首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

This paper aims to investigate detailed mechanical interactions between the pulmonary haemodynamics and left heart function in pathophysiological situations (e.g. atrial fibrillation and acute mitral regurgitation). This is achieved by developing a complex computational framework for a coupled pulmonary circulation, left atrium and mitral valve model. The left atrium and mitral valve are modelled with physiologically realistic three-dimensional geometries, fibre-reinforced hyperelastic materials and fluid–structure interaction, and the pulmonary vessels are modelled as one-dimensional network ended with structured trees, with specified vessel geometries and wall material properties. This new coupled model reveals some interesting results which could be of diagnostic values. For example, the wave propagation through the pulmonary vasculature can lead to different arrival times for the second systolic flow wave (S2 wave) among the pulmonary veins, forming vortex rings inside the left atrium. In the case of acute mitral regurgitation, the left atrium experiences an increased energy dissipation and pressure elevation. The pulmonary veins can experience increased wave intensities, reversal flow during systole and increased early-diastolic flow wave (D wave), which in turn causes an additional flow wave across the mitral valve (L wave), as well as a reversal flow at the left atrial appendage orifice. In the case of atrial fibrillation, we show that the loss of active contraction is associated with a slower flow inside the left atrial appendage and disappearances of the late-diastole atrial reversal wave (AR wave) and the first systolic wave (S1 wave) in pulmonary veins. The haemodynamic changes along the pulmonary vessel trees on different scales from microscopic vessels to the main pulmonary artery can all be captured in this model. The work promises a potential in quantifying disease progression and medical treatments of various pulmonary diseases such as the pulmonary hypertension due to a left heart dysfunction.

  相似文献   

2.
Accurately estimating left atrial (LA) volume with Doppler echocardiography remains challenging. Using angiography for validation, Marino et al. (Marino P, Prioli AM, Destro G, LoSchiavo I, Golia G, and Zardini P. Am Heart J 127: 886-898, 1994) determined LA volume throughout the cardiac cycle by integrating the velocity-time integrals of Doppler transmitral and pulmonary venous flow, assuming constant mitral valve and pulmonary vein areas. However, this LA volume determination method has never been compared with three-dimensional LA volume data from cardiac MRI, the gold standard for cardiac chamber volume measurement. Previously, we determined that the effective mitral valve area is not constant but varies as a function of time. Therefore, we sought to determine whether the effective pulmonary vein area (EPVA) might be time varying as well and also assessed Marino's method for estimating LA volume. We imaged 10 normal subjects using cardiac MRI and concomitant transthoracic Doppler echocardiography. LA and left ventricular (LV) volumes were measured by MRI, transmitral and pulmonary vein flows were measured by Doppler echocardiography, and time dependence was synchronized via the electrocardiogram. LA volume, estimated using Marino's method, was compared with the MRI measurements. Differences were observed, and the discrepancy between the echocardiographic and MRI methods was used to predict EPVA as a function of time. EPVA was also directly measured from short-axis MRI images and was found to be time varying in concordance with predicted values. We conclude that because EPVA and LA volume time dependence are in phase, LA filling in systole and LV filling in diastole are both facilitated. Application to subjects in select pathophysiological states is in progress.  相似文献   

3.
Two apparently different types of mechanisms have emerged to explain diastolic suction (DS), that property of the left ventricle (LV) that tends to cause it to refill itself during early diastole independent of any force from the left atrium (LA). By means of the first mechanism, DS depends on decreased elastance [e.g., the relaxation time constant (tau)] and, by the second, end-systolic volume (V(LVES)). We used wave-intensity analysis (WIA) to measure the total energy transported by the backward expansion wave (I(W-)) during LV relaxation in an attempt to reconcile these mechanisms. In six anesthetized, open-chest dogs, we measured aortic, LV (P(LV)), LA (P(LA)), and pericardial pressures and LV volume by orthogonal ultrasonic crystals. Mitral velocity was measured by Doppler echocardiography, and aortic velocity was measured by an ultrasonic flow probe. Heart rate was controlled by pacing, V(LVES) by volume loading, and tau by isoproterenol or esmolol administration. I(W-) was found to be inversely related to tau and V(LVES). Our measure of DS, the energy remaining after mitral valve opening, I(W-DS), was also found to be inversely related to tau and V(LVES) and was approximately 10% of the total "aspirating" energy generated by LV relaxation (i.e., I(W-)). The size of the Doppler (early filling) E wave depended on I(W-DS) in addition to I(W+), the energy associated with LA decompression. We conclude that the energy of the backward-going wave generated by the LV during relaxation depends on both the rate at which elastance decreases (i.e., tau) and V(LVES). WIA provides a new approach for assessing DS and reconciles those two previously proposed mechanisms. The E wave depends on DS in addition to LA decompression.  相似文献   

