首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
The Notch/Notch-ligand pathway regulates cell fate decisions and patterning in various tissues. Several of its components are expressed in the developing lung, suggesting that this pathway is important for airway cellular patterning. Fringe proteins, which modulate Notch signaling, are crucial for defining morphogenic borders in several organs. Their role in controlling cellular differentiation along anterior-posterior axis of the airways is unknown. Herein, we report the temporal-spatial expression patterns of Lunatic fringe (Lfng) and Notch-regulated basic helix-loop-helix factors, Hes1 and Mash-1, during murine lung development. Lfng was only expressed during early development in epithelial cells lining the larger airways. Those epithelial cells also expressed Hes1, but at later gestation Hes1 expression was confined to epithelium lining the terminal bronchioles. Mash-1 displayed a very characteristic expression pattern. It followed neural crest migration in the early lung, whereas at later stages Mash-1 was expressed in lung neuroendocrine cells. To clarify whether Lfng influences airway cell differentiation, Lfng was overexpressed in distal epithelial cells of the developing mouse lung. Overexpression of Lfng did not affect spatial or temporal expression of Hes1 and Mash-1. Neuroendocrine CGRP and protein gene product 9.5 expression was not altered by Lfng overexpression. Expression of proximal ciliated (beta-tubulin IV), nonciliated (CCSP), and distal epithelial cell (SP-C, T1alpha) markers also was not influenced by Lfng excess. Overexpression of Lfng had no effect on mesenchymal cell marker (alpha-sma, vWF, PECAM-1) expression. Collectively, the data suggest that Lunatic fringe does not play a significant role in determining cell fate in fetal airway epithelium.  相似文献   

2.
We have previously shown that fetal lung mesenchyme can reprogram embryonic rat tracheal epithelium to express a distal lung phenotype. We have also demonstrated that embryonic rat lung epithelium can be induced to proliferate and differentiate in the absence of lung mesenchyme. In the present study we used a complex growth medium to induce proliferation and distal lung epithelial differentiation in embryonic tracheal epithelium. Day-13 embryonic rat tracheal epithelium was separated from its mesenchyme, enrobed in growth factor-reduced Matrigel, and cultured for up to 7 days in medium containing charcoal-stripped serum, insulin, epidermal growth factor, hepatocyte growth factor, cholera toxin, fibroblast growth factor 1 (FGF1), and keratinocyte growth factor (FGF7). The tracheal epithelial cells proliferated extensively in this medium, forming lobulated structures within the extracellular matrix. Many of the cells differentiated to express a type II epithelial cell phenotype, as evidenced by expression of SP-C and osmiophilic lamellar bodies. Deletion studies showed that serum, insulin, cholera toxin, and FGF7 were necessary for maximum growth. While no single deletion abrogated expression of SP-C, deleting both FGF7 and FGF1 inhibited growth and prevented SP-C expression. FGF7 or FGF1 as single additions to the medium, however, were unable to induce SP-C expression, which required the additional presence of serum or cholera toxin. FGF10, which binds the same receptor as FGF7, did not support transdifferentiation when used in place of FGF7. These data indicate that FGF7 is necessary, but not sufficient by itself, to induce the distal rat lung epithelial phenotype, and that FGF7 and FGF10 play distinct roles in lung development.  相似文献   

3.
4.
Evaluation of the number of type II alveolar epithelial cells (AECs) is an important measure of the lung’s ability to produce surfactant. Immunohistochemical staining of these cells in lung tissue commonly uses antibodies directed against mature surfactant protein (SP)-C, which is regarded as a reliable SP marker of type II AECs in rodents. There has been no study demonstrating reliable markers for surfactant system maturation by immunohistochemistry in the fetal sheep lung despite being widely used as a model to study lung development. Here we examine staining of a panel of surfactant pro-proteins (pro–SP-B and pro–SP-C) and mature proteins (SP-B and SP-C) in the fetal sheep lung during late gestation in the saccular/alveolar phase of development (120, 130, and 140 days), with term being 150 ± 3 days, to identify the most reliable marker of surfactant producing cells in this species. Results from this study indicate that during late gestation, use of anti-SP-B antibodies in the sheep lung yields significantly higher cell counts in the alveolar epithelium than SP-C antibodies. Furthermore, this study highlights that mature SP-B antibodies are more reliable markers than SP-C antibodies to evaluate surfactant maturation in the fetal sheep lung by immunohistochemistry.  相似文献   

