共查询到20条相似文献,搜索用时 46 毫秒
1.
S J Smith-Gill 《Current opinion in biotechnology》1991,2(4):568-575
The past year has brought new insights into common structural motifs used for protein-protein interactions by DNA-binding proteins. In addition, there have been significant advances in our understanding of antibody-protein complexes. 相似文献
2.
The fusion of intracellular vesicles with their target membranes is an essential feature of the compartmental structure of eukaryotic cells. This process requires proteins that dictate the targeting of a vesicle to the correct cellular location, mediate bilayer fusion and, in some systems, regulate the precise time at which fusion occurs. Recent biophysical and structural studies of these proteins have begun to provide a foundation for understanding their functions at a molecular level. 相似文献
3.
Using homobifunctional chemical cross-linkers with various span distances, we have determined the near-neighbor associations and planar organization of the E1 and E2 envelope glycoproteins which compose the icosahedral surface of Sindbis virus. We have found that E1-E2 heterodimers, which form the virus protomeric units, exist in two conformationally distinct forms, reflecting their nonequivalent positions in the icosahedron. Three of these heterodimers form the trimeric morphologic units (capsomeres) which are held together by central E1-E1 interactions. In addition, we present data which suggest that E2-E2 interactions organize the capsomeres into pentameric and hexameric geometric units and that E1-E1 interactions between capsomeres maintain the icosahedral lattice in mature virions. 相似文献
4.
The occurrences of two recurrent motifs in ribosomal RNA sequences, the Kink-turn and the C-loop, are examined in crystal structures and systematically compared with sequence alignments of rRNAs from the three kingdoms of life in order to identify the range of the structural and sequence variations. Isostericity Matrices are used to analyze structurally the sequence variations of the characteristic non-Watson–Crick base pairs for each motif. We show that Isostericity Matrices for non-Watson–Crick base pairs provide important tools for deriving the sequence signatures of recurrent motifs, for scoring and refining sequence alignments, and for determining whether motifs are conserved throughout evolution. The systematic use of Isostericity Matrices identifies the positions of the insertion or deletion of one or more nucleotides relative to the structurally characterized examples of motifs and, most importantly, specifies whether these changes result in new motifs. Thus, comparative analysis coupled with Isostericity Matrices allows one to produce and refine structural sequence alignments. The analysis, based on both sequence and structure, permits therefore the evaluation of the conservation of motifs across phylogeny and the derivation of rules of equivalence between structural motifs. The conservations observed in Isostericity Matrices form a predictive basis for identifying motifs in sequences. 相似文献
5.
Sun AQ Balasubramaniyan N Xu K Liu CJ Ponamgi VM Liu H Suchy FJ 《American journal of physiology. Gastrointestinal and liver physiology》2007,292(6):G1586-G1593
Two proteins that mediate bile acid export from the ileal enterocyte, organic solute transporter (OST)-alpha and -beta, have recently been identified. It is unclear whether these two proteins associate directly and how they interact to mediate transport function and membrane localization. In this study, the protein-protein interactions, transport functions, and membrane localization of human (h)OST-alpha and -beta proteins were examined. The results demonstrated that coexpression of hOST-alpha and -beta in transfected cells resulted in a three- to fivefold increase of the initial rate of taurocholate influx or efflux compared with cells expressing each protein individually and nontransfected cells. Confocal microscopy demonstrated plasma membrane colocalization of hOST-alpha and -beta proteins in cells cotransfected with hOST-alpha and -beta cDNAs. Protein-protein interactions between hOST-alpha and -beta were demonstrated by mammalian two-hybrid and coimmunoprecipitation analyses. Truncation of the amino-terminal 50 amino acid extracellular residues of hOST-alpha abolished its interaction with hOST-beta and led to an intracellular accumulation of the two proteins and to only background levels of taurocholate transport. In contrast, carboxyl-terminal 28 amino acid truncated hOST-alpha still interacted with hOST-beta, and majority of this cytoplasmic tail-truncated protein was expressed on the basolateral membrane when it was stably cotransfected with hOST-beta protein in Madin-Darby canine kidney cells. In summary, hOST-alpha and -beta proteins are physically associated. The intracellular carboxyl-terminal domain of hOST-alpha is not essential for this interaction with hOST-beta. The extracellular amino-terminal fragment of hOST-alpha may contain important information for the assembly of the heterodimer and trafficking to the plasma membrane. 相似文献
6.
7.
The alpha helices of transmembrane proteins interact to form higher order structures. These interactions are frequently mediated by packing motifs (such as GxxxG) and polar residues. Recent structural data have revealed that small sidechains are able to both stabilize helical membrane proteins and allow conformational changes in the structure. The strong interactions involving polar sidechains often contribute to protein misfolding or malfunction. 相似文献
8.
In this article we review the current status of our understanding of membrane mediated interactions from theory and experiment. Phenomenological mean field and molecular models will be discussed and compared to recent experimental results from dynamical neutron scattering and atomic force microscopy. 相似文献
9.