4.
Precise knowledge of the volume and rate of early rapid left ventricular (LV) filling elucidates kinematic aspects of diastolic physiology. The Doppler E wave velocity-time integral (VTI) is conventionally used as the estimate of early, rapid-filling volume; however, this implicitly requires the assumption of a constant effective mitral valve area (EMVA). We sought to evaluate whether the EMVA is truly constant throughout early, rapid filling in 10 normal subjects using cardiac magnetic resonance imaging (MRI) and contemporaneous Doppler echocardiography, which were synchronized via ECG. LV volume measurements as a function of time were obtained via MRI, and transmitral flow values were measured via Doppler echocardiography. The synchronized data were used to predict EMVA as a function of time during early diastole. Validation involved EMVA determination using 1) the short-axis echocardiographic images near the mitral valve leaflet tips, 2) the distance between leaflet tips in the echocardiographic parasternal long-axis view, and 3) the distance between leaflet tips from the MRI LV outflow tract view. Predicted EMVA values varied substantially during early rapid filling, and observed EMVA values agreed well with predictions. We conclude that the EMVA is not constant, and its variation causes LV volume to increase faster than is reflected by the VTI. These results reveal the mechanism of early rapid volumetric increase and directly affect the significance and physiological interpretation of the VTI of the Doppler E wave. Application to subjects in selected pathophysiological subsets is in progress.  相似文献   

5.
6.
Left ventricular (LV) filling deceleration time (DT) is determined by the sum of atrial and ventricular stiffnesses (KLA + KLV). If KLA, however, is close to zero, then DT would reflect KLV only. The purpose of this study was to quantify KLA during DT. In 15 patients, KLV was assessed, immediately after cardiopulmonary bypass, from E wave DT as derived from mitral tracings obtained by transesophageal echocardiography and computed according to a validated formula. In each patient, a left atrial (LA) volume curve was also obtained combining mitral and pulmonary vein (PV) cumulative flow plus LA volume measured at end diastole. Time-adjusted LA pressure was measured simultaneously with Doppler data in all patients. KLA was then calculated during the ascending limb of the V loop and during DT. LA volume decreased by 7.3 +/- 6.5 ml/m2 during the first of mitral DT, whereas LV volume increased 9.4 +/- 8.4 ml/m2 (both P < 0.001). There was a small amount of blood coming from the PV during the same time interval, with the cumulative flow averaging 3.2 +/- 2.4 ml/m(2) (P < 0.001). Mean LA pressure was 10.0 +/- 5.1 mmHg, and it did not change during DT [from 7.8 +/- 4.3 to 8.0 +/- 4.3 mmHg, not significant (NS)], making KLA, which averaged 0.46 +/- 0.39 mmHg/ml during the V loop, close to zero during DT [KLA(DT): from -0.002 +/- 0.08 to -0.001 +/- 0.031 mmHg/ml, NS]. KLV, as assessed noninvasively from DT, averaged 0.25 +/- 0.32 mmHg/ml. In conclusion, notwithstanding the significant decrement in LA volume, KLA does not change and can be considered not different from zero during DT. Thus KLA does not affect the estimation of KLV from Doppler parameters.  相似文献   

7.
Mechanisms of blood flow during cardiopulmonary resuscitation (CPR) were studied in a canine model with implanted mitral and aortic flow probes and by use of cineangiography. Intrathoracic pressure (ITP) fluctuations were induced by a circumferential pneumatic vest, with and without simultaneous ventilation, and by use of positive-pressure ventilation alone. Vascular volume and compression rate were altered with each CPR mode. Antegrade mitral flow was interpreted as left ventricular (LV) inflow, and antegrade aortic flow was interpreted as LV outflow. The pneumatic vest was expected to elevate ITP uniformly and thus produce simultaneous LV inflow and LV outflow throughout compression. This pattern, the passive conduit of "thoracic pump" physiology, was unequivocally demonstrated only during ITP elevation with positive-pressure ventilation alone at slow rates. During vest CPR, LV outflow started promptly with the onset of compression, whereas LV inflow was delayed. At compression rates of 50 times/min and normal vascular filling pressures, the delay was sufficiently long that all LV filling occurred with release of compression. This is the pattern that would be expected with direct LV compression or "cardiac pump" physiology. During the early part of the compression phase, catheter tip transducer LV and left atrial pressure measurements demonstrated gradients necessitating mitral valve closure, while cineangiography showed dye droplets moving from the large pulmonary veins retrograde to the small pulmonary veins. When the compression rate was reduced and/or when intravascular pressures were raised with volume infusion, LV inflow was observed at some point during the compressive phase. Thus, under these conditions, features of both thoracic pump and cardiac pump physiology occurred within the same compression. Our findings are not explained by the conventional conceptions of either thoracic pump or cardiac compression CPR mechanisms alone.  相似文献   

