首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Some proline-containing tripeptides with the general formulas R0CO-L -Pro-X-NHR3 (X = Gly,Sar,L -Ala,D -Ala) and R0CO-X-L -Pro-NHR3 (X = Gly,L -Ala,D -Ala) have been investigated in solution by ir and 1H-nmr spectroscopies. Their favored conformational states depend mainly on both the primary structure and the chiral sequence of the molecules. In inert solvents the βII-folding mode is the most favored conformation for the L -Pro-D -Ala and L -Pro-Gly tripeptides, while the βII′-turn is largely preferred by D -Ala-L -Pro derivatives. Under the same conditions only about one-third of the whole conformers of L -Pro-L -Ala molecules adopts the βI-folding mode. Semiopened C7C5 and C5C7 conformations are appreciably populated in the L -Pro-L -Ala sequence, on the one hand, and in the Gly-L -Pro and L -Ala-L -Pro derivatives, on the other hand. In L -Pro-Sar and X-L -Pro models, the cistrans isomerism around the middle tertiary amide function is observed. Thus cis L -Pro-Sar and L -Ala-L -Pro conformers are folded by an intramolecular i + 3 → i hydrogen bond, whereas cis D -Ala-L -Pro and Gly-L -Pro molecules accommodate an open conformation. In dimethylsulfoxide the βII- and βII′-folding modes are not essentially destabilized, as contrasted with the βI conformation, which is less populated. In water solution all the above-mentioned conformations, with the possible exception of the βII′-folding mode for D -Ala-L -Pro molecules, seem to vanish. Solute conformations are also compared with the crystal structures of four proline-containing tripeptides.  相似文献   

2.
The molecular conformations of the linear oligopeptides H-(L -Ala)n-L -Pro-OH, with n = 1,2 and 3, have been investigated. 13C nmr observation of the equilibrium between the cis and trans forms of the Ala-Pro peptide bond indicated the occurrence of nonrandom conformations in solutions of these flexible peptides. The formation of the nonrandom species containing the cis form of the Ala-Pro bond was found to depend on the deprotonation of the carboxylic acid group of proline, the solvent, and the ionic strength in aqueous solution. The influence of intramolecular hydrogen bonding on the relative conformational energies of the species containing the cis and trans Ala-Pro peptide bond was studied by comparison of the peptides H-(Ala)n-Pro-OH with analogous molecules where hydrogen bond formation was excluded by the covalent structure. In earlier work a hydrogen bond between the protonated terminal carboxylic acid group and the carbonyl oxygen of the penultimate amino acid residue had been suggested to stabilize conformations including trans proline. For the systems described here this hypothesis can be ruled out, since the cis:trans ratio is identical for molecules with methyl ester protected and free protonated terminal carboxylic acid groups of proline. Direct evidence for hydrogen bond formation between the deprotonated terminal carboxylic acid group and the amide proton of the penultimate amino acid residue in the molecular species containing cis proline was obtained from 1H nmr studies. However, the cis:trans ratio of the Ala-Pro bond was not affected by N-methylation of the penultimate amino acid residue, which prevents formation of this hydrogen bond. Overall the experimental observations lead to the conclusion that the relative energies of the peptide conformations including cis or trans proline are mainly determined by intramolecular electrostatic interactions, whereas in the molecules considered, intramolecular hydrogen bonding is a consequence of specific peptide backbone conformations rather than a cause for the occurrence of energetically favored species. Independent support for this conclusion was obtained from model consideration which indicated that electrostatic interactions between the terminal carboxylic acid group and the carbonyl oxygen of the penultimate amino acid residue could indeed account for the observed relative conformational energies of the species containing cis and trans proline, respectively.  相似文献   

