首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT: BACKGROUND: Mounting clinical and experimental data suggest that the migration of tumor cells into lymph nodes is greatly facilitated by lymphangiogenesis. Vascular endothelial growth factor (VEGF)-C and D have been identified as lymphangiogenic growth factors and play an important role in tumor lymphangiogenesis. The purpose of this study was to investigate the location of lymphangiogenesis driven by tumor-derived VEGF-C/D in breast cancer, and to determine the role of intratumoral and peritumoral lymphatic vessel density (LVD) in lymphangiogenesis in breast cancer. METHODS: The expression levels of VEGF-C/D were determined by immunohistochemistry, and intratumoral LVD and peritumoral LVD were assessed using immunohistochemistry and the D2-40 antibody in 73 patients with primary breast cancer. The associations of intratumoral LVD and peritumoral LVD with VEGF-C/D expression, clinicopathological features and prognosis were assessed. RESULTS: VEGF-C and D expression were significantly higher in breast cancer than benign disease (P < 0.01). VEGF-C (P < 0.001) and VEGF-D (P = 0.005) expression were significantly associated with peritumoral LVD, but not intratumoral LVD. Intratumoral LVD was associated with tumor size (P = 0.01). Peritumoral LVD was significantly associated with lymph node metastasis (LNM; P = 0.005), lymphatic vessel invasion (LVI; P = 0.017) and late tumor,node,metastasis(TNM) stage (P = 0.011). Moreover, peritumoral LVD was an independent risk factor for axillary lymph node metastasis, overall survival and disease-free survival in multivariate analysis. CONCLUSIONS: This study suggests that tumor-derived VEGF-C/D induce peritumoral lymphangiogenesis, which may be one mechanism that leads to lymphatic invasion and metastatic spread. Peritumoral LVD has potential as an independent prognostic factor in breast cancer patients.  相似文献   

2.
This study aimed to assess the distribution of VEGF-C and VEGFR-3 expression in gastrointestinal stromal tumours (GISTs), and to analyse the value of lymphatic vessel density (LVD) in a tumour that is believed to preferentially metastasize through blood vessel conduits. A panel of immunohistochemical antibodies was used to evaluate 51 cases of genetically characterised GISTs: VEGF-C, VEGFR-3, D2-40 (for LVD assessment) and CD31 (for blood vessel density--BDV--assessment). The results were correlated with the clinical-pathological data. The large majority of cases (86.2%; 44/51) showed a mutation of the KIT gene, most of them (72.5%; 37/51) revealing mutations in exon 11. VEGFR-3 was predominantly expressed in KIT mutated GISTs (p=0.019). High LVD was correlated with the absence of metastasis (p=0.010) and high BVD showed a positive correlation with the occurrence of metastasis (p=0.049). The strong expression of VEGF-C and VEGFR-3 in GIST's cells was not correlated with the clinical parameters of aggressiveness, nor with high LVD.  相似文献   

3.
Cervical cancer is known to metastasize primarily by the lymphatic system. Dissemination through lymphatic vessels represents an early step in regional tumor progression, and the presence of lymphatic metastasis is associated with a poor prognosis. In patients who have undergone a radical hysterectomy, lymphovascular space invasion (LVSI), assessed on hematoxylin and eosin-stained slides, is a major factor for adjuvant therapy in patients with cervical cancer. With the advent of a lymphatic endothelial cell-specific marker, such as D2-40, it is now possible to distinguish between blood and lymphatic space invasion (LSI). In this study, the utility of D2-40 was assessed for the detection of lymphatic vessel density (LVD) and identification of LSI. The expressions of vascular endothelial growth factor receptor-3 (VEGFR-3), VEGF-C, tyrosine receptor kinase-2, and angiopoietin-1 were assessed by immunohistochemical methods on 50 patients with squamous cell carcinoma of the cervix. Clinicopathologic characteristics, including pelvic lymph node metastasis, were correlated with the above histochemical findings. We found that lymphangiogenesis, measured by an increase in peritumoral LVD, was significantly associated with positive lymph node status (P < .005). VEGFR-3 expression was significantly associated with LVD (P < .05). D2-40 staining verified LSI (P = .03) and surpassed that of hematoxylin and eosin-identified LVSI (P = .54). In conclusion, lymphangiogenic markers, specifically LVD quantified by D2-40 and VEGFR-3, are independently associated with LSI and lymph node metastasis in patients with early squamous cell carcinoma of the cervix treated with radical hysterectomy and pelvic lymphadenectomy.  相似文献   