5.
The present study tests the hypothesis that heterotypic stromal-epithelial interactions cause phenotypic changes in urothelium. The rational for the experimental design is to simulate heterotypic stromal-epithelial interactions that are created at the anastomotic site of intestinal-bladder augmentations and internal urinary diversions where the urothelium is in direct contact with the gastro-intestinal tract tissues. Tissue recombination experiments were performed by combining 14-day embryonic rat and mouse rectal mesenchyme with urothelium from embryonic, newborn, and adult mice or rats. All tissue recombinants were grown beneath the renal capsule of athymic mouse hosts for 6-16 weeks. Analyses were performed to detect expression of uroplakins, cytokeratin 7, 14, 19 and mucin secreting epithelial cells via Periodic Acid-Schiff (PAS). The phenotype of both mouse and rat urothelium was changed to a glandular morphology under the influence of rectal mesenchyme. Immunohistochemical staining revealed a loss of the urothelial specific uroplakins and cytokeratins 7, 14, and 19 (characteristic of urothelium). Histologic analysis revealed the presence of mucin secreting glandular structures which stained positive for PAS. The urothelial transdifferentiation into glandular epithelium was not a function of epithelial age and occurred in the embryonic, newborn and adult urothelium. Likewise, rectal mesenchyme from embryonic, neonatal, and adult animals was able to induce glandular differentiation in bladder epithelium. Urothelium exhibits the plasticity to change into an intestinal like epithelium as a result of mesenchymal/stromal stimulation from the gastro-intestinal tract. This experimental result is germane to heterotypic stromal-epithelial interactions that are created in patients with urinary tract reconstructions (intestinal augmentations, de-mucosalized urothelial lined bladder patches, and internal urinary diversion such as ureterosigmoidostomies). We propose that heterotypic stromal-epithelial interactions may play a role in determining histodifferentiation of urothelial cells at the anastomotic site between bowel and bladder tissue in patients with gastro-intestinal urothelial reconstructions.  相似文献   

6.
The recombinants of the mandibular molar bud epithelia with cranial ectomesenchymal cell groups from several different sources--mandibular molar area, tongue anlagen, and lateral nasal process--were cultured. Dental laminalike buds were developed in each of the recombinants (incidence of development 38-86%). In the heterotrophic recombinants, heterotypic differentiation of mandibular epithelium was also induced. However, the foreign ectomesenchymal cells were not induced heterotypically by the epithelial genetic factor, but the mesenchymal genetic factor is maintained. It is suggested that mandibular molar bud epithelia have potency to proliferate into mesenchyme under non-organ-specific influences of ectomesenchymal cells and that presumptive mandibular mucosal epithelia have multipotency for differentiation sensitive to inductive influences by the heterotypic cranial ectomesenchymal cells but that the mandibular molar bud epithelia have no heterotypic inductive activity for the differentiation of cranial ectomesenchymal cells.  相似文献   

7.
Although thyroid hormone (T(3)) influences epithelial cell differentiation during late fetal lung development, its effects on early lung morphogenesis are unknown. We hypothesized that T(3) would alter embryonic lung airway branching and temporal-spatial differentiation of the lung epithelium and mesenchyme. Gestational day 11.5 embryonic mouse lungs were cultured for 72 h in BGJb serum-free medium without or with added T(3) (0.2, 2.0, 10.0, or 100 nM). Evaluation of terminal bud counts showed a dose- and time-dependent decrease in branching morphogenesis. Cell proliferation was also significantly decreased with higher doses of T(3). Morphometric analysis of lung histology showed that T(3) caused a dose-dependent decrease in mesenchyme and increase in cuboidal epithelia and airway space. Immunocytochemistry showed that with T(3) treatment, Nkx2.1 and surfactant protein SP-C proteins became progressively localized to cuboidal epithelial cells and mesenchymal expression of Hoxb5 was reduced, a pattern resembling late fetal lung development. We conclude that exogenous T(3) treatment during early lung development accelerated epithelial and mesenchymal cell differentiation at the expense of premature reduction in new branch formation and lung growth.  相似文献   