8.
Although modeling the four-chambered heart as a constant-volume pump successfully predicts causal physiological relationships between cardiac indexes previously deemed unrelated, the real four-chambered heart slightly deviates from the constant-volume state by ventricular end systole. This deviation has consequences that affect chamber function, specifically, left atrial (LA) function. LA attributes have been characterized as booster pump, reservoir, and conduit functions, yet characterization of their temporal occurrence or their causal relationship to global heart function has been lacking. We investigated LA function in the context of the constant-volume attribute of the left heart in 10 normal subjects using cardiac magnetic resonance imaging (MRI) and contemporaneous Doppler echocardiography synchronized via ECG. Left ventricular (LV) and LA volumes as a function of time were determined via MRI. Transmitral flow, pulmonary vein (PV) flow, and lateral mitral annular velocity were recorded via echocardiography. The relationship between the MRI-determined diastolic LA conduit-volume (LACV) filling rate and systolic LA filling rate correlate well with the relationship between the echocardiographically determined average flow rate during the early portion of the PV D wave and the average flow rate during the PV S wave (r = 0.76). We conclude that the end-systolic deviation from constant volume for the left heart requires the generation of the LACV during diastole. Because early rapid filling of the left ventricle is the driving force for LACV generation while the left atrium remains passive, it may be more appropriate to consider LACV to be a property of ventricular diastolic rather than atrial function.  相似文献   

9.
In six sheep, radiopaque markers were placed on the left ventricle (LV), the mitral annulus, the left atrium (LA), and the central edge of both mitral leaflets to investigate the effects of acute LV ischemia on atrial contraction, mitral annular area (MAA), and mitral regurgitation (MR). Animals were studied with biplane videofluoroscopy and transesophageal echocardiography before and during balloon occlusion of the left anterior descending (LAD), distal circumflex (dLCX), and proximal circumflex (pLCX) coronary arteries. MAA and LA area were calculated from the corresponding markers. LAD occlusion did not alter LA area reduction or presystolic MAA reduction, whereas dLCX occlusion resulted in a mild decrease in the former with no change in the latter. Neither occlusion resulted in MR. pLCX occlusion, however, significantly decreased LA area and presystolic MAA reduction and resulted in increased end-diastolic MAA, delayed valve closure from end diastole, and MR. Decreased atrial contractile function, as observed during acute posterolateral ischemia, is linked to diminished presystolic mitral annular reduction, a larger mitral annular size at end diastole, and MR.  相似文献   

10.
The spectral Doppler mitral flow pattern, alone or combined with tissue Doppler mitral annulus velocity, can be used to predict left ventricular (LV) filling pressure in humans, whereas invasive hemodynamic measurements are still required in the rat. This study was undertaken to assess whether LV end-diastolic pressure (LVEDP) can be estimated using Doppler echocardiography in the rat after myocardial infarction (MI). Thirty-seven rats (23 rats with MI after left coronary artery ligation and 14 sham-operated rats) were evaluated 3 mo after surgery with echo-Doppler and invasive hemodynamic measurements. Pulse wave spectral Doppler at the mitral valve tip was used to measure the E wave, the E wave deceleration time (DT), and the A wave; spectral Doppler tissue imaging was used to measure the early diastolic lateral mitral annulus velocity (E(a)). We found weak correlations between LVEDP and the peak velocity of the early mitral inflow (E), E/peak velocity of the late mitral inflow, and DT, and strong correlations with E(a) and especially with E/E(a) [R(2) = 0.89, LVEDP (in mmHg) = 0.987E/E(a) - 4.229]. Longitudinal followup of a subgroup of rats with MI revealed a marked rise of E/E(a) between days 7 and 21 in rats with heart failure only. We conclude that Doppler echocardiography can be used for serial assessment of LV diastolic function in rats with MI.  相似文献   