3.
P Manavalan  F A Momany 《Biopolymers》1980,19(11):1943-1973
Empirical conformational energy calculations have been carried out for N-methyl derivatives of alanine and phenylalanine dipeptide models and N-methyl-substituted active analogs of three biologically active peptides, namely thyrotropin-releasing hormone (TRH), enkephalin (ENK), and luteinizing hormone-releasing hormone (LHRH). The isoenergetic contour maps and the local dipeptide minima obtained, when the peptide bond (ω) preceding the N-methylated residue is in the trans configuration show that (1) N-methylation constricts the conformational freedom of both the ith and (i + 1)th residues; (2), the lowest energy position for both residues occurs around ? = ?135° ± 5° and ψ = 75° ± 5°, and (3) the αL conformational state is the second lowest energy state for the (i + 1)th residue, whereas for the ith residue the C5 (extended) conformation is second lowest in energy. When the peptide bond (ωi) is in the cis configuration the ith residue is energetically forbidden in the range ? = 0° to 180° and ψ = ?180° to +180°. Conformations of low energy for ωi = 0° are found to be similar to those obtained for the trans peptide bond. In all the model systems (irrespective of cis or trans), the αR conformational state is energetically very high. Significant deviations from planarity are found for the peptide bond when the amide hydrogen is replaced by a methyl group. Two low-energy conformers are found for [(N-Me)His2]TRH. These conformers differ only in the ? and ψ values at the (N-Me)His2 residue. Among the different low-energy conformers found for each of the ENK analogs [D -Ala2,(N-Me)Phe4, Met5]ENK amide and [D -Ala2,(N-Me)Met5]ENK amide, one low-energy conformer was found to be common for both analogs with respect to the side-chain orientations. The stability of the low-energy structures is discussed in the light of the activity of other analogs. Two low-energy conformers were found for [(N-Me)Leu7]LHRH. These conformations differ in the types of bend around the positions 6 and 7 of LHRH. One bend type is eliminated when the active analog [D -Ala6,(M-Me)Leu7]LHRH is considered.  相似文献   

4.
The conformations of the phytotoxic cyclic tetrapeptide tentoxin [cyclo-(L -MeAla1-L -Leu2-MePhe[(Z)Δ]3-Gly4 )] have been studied in aqueous solution by two-dimensional proton nmr at various temperatures. Contrary to what is observed in chloroform, tentoxin exhibits multiple exchanging conformations in water. Aggregation phenomena were also observed. Four conformations with different proportions (51, 37, 8, and 4%) were observed at ?5°C. Models were constructed from nmr parameters and restrained molecular dynamics simulations. All the models exhibit cis-trans-cis-trans conformation of the amide bond sequence. The conversion from one form to another is accomplished by a conformational peptide flip consisting of a 180° rotation of a nonmethylated peptide bond. © 1995 John Wiley & Sons, Inc.  相似文献   

5.
Empirical conformational energy calculations with the use of ECEPP energy functions have been carried out for linear dipeptides H-X-L -Pro-OH, with X = Gly, L -Ala, D -Ala, L -Leu, D -Leu, L -Phe, and D -Phe, in different states of protonation of the end groups. The results of these calculations are compared with the previously reported experimental equilibrium populations for the cis and trans isomers of the X-Pro bond in the different species. For all the protonation states of the seven dipeptides, the calculated nonbonded interactions and the conformational entropy term lead to a preference of the trans forms over the cis isomers by at least 1 kcal/mol. The electrostatic interactions stabilize the cis conformations in all species except the cationic forms of the D ,L -peptides, and it could further be shown that only the carbonyl group of X and the two end groups contribute significantly to the total electrostatic energy. One of the principal results of the experimental studies, i.e., the occurrence of 5–15% cis-proline in all the peptides with an uncharged C-terminus, was corroborated by our investigation of the cationic species. A detailed assessment of the electrostatic contribution to the total energy of the different conformations of H-Gly-L -Pro-OH indicates that the standard ECEPP parameters tend to overestimate the electrostatic interactions in aqueous solutions of the X-Pro dipeptides.  相似文献   

6.
Model tetrapeptide system was designed to investigate the cis/trans isomerization of peptidyl-prolyl imide bond of Ser–Pro motif. To establish the side-chain O-phosphorylation effect in regulating the peptides conformations, molecular dynamics (MD) simulations where carried out on the designed tetrapeptides and their corresponding phosphorylated forms by MD Insight II Discovery3 approach. The most stable configurations and the statistic cis/trans concentration distribution demonstrated that the phosphorylation evidently influences the peptidyl-prolyl imide bond isomerization and works as a key effect in regulating the peptide conformations. The charge state and the site provided for the charge of the phosphate moiety might be an important key. The results also demonstrated that phosphorylation changes the cis conformation ratio of the peptide and the maximum cis value is obtained when the phosphate group has no negative charge.  相似文献   