4.
Vascular endothelial growth factor receptor-3 (VEGFR-3) has an essential role in the development of embryonic blood vessels; however, after midgestation its expression becomes restricted mainly to the developing lymphatic vessels. The VEGFR-3 ligand VEGF-C stimulates lymphangiogenesis in transgenic mice and in chick chorioallantoic membrane. As VEGF-C also binds VEGFR-2, which is expressed in lymphatic endothelia, it is not clear which receptors are responsible for the lymphangiogenic effects of VEGF-C. VEGF-D, which binds to the same receptors, has been reported to induce angiogenesis, but its lymphangiogenic potential is not known. In order to define the lymphangiogenic signalling pathway we have created transgenic mice overexpressing a VEGFR-3-specific mutant of VEGF-C (VEGF-C156S) or VEGF-D in epidermal keratinocytes under the keratin 14 promoter. Both transgenes induced the growth of lymphatic vessels in the skin, whereas the blood vessel architecture was not affected. Evidence was also obtained that these growth factors act in a paracrine manner in vivo. These results demonstrate that stimulation of the VEGFR-3 signal transduction pathway is sufficient to induce specifically lymphangiogenesis in vivo.  相似文献   

5.
目的探讨血管内皮生长因子-C与乳腺癌淋巴管生成和淋巴结转移的关系。方法免疫组化法检测21例乳腺增生组和68例乳腺浸润性导管癌组病灶组织内VEGF-C蛋白的表达,并用淋巴管内皮细胞特异性标志物D2-40标记肿瘤新生淋巴管,计数肿瘤淋巴管的密度(LVD)。结果乳腺浸润性导管癌组VEGF-C的表达和淋巴管的密度(LVD)都明显高于乳腺增生组(P〈0.01);乳腺浸润性导管癌中VEGF-C阳性组中淋巴管的密度(11.32±5.78)与VEGF-C阴性组中的淋巴管密度(8.75±3.53),差别有统计学意义(P〈0.01);乳腺浸润性导管癌中VEGF-C蛋白的表达和淋巴管密度(LVD)都与有无腋窝淋巴结转移及淋巴结转移个数有关(P〈0.05)。结论VEGF-C在乳腺浸润性导管癌淋巴管的生成中起着重要的作用;VEGF-C的高表达和淋巴管密度(LVD)的升高是促进乳腺导管癌淋巴结转移的重要的影响因素。  相似文献   

6.
卵巢上皮肿瘤淋巴转移与血管内皮生长因子C的表达   总被引:2,自引:0,他引:2  
The aim of the present study was to explore the role of vascular endothelial growth factor-C (VEGF-C) in the process of angiogenesis, lymphangiogenesis and lymphatic metastasis in epithelial ovarian tumors. In situ hybridization and immunohistochemical staining for VEGF-C were performed in 30 epithelial ovarian carcinomas, 9 borderline tumors and 26 benign cystadenomas. Endothelial cells were immunostained with anti-VEGFR-3 pAb and anti-CD31 mAb, and VEGFR-3 positive vessels and microvessel density (MVD) were assessed by image analysis. VEGF-C mRNA and protein expression in ovarian epithelial carcinomas were significantly higher than that in borderline tumors and benign cystadenomas (p < 0.05 or p < 0.01). In ovarian epithelial carcinomas, VEGF-C protein expression, VEGFR-3 positive vessels and MVD were significantly higher in the cases of clinical stage III-IV and with lymphatic metastasis than those of clinical stage I-II and without lymphatic metastasis respectively (p < 0.05 or p < 0.01), VEGFR-3 positive vessels and MVD was significantly higher in the VEGF-C protein positive tumors than negative tumors (p < 0.05), VEGFR-3 positive vessels was significantly correlated with MVD(p < 0.01). These data suggest that VEGF-C might play a role in lymphatic metastasis via lymphangiogenesis and angiogenesis in epithelial ovarian carcinomas, and VEGF-C could be used as a biologic marker of metastasis in ovarian epithelial carcinomas.  相似文献   