11.
A two-dimensional axisymmetric computer model is developed for the simulation of the filling flow in the left ventricle (LV). The computed results show that vortices are formed during the acceleration phases of the filling waves. During the deceleration phases these are amplified and convected into the ventricle. The ratio of the maximal blood velocity at the mitral valve (peak E velocity) to the flow wave propagation velocity (WPV) of the filling wave is larger than 1. This hemodynamic behavior is also observed in experiments in vitro (Steen and Steen, 1994, Cardiovasc. Res., 28, pp. 1821-1827) and in measurements in vivo with color M-mode Doppler echocardiography (Stugaard et al., 1994, J. Am. Coll. Cardiol., 24, 663-670). Computed intraventricular pressure profiles are similar to observed profiles in a dog heart (Courtois et al., 1988, Circulation, 78, pp. 661-671). The long-term goal of the computer model is to study the predictive value of noninvasive parameters (e.g., velocities measured with Doppler echocardiography) on invasive parameters (e.g., pressures, stiffness of cardiac wall, time constant of relaxation). Here, we show that higher LV stiffness results in a smaller WPV for a given peak E velocity. This result may indicate an inverse relationship between WPV and LV stiffness, suggesting that WPV may be an important noninvasive index to assess LV diastolic stiffness, LV diastolic pressure and thus atrial pressure (preload).  相似文献   

12.
Gordon R. Cumming  W. Carr 《CMAJ》1966,95(10):527-531
Propranolol (P) .13 mg./kg. was given to seven patients with mitral valve obstruction the changes in resting and exercise hemodynamics were followed by means of combined right and left heart catheterization. Changes were variable. At rest there was a decrease in heart rate of 10 beats/min. with no consistent change in stroke volume, cardiac output, left ventricular systolic (LVS) or left atrial (LA) pressure after P. Mean left ventricular end-diastolic (LVED) pressure was increased 3 mm., mean pulmonary artery (PA) pressure was increased 4 mm., and mean mitral valve gradient was reduced 3 mm. Hg by P. During exercise, mean LVS pressure was decreased 31 mm., mean LVED pressure increased 3 mm., mean LA pressure decreased 3 mm., and mean mitral valve gradient was reduced 5 mm. Hg after P. Mean exercise PA pressure was unchanged, cardiac output was reduced 0.9 1./min., and mean heart rate was reduced 37 beats/min., while stroke volume increased 3 ml./beat after P. Exercise pulmonary vascular resistance was increased from 6.1 to 8.2 units by P. Despite a slower heart rate, the diastolic filling period was not increased. P has no place in the treatment of the majority of patients with mitral stenosis because it further reduces cardiac performance below normal.  相似文献   

13.
Introduction. The degenerative changes of myocardial tissue are thought to influence left atrial (LA) function. Changes of left atrial function are generally due to changes in left ventricle (LV) compliance. But valvular dysfunction and hypertension as comorbidity cannot be ignored. Women have a different clinical profile compared with men concerning the risk of heart failure. We investigated the influence of increasing age and gender corrected for comorbidity, on left atrial function. Methods. Using an open access echocardiography database, supplemented with additional LA function measurements, we defined three different LA function parameters. Odds ratios (OR) were calculated to reproduce the relation between age, gender and LA function. The association between age, gender and LA function was estimated, and corrected for comorbid conditions as valve disease, high blood pressure and LV dysfunction, using logistic regression. Results. Higher age was positively correlated with increased LA volume, decreased ejection fraction and increased LA kinetic energy. Age per decade increase, corrected for comorbidity, resulted in an increased risk of LA dysfunction (OR between 1.5 and 1.9). Gender had little influence on LA function parameters except for LA maximal volume. Men had a significantly larger LA maximal volume compared with women. Conclusions. In this open access echocardiography database, increasing age was correlated with LA dysfunction. Age per decade increase, corrected for comorbid conditions such as mitral and aortic valve disease, hypertension and heart failure, is an independent risk factor for LA dysfunction. The gender influence on LA dysfunction seems to be limited. (Neth Heart J 2010;18:243-7.)  相似文献   

