of PKCbeta may represent a potent strategy to protect the vulnerable myocardium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号