7.
In this study, conformational behavior, structural, and vibrational characterization of the carboxy terminal dipeptide of β-endorphin (glycy-l-glutamine, glycyl-glutamine, beta-endorphin30-31), which is an inhibitory neuropeptide synthesized from beta-endorphin1-31 in brain stem regions, has been investigated. The theoretically possible stable conformers were searched by means of molecular mechanics method to determine their energetically preferred conformations. The 360 different conformations were calculated with the φ, Ψ, χ dihedral angles using the Ramachandran maps. The most stable conformation of the title molecule is characterized by the extended backbone shape (e) in the BR conformational range with ?.78 kcal/mol energy. The cis- and trans-dimeric forms of the dipeptide were also formed and energetically preferred conformations of dimers were investigated. The experimental methods (FT-IR, micro-Raman spectroscopies) coupled with quantum chemical calculations based on density functional theory (DFT) have been used to identify the geometrical, energetic, and vibrational characteristics of the dipeptide. The assignment of the vibrational spectra was performed based on the potential energy distribution of the vibrational modes. To investigate the electronic properties, such as nonlinear optical properties, the electric dipole moment, the mean polarizability, the mean first hyperpolarizability, and HOMO–LUMO energy gaps were computed using the DFT with the B3LYP/6-31++G(d,p) basis set combination. The second-order interaction energies were derived from natural bonding orbital analysis. The focus of this study is to determine possible stable conformation on inhibitory neuropeptide and to investigate molecular geometry, molecular vibrations of monomeric and dimeric forms, and hydrogen bonding interactions of glycy-l-glutamine dipeptide.  相似文献   

8.
Combinations of L - and D -proline residues are useful compounds for finding new structures and properties of cyclic peptides. This is demonstrated with one striking example, the cyclic tetrapeptide c(D -Pro-L -Pro-D -Pro-L -Pro). For this molecule composed of strictly alternating D - and L -configurated residues, a highly symmetrical structure is expected, which should be an optically inactive meso-form. Cyclization of the enantiomeric pure linear precursor D -Pro-L -Pro-D -Pro-L -Pro, however, yields a racemic mixture of two enantiomeric cyclotetrapeptides, both with twofold symmetry and a cistranscistrans sequence of the peptide bonds. Remarkably, this formation of a racemate was not caused by racemization, but by cis/trans isomerization of all peptide bonds in the ring. This process may occur in the linear precursor during the ring formation (cyclization of conformers with transcistrans or cistranscis arrangement of the amide bonds) as well as in the enantiomeric pure cyclic tetrapeptide at higher temperature. In the latter case, an all-cis structure should exist as the intermediate, which can form a cistranscistrans sequence in two equivalent ways, leading finally to two enantiomeric cyclotetrapeptides. In the first one, the cis peptide bonds are attributed to the L -residues and the trans peptide bonds to the D -residues; in the second one, the cis bonds belong to the D and the trans bonds to the L -residues. The mixture of these two enantiomers does not crystallize in the racemic form, but in enantiomeric pure separate crystals. The structural properties could be proved by 1H- and 13C-nmr spectroscopy and x-ray analysis. The cis/trans isomerization process was confirmed by optical rotation measurements and CD spectroscopy, as well as DREIDING model studies. Calorimetric measurements in the solid state suggest the existence of the expected all-cis intermediate. The backbone conformation of the 12-membered medium-sized ring shows only slight deviations—up to 6° —from the planarity of the peptide bonds. On the other hand, the four pyrrolidine rings show different types of puckering of the Cγ or the Cβ atoms.  相似文献   

9.
The equilibrium between the cis and trans forms of X-Pro peptide bonds can readily be measured in the 13C nmr spectra. In the present paper we investigate how observation of this equilibrium could be used as an nmr probe for conformational studies of flexible polypeptide chains. The experiments include studies by 13C nmr of a series of linear oligopeptides containing different X-L -Pro peptide bonds, with X = Gly, L -Ala, L -Leu, L -Phe, D -Ala, D -Leu, and D -Phe. Overall the study confirms that X-Pro peptide bonds can generally be useful as 13C nmr probes reporting the formation of nonrandom conformation in flexible polypeptide chains. It was found that the cistrans equilibrium of X-Pro is greatly affected by the side chain of X and the configuration of the α-carbon atom of X. On the basis of these observations some general rules are suggested for a practical applications of the X-Pro nmr probes in conformational studies of polypeptide chains.  相似文献   