8.
The digestive tract epithelium and its adjoining mesenchyme undergo coordinated patterning and growth during development. The signals they exchange in the process are not fully characterized but include ligands of the Hedgehog (Hh) family, which originate in the epithelium and are necessary for mesenchymal cells to expand in number and drive elongation of the developing gut tube. The Notch signaling pathway has known requirements in fetal and adult intestinal epithelial progenitors. We detected Notch pathway activity in the embryonic gut mesenchyme and used conditional knockout mice to study its function. Selective disruption of the Notch effector gene RBP-Jκ (Rbpj) in the mesenchyme caused progressive loss of subepithelial fibroblasts and abbreviated gut length, revealing an unexpected requirement in this compartment. Surprisingly, constitutive Notch activity also induced rapid mesenchymal cell loss and impaired organogenesis, probably resulting from increased cell death and suggesting the need for a delicate balance in Notch signaling. Because digestive tract anomalies in mouse embryos with excess Notch activity phenocopy the absence of Hh signaling, we postulated that endodermal Hh restrains mesenchymal Notch pathway activity. Indeed, Hh-deficient embryos showed Notch overactivity in their defective gut mesenchyme and exposure to recombinant sonic hedgehog could override Notch-induced death of cultured fetal gut mesenchymal cells. These results reveal unexpected interactions between prominent signals in gastrointestinal development and provide a coherent explanation for Hh requirements in mesenchymal cell survival and organ growth.  相似文献   

9.
10.
Mesenchyme from neonatal mouse and rat seminal vesicles (SVM) was grown in association with postnatal (adult) epithelial cells from the ureter (URE) and ductus deferens (DDE) in chimeric tissue recombinants composed of mouse mesenchyme and rat epithelium or vice versa. Functional cytodifferentiation was examined in these SVM + URE and SVM + DDE tissue recombinants with antibodies against major androgen-dependent seminal-vesicle-specific secretory proteins. Adult DDE and URE were induced to express seminal cytodifferentiation and produced the complete spectrum of major seminal vesicle secretory (SVS) proteins. The SVS proteins produced were specific for the species that provided the epithelium. In the case of SVM + URE recombinants, the URE, which normally lacks androgen receptors (AR), expressed AR. These results demonstrate that adult epithelial cells retain a developmental plasticity equivalent to their undifferentiated fetal counterparts and are capable of being reprogrammed to express a completely new morphological, biochemical and functional phenotype.  相似文献   

11.
When grown as renal grafts in adult male hosts, the upper (cranial), middle and lower (caudal) portions of fetal mouse and rat Wolffian ducts developed into epididymis, epididymis plus ductus deferens, and seminal vesicle, respectively. In heterotypic tissue recombinants, the epithelia from upper and middle Wolffian ducts were instructively induced to undergo seminal vesicle morphogenesis by neonatal seminal vesicle mesenchyme. Functional cytodifferentiation was examined in these recombinants using antibodies against major androgen-dependent, seminal vesicle-specific secretory proteins. The instructively induced Wolffian duct epithelia synthesized normal amounts of all of the secretory proteins characteristic of mature seminal vesicles, as judged by immunocytochemistry on tissue sections and gel electrophoresis plus immunoblotting of secretions extracted from the recombinants. In heterospecific recombinants composed of rat and mouse tissues, the seminal vesicle proteins induced were specific for the species that had provided the epithelium. This showed that the seminal vesicle epithelium in the recombinants was derived from instructively induced Wolffian duct epithelium and not from epithelial contamination of the mesenchymal inductor. Upper Wolffian duct epithelium, instructively induced to undergo seminal vesicle morphogenesis, did not express epididymis-specific secretory proteins, showing that its normal development had been simultaneously repressed.  相似文献   

12.
13.
Transgenic mice expressing platelet-derived growth factor A chain (PDGF-A) in the distal lung epithelium from the surfactant protein C (SPC) promoter were generated to investigate the role of this growth factor in lung development. Expression of the SPC-PDGFA transgene resulted in an enlarged, nonfunctional lung and perinatal lethality caused by failure to initiate ventilation. Histologic analysis of embryonic day (E) 16.5 lungs revealed increased mesenchymal cells and acinar buds and decreased bronchioles and dilated airspaces in SPC-PDGFA transgenic mice. At E18.5, nontransgenic lungs exhibited lung morphology typical of the saccular stage of lung development, including dilated airspaces, thin respiratory epithelium and mesenchyme, and elastin fiber deposition in primary septa. In contrast, E18.5 transgenic lungs retained many features of the canalicular stage of lung development, including undilated airspaces, cuboidal respiratory epithelium, thickened mesenchyme, and lack of parenchymal elastin deposition. These results indicate that PDGF-A is a potent growth factor for mesenchymal cells in the developing lung and that the downregulation of PDGF-A expression that normally occurs in the lung during late gestation is required for transition from the canalicular to the saccular stage of lung development.  相似文献   