7.
Lymphangiogenesis is implicated in lymphatic metastasis of tumor cells. Recently, growing evidences show that endothelial progenitor cells (EPCs) are involved in lymphangiogenesis. This study has investigated effects of VEGF-C/VEGFR-3 (vascular endothelial growth factor receptor-3) signaling pathway on EPC differentiation and effectiveness of inhibiting lymphatic formation of EPCs with VEGFR-3 siRNA delivered in PEI (polyethylenimine)-alginate nanoparticles. CD34+VEGFR-3+ EPCs were sorted from mononuclear cells of human cord blood. Under induction with VEGF-C, the cells differentiated toward lymphatic endothelial cells. The nanoparticles were formulated with 25 kDa branched PEI and alginate. The size and surface charge of PEI-alginate nanoparticles loading VEGFR-3 siRNA (N/P = 16) are 139.1 nm and 7.56 mV respectively. VEGFR-3 siRNA specifically inhibited expression of VEGFR-3 mRNA in the cells. After treatment with PEI-alginate/siRNA nanocomplexes, EPCs could not differentiate into lymphatic endothelial cells, and proliferation, migration and lymphatic formation of EPC-derived cells were suppressed significantly. These results demonstrate that VEGFR-3 signaling plays an important role in differentiation of CD34+VEGFR-3+ EPCs. VEGFR-3 siRNA delivered with PEI-alginate nanoparticles can effectively inhibit differentiation and lymphangiogenesis of EPCs. Inhibiting VEGFR-3 signaling with siRNA/nanocomplexes would be a potential therapy for suppression of tumor lymphangiogenesis and lymphatic metastasis.  相似文献   

8.
Characterization of markers and growth factors for lymphatic endothelium   总被引:2,自引:0,他引:2  
Waś H 《Postepy biochemii》2005,51(2):209-214
  相似文献   

9.
Blood and lymphatic vessels together form the circulatory system, allowing the passage of fluids and molecules within the body. Recently we showed that lymphatic capillaries are also found in the capillary bed of skeletal muscle. Exercise is known to induce angiogenesis in skeletal muscle, but it is not known whether exercise has effects on lymphangiogenesis or lymphangiogenic growth factors. We studied lymphatic vessel density and expression of the main lymphangiogenic growth factors VEGF-C and VEGF-D and their receptor VEGFR-3 in response to acute running exercise and endurance exercise training in the skeletal muscle of healthy and diabetic mice. VEGF-C mRNA expression increased after the acute exercise bout (P < 0.05) in healthy muscles, but there was no change in diabetic muscles. VEGF-C levels were not changed either in healthy or in diabetic muscle after the exercise training. Neither acute exercise nor exercise training had an effect on the mRNA expression of VEGF-D or VEGFR-3 in healthy or diabetic muscles. Lymphatic vessel density was similar in sedentary and trained mice and was >10-fold smaller than blood capillary density. Diabetes increased the mRNA expression of VEGF-D (P < 0.01). Increased immunohistochemical staining of VEGF-D was found in degenerative muscle fibers in the diabetic mice. In conclusion, the results suggest that acute exercise or exercise training does not significantly affect lymphangiogenesis in skeletal muscle. Diabetes increased the expression of VEGF-D in skeletal muscle, and this increase may be related to muscle fiber damage.  相似文献   