14.
PurposeTo assess the impact of left ventricular (LV) diastolic dysfunction on left atrial (LA) phasic volume and function using dual-source CT (DSCT) and to find a viable alternative prognostic parameter of CT for LV diastolic dysfunction through quantitative evaluation of LA phasic volume and function in patients with LV diastolic dysfunction.ResultsLA ejection fraction (LAEF), LA contraction, reservoir, and conduit function in patients in impaired relaxation group were not different from those in the normal group, but they were lower in patients in the pseudonormal and restrictive LV diastolic dysfunction groups (P < 0.05). For LA conduit function, there were no significant differences between the patients in the pseudonormal group and restrictive filling group (P = 0.195). There was a strong correlation between the indexed maximal left atrial volume (LAVmax, r = 0.85, P < 0.001), minimal left atrial volume (LAVmin, r = 0.91, P < 0.001), left atrial volume at the onset of P wave (LAVp, r = 0.84, P < 0.001), and different stages of LV diastolic function. The LAVi increased as the severity of LV diastolic dysfunction increased.ConclusionsLA remodeling takes place in patients with LV diastolic dysfunction. At the same time, LA phasic volume and function parameters evaluated by DSCT indicated the severity of the LV diastolic dysfunction. Quantitative analysis of LA phasic volume and function parameters using DSCT could be a viable alternative prognostic parameter of LV diastolic function.  相似文献   

15.
Hypoxia has been reported to alter left ventricular (LV) diastolic function, but associated changes in right ventricular (RV) systolic and diastolic function remain incompletely documented. We used echocardiography and tissue Doppler imaging to investigate the effects on RV and LV function of 90 min of hypoxic breathing (fraction of inspired O(2) of 0.12) compared with those of dobutamine to reproduce the same heart rate effects without change in pulmonary vascular tone in 25 healthy volunteers. Hypoxia and dobutamine increased cardiac output and tricuspid regurgitation velocity. Hypoxia and dobutamine increased LV ejection fraction, isovolumic contraction wave velocity (ICV), acceleration (ICA), and systolic ejection wave velocity (S) at the mitral annulus, indicating increased LV systolic function. Dobutamine had similar effects on RV indexes of systolic function. Hypoxia did not change RV area shortening fraction, tricuspid annular plane systolic excursion, ICV, ICA, and S at the tricuspid annulus. Regional longitudinal wall motion analysis revealed that S, systolic strain, and strain rate were not affected by hypoxia and increased by dobutamine on the RV free wall and interventricular septum but increased by both dobutamine and hypoxia on the LV lateral wall. Hypoxia increased the isovolumic relaxation time related to RR interval (IRT/RR) at both annuli, delayed the onset of the E wave at the tricuspid annulus, and decreased the mitral and tricuspid inflow and annuli E/A ratio. We conclude that hypoxia in normal subjects is associated with altered diastolic function of both ventricles, improved LV systolic function, and preserved RV systolic function.  相似文献   

16.
Infarction of the lung is uncommon even when both the pulmonary and the bronchial blood supplies are interrupted. We studied the possibility that a tidal reverse pulmonary venous flow is driven by the alternating distension and compression of alveolar and extra-alveolar vessels with the lung volume changes of breathing and also that a pulsatile reverse flow is caused by left atrial pressure transients. We infused SF6, a relatively insoluble inert gas, into the left atrium of anesthetized goats in which we had interrupted the left pulmonary artery and the bronchial circulation. SF6 was measured in the left lung exhalate as a reflection of the reverse pulmonary venous flow. No SF6 was exhaled when the pulmonary veins were occluded. SF6 was exhaled in increasing amounts as left atrial pressure, tidal volume, and ventilatory rates rose during mechanical ventilation. SF6 was not excreted when we increased left atrial pressure transients by causing mitral insufficiency in the absence of lung volume changes (continuous flow ventilation). Markers injected into the left atrial blood reached the alveolar capillaries. We conclude that reverse pulmonary venous flow is driven by tidal ventilation but not by left atrial pressure transients. It reaches the alveoli and could nourish the alveolar tissues when there is no inflow of arterial blood.  相似文献   

17.
Most computational models of the heart have so far concentrated on the study of the left ventricle, mainly using simplified geometries. The same approach cannot be adopted to model the left atrium, whose irregular shape does not allow morphological simplifications. In addition, the deformation of the left atrium during the cardiac cycle strongly depends on the interaction with its surrounding structures. We present a procedure to generate a comprehensive computational model of the left atrium, including physiological loads (blood pressure), boundary conditions (pericardium, pulmonary veins and mitral valve annulus movement) and mechanical properties based on planar biaxial experiments. The model was able to accurately reproduce the in vivo dynamics of the left atrium during the passive portion of the cardiac cycle. A shift in time between the peak pressure and the maximum displacement of the mitral valve annulus allows the appendage to inflate and bend towards the ventricle before the pulling effect associated with the ventricle contraction takes place. The ventricular systole creates room for further expansion of the appendage, which gets in close contact with the pericardium. The temporal evolution of the volume in the atrial cavity as predicted by the finite element simulation matches the volume changes obtained from CT scans. The stress field computed at each time point shows remarkable spatial heterogeneity. In particular, high stress concentration occurs along the appendage rim and in the region surrounding the pulmonary veins.  相似文献   