14.
Ovine pulmonary adenocarcinoma (OPA) is a transmissible lung cancer of sheep caused by Jaagsiekte sheep retrovirus (JSRV). The details of early events in the pathogenesis of OPA are not fully understood. For example, the identity of the JSRV target cell in the lung has not yet been determined. Mature OPA tumors express surfactant protein-C (SP-C) or Clara cell-specific protein (CCSP), which are specific markers of type II pneumocytes or Clara cells, respectively. However, it is unclear whether these are the cell types initially infected and transformed by JSRV or whether the virus targets stem cells in the lung that subsequently acquire a differentiated phenotype during tumor growth. To examine this question, JSRV-infected lung tissue from experimentally infected lambs was studied at early time points after infection. Single JSRV-infected cells were detectable 10 days postinfection in bronchiolar and alveolar regions. These infected cells were labeled with anti-SP-C or anti-CCSP antibodies, indicating that differentiated epithelial cells are early targets for JSRV infection in the ovine lung. In addition, undifferentiated cells that expressed neither SP-C nor CCSP were also found to express the JSRV Env protein. These results enhance the understanding of OPA pathogenesis and may have comparative relevance to human lung cancer, for which samples representing early stages of tumor growth are difficult to obtain.  相似文献   

15.
The mechanisms by which the branching of epithelial tissue occurs and is regulated to generate different organ structures are not well understood. In this work, image analyses of the organ rudiments demonstrate specific epithelial branching patterns for the early lung and kidney; the lung type typically generating several side branches, whereas kidney branching was mainly dichotomous. Parameters such as the number of epithelial tips, the angle of the first branch, the position index of the first branch (PIFB) in a module, and the percentage of epithelial module type (PMT) were analysed. The branching patterns in the cultured lung and kidney, and in homotypic tissue recombinants recapitulated their early in vivo branching patterns. The parameters were applied to heterotypic tissue recombinants between lung mesenchyme and ureteric bud, and tip number, PIFB and PMT values qualified the change in ureter morphogenesis and the reprogramming of the ureteric bud with lung mesenchyme. All the values for the heterotypic recombinant between ureteric bud and lung mesenchyme were significantly different from those for kidney samples but similar to those of the lung samples. Hence, lung mesenchyme can instruct the ureteric bud to undergo aspects of early lung-type epithelial morphogenesis. Different areas of the lung mesenchyme, except the tracheal region, were sufficient to promote ureteric bud growth and branching. In conclusion, our findings provide morphogenetic parameters for monitoring epithelial development in early embryonic lung and kidney and demonstrate the use of heterotypic tissue recombinants as a model for studying tissue-specific epithelial branching during organogenesis.  相似文献   

16.
Summary In utero, at around 23 wk gestation, the progenitor epithelium of distal airway differentiates into type I and type II pneumatocytes. Human fetal lung organ cultures, as early as 12 wk gestation, have the competence to self-differentiate. Distal airway epithelial immunoreactivity to cytokeratins CK 7,8, and 18 decreases with differentiation both in utero and in organ culture, whereas reactivity to epithelial membrane antigen remains constant in both. As distal airways dilate, the mean percentage airspace of fetal lungs in organ culture increases to 58%, equivalent to lung of gestation 26.0±7.3 wk. In organ culture, capillary blood vessels, visualized by vimentin immunoreactivity, remodel and more closely approximate the epithelium but without direct invasion. In utero, at 23 wk gestation, elastin appears as condensation around airways and forms a basis for secondary crests which, by 29 wk gestation, evolve into alveolar septae. In organ culture, no elastin is deposited, no secondary or alveolar crests form, and the lung retains a simple saccular structure. Differentiation of the terminal airway epithelium and mesodermal maturational events to facilitate gas exchange, such as capillary invasion or secondary-alveolar crest formation, are almost synchronous in human lung in utero but clearly dissociate in organ culture.  相似文献   