10.
VEGF-C is a crucial player in lymphangiogenesis. Besides VEGFR-2 and VEGFR-3, it also binds NRP2. NRP2 enhances VEGF-C/VEGFR-3 effects in developmental lymphangiogenesis, but its role in adult and tumoral lymphangiogenesis is not known. In their study, Bagri and colleagues demonstrate that blocking NRP2 results in a decrease of metastasis formation, a phenomenon relying on tumoral lymphangiogenesis. Thus, they identified NRP2 as an attractive new target for modulating metastasis.Key words: VEGF-C, NRP2, VEGFR-3, tumoral lymphangiogenesis, metastasisBesides developmental and adult lymphangiogenesis, formation of new lymphatic vessels also occurs during tumor growth. This abnormal lymphangiogenesis enables tumor cells to escape from the solid tumor and to invade the body through the newly formed lymphatics. The resulting metastases are responsible for most cancer-associated deaths. Interestingly, inhibition of VEGF-C/VEGFR-3 axis has been shown to block metastasis formation in preclinical models.1 However, treatment with VEGFR3ECD may result in compromise of the normal lymphatic system leading to complications such as lymphedema. VEGF-C belongs to the VEGF family and is particularly involved in lymphangiogenesis. VEGF-C binds VEGFR-2 but mostly associates with high affinity with the third tyrosine kinase VEGF receptor, VEGFR-3.2 Recently, it has been proved that VEGF-C also binds a receptor from the neuropilin family, NRP2. NRP2 associates with VEGFR-3, and binding of VEGF-C to NRP2 enhances VEGF-C/VEGFR-3-induced biological effects.3 NRP2 thus modulates developmental lymphangiogenesis, but its significance in adult or tumoral lymphangiogenesis remained unknown until a recent study by Bagri and colleagues who analyzed NRP2 function in tumor cell metastasis.4  相似文献   

11.
The presence of lymphatic vessels in dental pulp has recently been controversial, and no conclusion has been reached. In this study, we investigated the control of lymphangiogenesis with dental pulp development in the mouse mandibular molar using VEGF-C, VEGF-D, and VEGFR-3 as indices of lymphatic vessel-controlling factors. In addition, to distinguish blood and lymphatic vascular epithelial cells, we performed immunohistochemical analysis using von Willebrand factor (vWF) and statistical analysis. In dental papilla in the bell-stage non-calcified period, mesenchymal cells positive for VEGF-C, VEGF-D, and VEGFR-3 increased and lumen-forming endothelial cells were noted, but vWF was negative, suggesting that these were actively forming lymphatic vessels. Positive undifferentiated mesenchymal cells, an increase in endothelial cells in dental pulp, and lumen expansion were noted early after birth. Positivity was also detected in the odontoblast layer and sheath of Hertwig after birth, suggesting that these factors also play important roles in odontoblast differentiation and maturation and periodontal ligament and tooth root formation. We embryologically clarified lymphatic vessel formation in dental pulp and a process of lymphatic vessel formation from blood vessels, suggesting involvement of the surrounding tissue, odontoblasts, and sheath of Hertwig in vessel formation.  相似文献   

12.
《FEBS letters》2014,588(23):4357-4363
The vascular endothelial growth factor (VEGF)-C-induced down-regulation of VEGF receptor (VEGFR)-3 is important in lymphangiogenesis. Here, we demonstrate that VEGF-C, -D, and -C156S, but not VEGF-A, down-regulate VEGFR-3. VEGF-C stimulates VEGFR-3 tyrosyl phosphorylation and transient phosphorylation of extracellular signal-regulated kinase (ERK), p38, and c-Jun N-terminal kinases in lymphatic endothelial cells. VEGF-C-induced down-regulation of VEGFR-3 was blocked by a VEGF-C trap, tyrosine kinase inhibitor, and leupeptin, pepstatin, and E64 (LPE), but was unaffected by Notch 1 activator and γ-secretase inhibitors. Our findings indicate that VEGF-C down-regulates VEGFR-3 in lymphatic endothelial cells through VEGFR-3 kinase activation and, in part, via lysosomal degradation.  相似文献   