10.
A 17-residue disulfide-bridged peptide (PAK 128–144) corresponding to the C-terminus of Pseudomonas aeruginosa pilin strain K has been studied by one- and two-dimensional nmr techniques. This synthetic immunogen has been found to exist as two distinct conformations in solution, which have been demonstrated to arise as a result of the isomerization of the I138-P139 amide bond. The two isomers occur in the ratio of 3 : 1 trans to cis at 5°C. Sequential assignments for both forms have been accomplished through the use of nuclear Overhauser enhancement spectroscopy (NOESY) spectra and most side-chain resonances have been assigned using a combination of correlated spectroscopy, total correlated spectroscopy, and NOESY spectra. The presence of the cis isomer, which is considerably more predominant in the oxidized peptide, was confirmed by the observation of the characteristic NOEs between P139 and the preceding residue. Further corroboration was given by the disappearance of the cis resonances in the spectrum of the P139A analogue of PAK 128–144. From observation of the differences in the chemical shifts and amide proton temperature coefficients of the two isomers, it is apparent that the two forms differ markedly in their solution conformation. The biological implications of the isomerization are discussed. © 1994 John Wiley & Sons, Inc.  相似文献   

11.
Cyclo(L -Pro-Sar)n (n = 2–4) with moderate flexibility and hydrophobicity of molecular structure was synthesized, and the characteristics of these cyclic peptides and their metal complexes in acetonitrile were investigated in connection with the residual properties using 13C-nmr measurements. The cyclic tetrapeptide cyclo(L -Pro-Sar)2 showed a sterically hindered phenomenon in acetonitrile in which the amide backbone adopted a cis-trans-cis-trans sequence. The cyclic hexapeptide cyclo(L -Pro-Sar)3 existed as a mixture of several conformers whose interconversion is slow on the nmr time scale, including cis-cis-trans and/or cis-trans-trans arrangement of the Sar-Pro bond. Finally, it was demonstrated that the cyclic octapeptide cyclo(L -Pro-Sar)4 behaved as a mixture of multiple conformers which allowed for cis-trans isomerism about the Pro-Sar peptide bond, of which 20–30% had the all-cis Sar-Pro bond isomer and the remaining 70–80% had one (or more) cis Sar-Pro bond isomer. 13C-nmr spectra also demonstrated that cyclo(L -Pro-Sar)n (n = 3,4) formed a 1:1 ion complex whose conformation was characterized by an all-trans peptide bond in the presence of excess metal salt. Cation binding studies, using CD measurements, established that the ion selectivity of cyclo(L -Pro-Sar)4 in acetonitrile decreased in the order, Ba2+ > Ca2+ > Na+ > Mg2+ > Li+.  相似文献   

12.
Conformations of the cyclic tetrapeptide cyclo(L -Pro-Sar)2 in solution were studied by 1H- and 13C-nmr spectrometry and model building. The nmr data provide definite evidence that this cyclic peptide exists chiefly in two conformations, namely, a C2-symmetric conformation and an asymmetric structure. The former was demonstrated to be predominant in polar solvents (100% in Me2SO-d6). This structure contains all cis-peptide bond linkages and all trans′ Pro Cα?CO bonds. It represents the first cyclic tetrapeptide in which all four peptide bonds have been found in the cis-conformation. As the polarity of the solvent decreases, the population of C2-symmetric conformers decreases (88% in CD3CN and 65% in CDCl3). At the same time, a minor asymmetric conformer, characterized by cis-cis-cis-trans peptide bond sequences (two cis Sar-Pro bonds, one cis Pro-Sar bond, and one trans Pro-Sar bond), is seen to increase (9% in CD3CN and 30% in CDCl3). A proposed predominant conformation in solution for cyclo(L -Pro-Sar)2 was compared with a crystal structure, as reported in an accompanying paper. Both structures show striking overall similarities.  相似文献   

13.
P R Andrews 《Biopolymers》1971,10(11):2253-2267
The molecular orbital method PCILO is applied to eight. N-monsubstituted amides. Experimentally known geometric properties are reasonably predicted by minimization of total energy with respect to molecular geometry. The same procedure shows that molecular deformations during rotation around the peptide bond significantly lower calculated barriers. Experimental heats of activation and the free-energy changes associated with cis–trans isomerism are in good agreement with those calculated, which include qualitative estimates of configurational entropy contributions to the isomerism energies. Both the calculations and revised infrared data indicate that N-phenylurethane, which has been used as a model for the cis peptide bond, should be predominantly trans. However the variations in rotational barriers and cis–trans isomerism energies among the N-monosubstituted amides provide no reason to suppose that the cis peptide bond should be excluded from stable protein conformations.  相似文献   