17.
18.
Lineage formation in the lung mesenchyme is poorly understood. Using a transgenic mouse line expressing LacZ under the control of Fgf10 regulatory sequences, we show that the pool of Fgf10-positive cells in the distal lung mesenchyme contains progenitors of the parabronchial smooth muscle cells. Fgf10 gene expression is slightly repressed in this transgenic line. This allowed us to create a hypomorphic Fgf10 phenotype by expressing the LacZ transgene in a heterozygous Fgf10 background. Hypomorphic Fgf10 mutant lungs display a decrease in beta-galactosidase-positive cells around the bronchial epithelium associated with an accumulation of beta-galactosidase-expressing cells in the distal mesenchyme. This correlates with a marked reduction of alpha smooth muscle actin expression, thereby demonstrating that FGF10 is mostly required for the entry of mesenchymal cells into the parabronchial smooth muscle cell lineage. The failure of exogenous FGF10 to phosphorylate its known downstream targets ERK and AKT in lung mesenchymal cultures strongly suggests that FGF10 acts indirectly on the progenitor population via an epithelial intermediate. We provide support for a role of epithelial BMP4 in mediating the formation of parabronchial smooth muscle cells.  相似文献   

19.
Tooth induction and temporal patterning in palatal epithelium of fetal mice   总被引:4,自引:0,他引:4  
The present study examined the effect of aging on epithelium and on its ability to respond to an inductive stimulus provided by murine dental papillae. In fetal CD-1 mice, 15- to 17-day molar mesenchyme was combined with 15- to 19-day epithelium from the secondary palates. Enamel organs were separated from the dental papillae, and palatal epithelium was peeled away from its underlying mesenchyme after treatment with 1% trypsin. Recombinants of epithelium and papillae were initially cultured on a solidified complex medium for 24 hr followed by an additional 10-14 days of intraocular explanation. Control specimens consisted of isolated molar papillae. Nineteen of 88 isochronal, heterotypic recombinations formed teeth. None of the 46 heterochronal, heterotypic grafts of 18- and 19-day palatal epithelium combined with 15- to 17-day molar papillae-produced teeth. Instead, keratin-filled epithelial cysts and bone spicules were formed. Isolated control molar papillae often formed bone in the intraocular sites but did not form teeth or contain epithelium. These results show that palatal epithelium is first restricted to its developmental pathway at 18 days of gestation. Younger epithelium can convert to functional ameloblasts that secrete enamel protein. In addition to the change in gene expression, normal tooth morphology is attained. The loss of competence of the palatal epithelium at 18 days gestation coincided with the acquisition of stratum corneum and the attainment of the fully differentiated state. The oral surface of palatal epithelium appears to be determined histogenically and morphogenically at 18 days of gestation in mice.  相似文献   

20.
Notch 1, Notch 2, and Notch 3 are three highly conserved mammalian homologues of the Drosophila Notch gene, which encodes a transmembrane protein important for various cell fate decisions during development. Little is yet known about regulation of mammalian Notch gene expression, and this issue has been addressed in the developing rodent tooth during normal morphogenesis and after experimental manipulation. Notch 1, 2, and 3 genes show distinct cell-type specific expression patterns. Most notably, Notch expression is absent in epithelial cells in close contact with mesenchyme, which may be important for acquisition of the ameloblast fate. This reveals a previously unknown prepatterning of dental epithelium at early stages, and suggests that mesenchyme negatively regulates Notch expression in epithelium. This hypothesis has been tested in homo- and heterotypic explant experiments in vitro. The data show that Notch expression is downregulated in dental epithelial cells juxtaposed to mesenchyme, indicating that dental epithelium needs a mesenchyme-derived signal in order to maintain the downregulation of Notch. Finally, Notch expression in dental mesenchyme is upregulated in a region surrounding beads soaked in retinoic acid (50-100 micrograms/ml) but not in fibroblast growth factor-2 (100-250 micrograms/ml). The response to retinoic acid was seen in explants of 11-12-d old mouse embryos but not in older embryos. These data suggest that Notch genes may be involved in mediating some of the biological effects of retinoic acid during normal development and after teratogenic exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号