13.
Regulation of lymphatic capillary regeneration by interstitial flow in skin   总被引:1,自引:0,他引:1  
Decreased interstitial flow (IF) in secondary lymphedema is coincident with poor physiological lymphatic regeneration. However, both the existence and direction of causality between IF and lymphangiogenesis remain unclear. This is primarily because the role of IF and its importance relative to the action of the prolymphangiogenic growth factor vascular endothelial growth factor (VEGF)-C (which signals primarily through its receptor VEGFR-3) are poorly understood. To clarify this, we explored the cooperative roles of VEGFR-3 and IF in a mouse model of lymphangiogenesis in regenerating skin. Specifically, a region of lymphangiogenesis was created by substituting a portion of mouse tail skin with a collagen gel within which lymphatic capillaries completely regenerate over a period of 60 days. The relative importance of IF and VEGF-C signaling were evaluated by either inhibiting VEGFR-3 signaling with antagonistic antibodies or by reducing IF. In some cases, VEGF-C signaling was then increased with exogenous protein. To clarify the role of IF, the distribution of endogenous matrix metalloproteinases (MMPs) and VEGF-C within the regenerating region was determined. It was found that inhibition of either VEGFR-3 or IF suppressed endogenous lymphangiogenesis. Reduction of IF was found to decrease lymphatic migration and transport of endogenous MMP and VEGF-C through the regenerating region. Therapeutic VEGF-C administration restored lymphangiogenesis following inhibition of VEGFR-3 but did not increase lymphangiogenesis following inhibition of IF. These results identify IF as an important regulator of the pro-lymphangiogenic action of VEGF-C.  相似文献   

14.
Lymphangiogenesis, the growth of new lymph vessels, has important roles in both normal and pathological lymphatic function. Despite recent advances, the precise molecular mechanisms behind the lymphangiogenic process remain unclear. The Australian marbled gecko, Christinus marmoratus, voluntarily drops its tail (autotomy) as a predator avoidance strategy. Following autotomy a new tail is regenerated including lymphatic drainage pathways. We examined the molecular control of lymphangiogenesis within the unique model of the regenerating gecko tail. Partial sequences were obtained of the gecko lymphangiogenic growth factors, vascular endothelial growth factor C (VEGF-C) and VEGF-D along with their receptor VEGFR-3. These were highly homologous to other vertebrates. Quantitative real-time polymerase chain reaction (PCR) demonstrated up-regulation of VEGF-C, VEGF-D and VEGFR-3 mRNA expression during the early and middle stages of tail regeneration (between 4 and 9 weeks following autotomy), in late regeneration (12 weeks) and during mid-regeneration (7 and 9 weeks), respectively. VEGF-C and VEGF-D immunostaining was observed lining some lymphatic-like and blood vessels in early–mid tail regeneration, indicating possible associations of the proteins with VEGFRs on endothelia. Keratinocytes and fibroblasts also showed positive staining of VEGF-C and VEGF-D in early–mid tail regeneration. Additionally, VEGF-C was localised in adipose tissue in all tail states examined. This work suggests that specific timings exist for the expression of the lymphangiogenic growth factors, VEGF-C and VEGF-D, and their receptor, VEGF-R3, throughout the regeneration of a functional lymphatic network. Along with localisation data, this suggests potential functions for the growth factors in lymphangiogenesis and angiogenesis throughout tail regeneration.  相似文献   

15.
OBJECTIVE: The aim of this study was to compare the immunohistochemical expression of vascular endothelial growth factors VEGF-C and D, as well as the expression of VEGFR-3 in VIN and vulvar invasive cancer and to compare the density of lymphatic marker D2-40 antibody in both groups, and to compare them with different clinicopathologic features. Materials & Methods: The study was performed using tissue material and clinical data from 100 women diagnosed with VIN and 100 women diagnosed with invasive vulvar cancer. Results: No significant differences were found in the expression of VEGF-C and -D or VEGFR-3 between those patients with VIN and those with invasive vulvar cancers. Weak expression of VEGF-C was confirmed only in two cases of the analyzed series; in all cases, expression of VEGF-D and VEGFR-3 was observed. The strongest expression of VEGF-D and VEGFR-3 was observed in the group of invasive cancers. The highest density of lymphatic vessels per 2 mm was observed in VIN. In the cancer group, small lymphatic vessels with a narrow oval lumen were observed. Moreover, in two cases of vulvar cancer, the presence of intratumoral lymphatic vessels was observed. Conclusions: These results suggest that lymphangiogenesis begins at the preinvasive stage of vulvar carcinogenesis and suggests the important role of VEGF-C, VEGF-D, VEGFR-3 and LV (D2-40) as prognostic factors in the process of carcinogenesis in the vulvar area.  相似文献   