14.
The x-ray diffraction analyses of three N- and C-terminally blocked L , D dipeptides, namely t-Boc-D -Leu-L -Leu-OMe ( 1 ), t-Boc-L -Ile-D -alle-OMe ( 2 ), and t-Boc-D -aIle-L -Ile-OMe (3) containing enantiomeric or diastereomeric amino acid residues have been carried out. The structures were determined by direct methods and refined anisotropically to final R factors of 0.077. 0.058. and 0.072 for ( 1 ) ( 2 ) and ( 3 ), respectively. Peptides 1–3 all assume a similar U-shaped structure with ? and ψ torsion angles cosrresponding to one of the possible calculated minimum energy regions (regions E and G for L residues, and F*. D* and H* for D residues). The peptide backbones of 1-3 are almost super-imposable [provided that the appropriate inversion of the chiral centers of ( 2 ) is made]. Side-chain conformations of Leu residues in peptide ( 1 ) are g? (tg?) for the L -Leu residue and the mirrored g+ (tg+) for the D -Leu residue; however, in peptides ( 2 ) and ( 3 ) the conformations of the isoconfiguralional side chains of the Ile or allo-Ile residues are (g?t) t and (tg+) tfor the L -Ile and the D -allo-Ile moieties, respectively. In all cases, these conformations correspond to the more populated conformers of β-branched residues statistically found in crystal structures of small peptides. The results seem to indicate that, at least in short peptides with enantiomeric or diastereoisomeric residues, the change in chirality in the main-chain atoms perturbs the backbone conformation to a lesser extent and the side chain conformation to a greater extent. © 1995 John Wiley & Sons, Inc.  相似文献   

15.
Summary We have found that besides the known cyclolinopeptides A (CLA) and B (CLB), there is a new cyclic peptide in linseed mill cake that we have named CLX. Its composition is very similar to that of CLA, a cyclic peptide with a distinct immunosuppressive activity. The sequence of this peptide has been established ascyclo(PPFFILLX), where X is a non-proteinaceous amino acid,N-methyl-4-aminoproline. this amino acid substitutes for two amino acid residues of CLA, mimicking a dipeptide moiety with a nonplanarcis amide bond. The non-proteinaceous amino acid X may mimic a transition state of the peptide bond which exists in such processes as, e.g., PPIase-catalysedcis/trans amide-Pro bond isomerisation.  相似文献   

16.
The Pictet–Spengler (PS) cyclizations of β3hTrp derivatives as arylethylamine substrates were performed with L‐α‐amino and D‐α‐amino aldehydes as carbonyl components. During the PS reaction, a new stereogenic center was created, and the mixture of cis/trans 1,3‐disubstituted 1,2,3,4‐tetrahydro‐β‐carbolines was obtained. The ratio of cis/trans diastereomers depends on the stereogenic centre of used amino aldehyde and the size of substituents. It was confirmed by 1H and 2D NMR (ROESY) spectra. The conformations of cyclic products were studied by 2D NMR ROESY spectra. Products of the PS condensation after removal of protecting group(s) can be incorporated into a peptide chain as tryptophan mimetics with the possibility of the β‐turn induction. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

17.
The crystal structures and molecular conformations of two tetraproline derivatives with alternating configurations Boc(D -Pro,L -Pro)2OH and Boc(D -Pro,L -Pro)2OCH3 are investigated in connection with the ability of the homologous polymer to selectively increase (as an ion channel) the ion permeability across bilayer membranes. Both tetramers are characterized by the cis-trans alternating conformation of the peptide bonds, which formally transforms in a turn of the poly-D ,L -proline channel after a cis-trans change of the central peptide residue.  相似文献   