18.
Glaucoma is associated with an increased incidence of cardiovascular disease and risk factors. The aim of the study was to assess the left ventricular (LV) function in patients with pseudoexfoliation (PEX) glaucoma using doppler-echocardiographic examinations. Two-dimensional and pulsed Doppler echocardiography of transmitral flow was performed in 21 patients with (PEX) glaucoma and 24 controls. LV systolic contraction and ejection were assessed using the LV ejection fraction (EF) and fractional shortening (FS). LV diastolic filling assessed parameters were: early, fast diastolic filling (E wave), late diastolic filling (A wave), ratio E/A, velocity time integral E wave (VTIE) and A wave (VTIA), their ratio (VTIE /VTIA), pressure at the end of filling (LVEDP) and a pulmonary capillary wedge pressure (PCWP). A significant difference was found concerning LV filling flow parameters in E, E/A, VTIA and ratio VTIA/ VTIE. No significant difference was found in EF, FS, A, VTIE, LVEDP and PCWP tested parameters. Our study indicates the possibility of slightly impaired diastolic function of LV in patients with PEX glaucoma assessed by Doppler-echocardiographic examinations.  相似文献   

19.
Tbx5(del/+) mice provide a model of human Holt-Oram syndrome. In this study, the cardiac functional phenotypes of this mouse model were investigated with 30-MHz ultrasound by comparing 12 Tbx5(del/+) mice with 12 wild-type littermates at 1, 2, 4, and 8 wk of age. Cardiac dimensions were measured with two-dimensional and M-mode imaging. The flow patterns in the left and right ventricular inflow channels were evaluated with Doppler flow sampling. Compared with wild-type littermates, Tbx5(del/+) mice showed significant changes in the mitral flow pattern, including decreased peak velocity of the left ventricular (LV) early filling wave (E wave), increased peak velocity of the late filling wave (A wave), and decreased or even reversed peak E-to-A ratio. The prolongation of LV isovolumic relaxation time was detected in Tbx5(del/+) neonates as early as 1 wk of age. In Tbx5(del/+) mice, LV wall thickness appeared normal but LV chamber dimension was significantly reduced. LV systolic function did not differ from that in wild-type littermates. In contrast, the Doppler flow spectrum in the enlarged tricuspid orifice of Tbx5(del/+) mice demonstrated increased peak velocities of both E and A waves and increased total time-velocity integral but unchanged peak E/A. In another 13 mice (7 Tbx5(del/+), 6 wild-type) at 2 wk of age, significant correlation was found between Tbx5 gene expression level in ventricular myocardium and LV filling parameters. In conclusion, the LV diastolic function of Tbx5(del/+) mice is significantly deteriorated, whereas the systolic function remains normal.  相似文献   

20.
Shortened early transmitral deceleration times (E(DT)) have been qualitatively associated with increased filling pressure and reduced survival in patients with cardiac disease and increased left ventricular operating stiffness (K(LV)). An equation relating K(LV) quantitatively to E(DT) has previously been described in a canine model but not in humans. During several varying hemodynamic conditions, we studied 18 patients undergoing open-heart surgery. Transesophageal echocardiographic two-dimensional volumes and Doppler flows were combined with high-fidelity left atrial (LA) and left ventricular (LV) pressures to determine K(LV). From digitized Doppler recordings, E(DT) was measured and compared against changes in LV and LA diastolic volumes and pressures. E(DT) (180 +/- 39 ms) was inversely associated with LV end-diastolic pressures (r = -0.56, P = 0.004) and net atrioventricular stiffness (r = -0.55, P = 0.006) but had its strongest association with K(LV) (r = -0.81, P < 0.001). K(LV) was predicted assuming a nonrestrictive orifice (K(nonrest)) from E(DT) as K(nonrest) = (0.07/E(DT))(2) with K(LV) = 1.01 K(nonrest) - 0.02; r = 0.86, P < 0.001, DeltaK (K(nonrest) - K(LV)) = 0.02 +/- 0.06 mm Hg/ml. In adults with cardiac disease, E(DT) provides an accurate estimate of LV operating stiffness and supports its application as a practical noninvasive index in the evaluation of diastolic function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号