16.
Lymphangiogenesis is considered a promising approach for increasing fluid drainage during secondary lymphedema. However, organization of lymphatics into functional capillaries may be dependent upon interstitial flow (IF). The present study was undertaken to determine the importance of lymphangiogenesis for lymphedema resolution. We created a lymphatic obstruction that produces lymphedema in mouse tail skin. The relatively scar-free skin regeneration that occurred across the obstruction allowed the progression of lymphangiogenesis to be observed and compared with the evolution of lymphedema. The role of vascular endothelial growth factor-C (VEGF-C)/VEGF receptor (VEGFR)-3 signaling in lymphedema resolution was investigated by exogenous administration of VEGF-C or neutralizing antibodies against VEGFR-3. VEGF-C protein improved lymphedema at 15 days [reducing dermal thickness from 742 +/- 105 to 559 +/- 141 microm with 95% confidence intervals (CIs), P < 0.05] without increasing lymphatic capillary coverage (11.6 +/- 6.4% following VEGF-C treatment relative to 9.6 +/- 6.2% with 95% CIs, P > 0.50). Blocking VEGFR-3 signaling did not inhibit lymphedema resolution at 25 days (dermal thickness of 462 +/- 127 microm following VEGFR-3 inhibition relative to 502 +/- 87 microm with 95% CIs) or inhibit IF, although VEGFR-3 blocking prevented lymphangiogenesis (reducing lymphatic coverage to 0.2 +/- 0.7% relative to 8.7 +/- 7.3% with 95% CIs, P < 0.005). A second mouse tail lymphedema model was employed to investigate the ability of VEGF-C to increase fluid drainage across a scar. We found that neither neutralization of VEGFR-3 nor administration of VEGF-C affected the course of skin swelling over 25 days. These findings suggest that resolution of lymphedema in the mouse tail skin may be more dependent upon IF and regeneration of the extracellular matrix across the obstruction than lymphatic capillary regeneration.  相似文献   

17.
Molecular control of lymphangiogenesis   总被引:8,自引:0,他引:8  
The lymphatic vasculature plays a critical role in the regulation of body fluid volume and immune function. Extensive research into the molecular mechanisms that control blood vessel growth has led to identification of molecules that also regulate development and growth of the lymphatic vessels. This is generating a great deal of interest in the molecular control of the lymphatics in the context of embryogenesis, lymphatic disorders and tumor metastasis. Studies in animal models carried out over the past three years have shown that the soluble protein growth factors, vascular endothelial growth factor (VEGF)-C and VEGF-D, and their cognate receptor tyrosine kinase, VEGF receptor-3 (VEGFR-3), are critical regulators of lymphangiogenesis. Furthermore, disfunction of VEGFR-3 has recently been shown to cause lymphedema. The capacity to induce lymphangiogenesis by manipulation of the VEGF-C/VEGF-D/VEGFR-3 signaling pathway offers new opportunities to understand the function of the lymphatic system and to develop novel treatments for lymphatic disorders.  相似文献   