18.
P Gupta-Bhaya 《Biopolymers》1975,14(6):1143-1160
The electron-mediated spin–spin coupling constant J between the amide NH and the α-CH protons in the dipeptide fragment Cα? CO(NH? CαH)R? C′ONH? Cα is dependent on the dihedral angle of rotation (Φ) around the N? C bond. Measurement of J in a series of zwitterionic dipeptides H3N+? CHR1? CONH? CHR2? CO2? (which is conformationally similar to the dipeptide fragment) in TFA solution shows that J is independent of R1, but dependent on the steric bulk of R2. The data are interpreted in terms of a model that assumes that what we measure is an average value of J? a thermal average over all the possible rotamers. The groups R1 and R2 are, in most cases, sterically kept apart by the trans and planar amide bonds, and hence the independence of J of R1. This model is consistent with the theoretical calculations done on the dipeptide fragment. The effect of the structural characteristics of the side chains (e.g., the effect of lengthening and branching the side chains) on the J values in dipeptides is discussed in the light of the existing results of theoretical calculations. Study of 〈J〉 values in tripeptides (C6H5CH2OCONH? CHR1? CONH? CHR2? CO2CH3, essentially three linked peptide units) shows that electrostatic interaction between the two amide bonds modifies the potential energy surface and the 〈J〉 value of a dipeptide subunit in the tripeptides. Also in some cases, direct steric interaction between the two side chains in the two adjacent dipeptide subunits in the tripeptide affects the potential energy surfaces of the individual dipeptide subunits and hence the 〈J〉 values. The influence of the structural characteristics of the side chains of individual amino acids on structure formation at or beyond the dipeptide level is discussed at various points. The J(NH? αCH) values of CH3CONH? CHR? CONH2 and CH3CONH? CHR? CO2CH3 with the same R are quite different for R = valine, leucine, phenylalanine, methionine, but equal for R = glycine. This, coupled with the fact that one of the carboxamide NH resonances has a chemical shift different from its counterpart in simple amides like CH3CONH2 and the other carboxamide NH has the same chemical shift as its counterpart in CH3CONH2, suggest the presence of a hydrogen bond in dipeptide CH3CONH? CHR? CONH2 with carboxamide NH as the donor. Theoretical evidence for two seven-membered hydrogen-bonded rings with the carboxamide NH as donor and the acetyl oxygen as acceptor is summarized. Our data cannot suggest the number of such hydrogen-bonded rings, nor can they conclude the relative proportion of these rings in a particular dipeptide. A discussion of the difficulty of interpretation is presented and the data are discussed under certain simplifying assumptions.  相似文献   

19.
The free energy difference between two states of a molecular system separated by an energy barrier can generally be computed using the technique of umbrella sampling along a chosen reaction coordinate or pathway. The effect of a particular choice of pathway upon the obtained free energy difference is investigated by molecular dynamics simulation of a model system consisting of a glycine dipeptide in aqueous solution. Two different reaction coordinates connecting the so-called C5 and C7 conformations, one involving intramolecular hydrogen bonds and the other involving the peptide ?, ψ angles, are considered. The Gibbs free energy differences ΔG(C5 – C7) are small in both cases, 1.5 ± 1 kJ mol?1 and 2.2 ± 1 kJ mol ?1, respectively. The two different reaction coordinates yield free energy differences that are identical to within their statistical error. It is found that the exchange of solute–solute, solute–water, and water–water hydrogen bonds involves free energy changes of less than kBT, which points at the existence of a multitutde of low free energy pathways connecting the C5 and C7 dipeptide conformations. © 1994 John Wiley & Sons, Inc.  相似文献   

20.
The solid state conformations of cyclo[Gly–Proψ[CH2S]Gly–D –Phe–Pro] and cyclo[Gly–Proψ[CH2–(S)–SO]Gly–D –Phe–Pro] have been characterized by X-ray diffraction analysis. Crystals of the sulfide trihydrate are orthorhombic, P212121, with a = 10.156(3) Å, b = 11.704(3) Å, c = 21.913(4) Å, and Z = 4. Crystals of the sulfoxide are monoclinic, P21, with a = 10.662(1) Å, b = 8.552(3) Å, c = 12.947(2) Å, β = 94.28(2), and Z = 2. Unlike their all-amide parent, which adopts an all-trans backbone conformation and a type II β-turn encompassing Gly-Pro-Gly-D -Phe, both of these peptides contain a cis Gly1-Pro2 bond and form a novel turn structure, i.e., a type II′ β-turn consisting of Gly–D –Phe–Pro–Gly. The turn structure in each of these peptides is stabilized by an intramolecular H bond between the carbonyl oxygen of Gly1 and the amide proton of D -Phe4. In the cyclic sulfoxide, the sulfinyl group is not involved in H bonding despite its strong potential as a hydrogen-bond acceptor. The crystal structure made it possible to establish the absolute configuration of the sulfinyl group in this peptide. The two crystal structures also helped identify a type II′ β-turn in the DMSO-d6 solution conformers of these peptides. © 1993 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号