18.
目的研究携带BABL/c小鼠VEGFR-3(1-3Ig)基因的重组腺病毒转染淋巴管内皮祖细胞(LEPCs)后,对可溶性VEGFR-3蛋白分泌及其生物学特性的作用。方法采用巢式RT-PCR技术从BABL/c小鼠胎盘组织中扩增VEGFR-3(1-3Ig)的编码基因,并通过重组PCR技术在基因的N端加上人CD33的信号肽。将该基因片段亚克隆入腺病毒表达载体(pDC316-IRES-EGFP),重组质粒经酶切及测序验证后,与包装质粒共转染293细胞以产生重组腺病毒。将构建好的携带有小鼠VEGFR-3(1-3Ig)基因的重组腺病毒转染淋巴管内皮祖细胞,通过ELISA检测转染细胞上清液中可溶性VEGFR-3蛋白的分泌及其对VEGF-C的中和作用。结果成功构建了带有信号肽的BABL/c小鼠VEGFR-3(1-3Ig)基因的腺病毒表达质粒,并获得高滴度的携带有小鼠VEGFR-3(1-3Ig)基因的重组腺病毒,重组腺病毒转染淋巴管内皮祖细胞后,可使转染细胞分泌可溶性VEGFR-3蛋白,该蛋白具有中和VEGF-C的作用。结论成功地制备了携带BABL/c小鼠VEGFR-3(1-3Ig)基因的重组腺病毒,用该病毒转染淋巴管内皮祖细胞可使其分泌可溶性VEGFR-3,该蛋白在体外具有中和VEGF-C的作用,这为临床抑制肿瘤淋巴管新生奠定了基础。  相似文献   

19.
The cellular and physiologic mechanisms that regulate the resolution of inflammation remain poorly defined despite their widespread importance in improving inflammatory disease outcomes. We studied the resolution of two cardinal signs of inflammation–pain and swelling–by investigating molecular mechanisms that regulate neural and lymphatic vessel remodeling during the resolution of corneal inflammation. A mouse model of corneal inflammation and wound recovery was developed to study this process in vivo. Administration of nerve growth factor (NGF) increased pain sensation and inhibited neural remodeling and lymphatic vessel regression processes during wound recovery. A complementary in vivo approach, the corneal micropocket assay, revealed that NGF-laden pellets stimulated lymphangiogenesis and increased protein levels of VEGF-C. Adult human dermal lymphatic endothelial cells did not express canonical NGF receptors TrkA and p75NTR or activate downstream MAPK- or Akt-pathway effectors in the presence of NGF, although NGF treatment increased their migratory and tubulogenesis capacities in vitro. Blockade of the VEGF-R2/R3 signaling pathway ablated NGF-mediated lymphangiogenesis in vivo. These findings suggest a hierarchical relationship with NGF functioning upstream of the VEGF family members, particularly VEGF-C, to stimulate lymphangiogenesis. Taken together, these studies show that NGF stimulates lymphangiogenesis and that NGF may act as a pathogenic factor that negatively regulates the normal neural and lymphatic vascular remodeling events that accompany wound recovery.  相似文献   

20.
Tumor-induced lymphangiogenesis: a target for cancer therapy?   总被引:9,自引:0,他引:9  
Recent advances in understanding the biology of lymphangiogenesis, the new growth of lymphatic vessels, have cast new light on the molecular basis of metastasis to regional lymph nodes. The receptor tyrosine kinase VEGFR-3 is virtually exclusively expressed on lymphatic but not blood endothelium in the adult, and activation of VEGFR-3 by its ligands VEGF-C and VEGF-D is sufficient to induce lymphangiogenesis. Correlative studies with human tumors and functional studies using animal tumor models show that increased levels of VEGF-C or VEGF-D in tumors lead to enhanced numbers of lymphatic vessels in the vicinity of tumors, which in turn promotes metastasis to regional lymph nodes by providing a greater number of entry sites into the lymphatic system for invading tumor cells. These findings have prompted studies to investigate whether inhibitors of VEGFR-3 activation might represent novel therapeutic agents for the suppression of metastasis. However, a number of points regarding the therapeutic potential of anti-lymphangiogenic treatments in the context of cancer remain to be addressed. The spectrum and relative importance of molecules that induce lymphangiogenesis and the regulation of their expression during tumor progression, the reversibility of tumor-induced lymphangiogenesis, and possible side-effects of anti-lymphangiogenesis-based therapies all need to be investigated. Most importantly, the extent to which lymph node metastases contribute to the formation of metastases in other organs remains to be elucidated. These aspects are the focus of this review, and their investigation should serve as a roadmap to possible translational application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号