Fukao Y 《Plant & cell physiology》2012,53(4):617-625
The study of protein-protein interactions (PPIs) is essential to uncover unknown functions of proteins at the molecular level and to gain insight into complex cellular networks. Affinity purification and mass spectrometry (AP-MS), yeast two-hybrid, imaging approaches and numerous diverse databases have been developed as strategies to analyze PPIs. The past decade has seen an increase in the number of identified proteins with the development of MS and large-scale proteome analyses. Consequently, the false-positive protein identification rate has also increased. Therefore, the general consensus is to confirm PPI data using one or more independent approaches for an accurate evaluation. Furthermore, identifying minor PPIs is fundamental for understanding the functions of transient interactions and low-abundance proteins. Besides establishing PPI methodologies, we are now seeing the development of new methods and/or improvements in existing methods, which involve identifying minor proteins by MS, multidimensional protein identification technology or OFFGEL electrophoresis analyses, one-shot analysis with a long column or filter-aided sample preparation methods. These advanced techniques should allow thousands of proteins to be identified, whereas in-depth proteomic methods should permit the identification of transient binding or PPIs with weak affinity. Here, the current status of PPI analysis is reviewed and some advanced techniques are discussed briefly along with future challenges for plant proteomics. 相似文献
10.
Kiermer V 《Nature methods》2007,4(5):389
A combined reanalysis of the two largest yeast protein-protein interaction studies to date provides a large consolidated data set, with a level of accuracy matching the reliability of small-scale experiments. 相似文献
11.
Detecting DNA-binding helix-turn-helix structural motifs using sequence and structure information 下载免费PDF全文
In this work, we analyse the potential for using structural knowledge to improve the detection of the DNA-binding helix–turn–helix (HTH) motif from sequence. Starting from a set of DNA-binding protein structures that include a functional HTH motif and have no apparent sequence similarity to each other, two different libraries of hidden Markov models (HMMs) were built. One library included sequence models of whole DNA-binding domains, which incorporate the HTH motif, the second library included shorter models of ‘partial’ domains, representing only the fraction of the domain that corresponds to the functionally relevant HTH motif itself. The libraries were scanned against a dataset of protein sequences, some containing the HTH motifs, others not. HMM predictions were compared with the results obtained from a previously published structure-based method and subsequently combined with it. The combined method proved more effective than either of the single-featured approaches, showing that information carried by motif sequences and motif structures are to some extent complementary and can successfully be used together for the detection of DNA-binding HTHs in proteins of unknown function. 相似文献
12.
Neuronal migration, like the migration of many cell types, requires an extensive rearrangement of cell shape, mediated by changes in the cytoskeleton. The genetic analysis of human brain malformations has identified several biochemical players in this process, including doublecortin (DCX) and LIS1, mutations of which cause a profound migratory disturbance known as lissencephaly ('smooth brain') in humans. Studies in mice have identified additional molecules such as Cdk5, P35, Reelin, Disabled and members of the LDL superfamily of receptors. Understanding the cell biology of these molecules has been a challenge, and it is not known whether they function in related biochemical pathways or in very distinct processes. The last year has seen rapid advances in the biochemical analysis of several such molecules. This analysis has revealed roles for some of these molecules in cytoskeletal regulation and has shown an unexpected conservation of the genetic pathways that regulate neuronal migration in humans and nuclear movement in simple eukaryotic organisms. 相似文献
13.
Proper subcellular localization is critical for proteins to perform their roles in cellular functions. Proteins are transported by different cellular sorting pathways, some of which take a protein through several intermediate locations until reaching its final destination. The pathway a protein is transported through is determined by carrier proteins that bind to specific sequence motifs. In this article, we present a new method that integrates protein interaction and sequence motif data to model how proteins are sorted through these sorting pathways. We use a hidden Markov model (HMM) to represent protein sorting pathways. The model is able to determine intermediate sorting states and to assign carrier proteins and motifs to the sorting pathways. In simulation studies, we show that the method can accurately recover an underlying sorting model. Using data for yeast, we show that our model leads to accurate prediction of subcellular localization. We also show that the pathways learned by our model recover many known sorting pathways and correctly assign proteins to the path they utilize. The learned model identified new pathways and their putative carriers and motifs and these may represent novel protein sorting mechanisms. Supplementary results and software implementation are available from http://murphylab.web.cmu.edu/software/2010_RECOMB_pathways/. 相似文献
14.
Yoshizawa AC Kawashima S Okuda S Fujita M Itoh M Moriya Y Hattori M Kanehisa M 《Traffic (Copenhagen, Denmark)》2006,7(8):1104-1118
The SNARE proteins are required for membrane fusion during intracellular vesicular transport and for its specificity. Only the unique combination of SNARE proteins (cognates) can be bound and can lead to membrane fusion, although the characteristics of the possible specificity of the binding combinations encoded in the SNARE sequences have not yet been determined. We discovered by whole genome sequence analysis that sequence motifs (conserved sequences) in the SNARE motif domains for each protein group correspond to localization sites or transport pathways. We claim that these motifs reflect the specificity of the binding combinations of SNARE motif domains. Using these motifs, we could classify SNARE proteins from 48 organisms into their localization sites or transport pathways. The classification result shows that more than 10 SNARE subgroups are kingdom specific and that the SNARE paralogs involved in the plasma membrane-related transport pathways have developed greater variations in higher animals and higher plants than those involved in the endoplasmic reticulum-related transport pathways throughout eukaryotic evolution. 相似文献
15.
Many human diseases are the result of abnormal protein-protein interactions involving endogenous proteins, proteins from pathogens or both. The inhibition of these aberrant associations is of obvious clinical significance. Because of the diverse nature of protein-protein interactions, however, the successful design of therapeutics requires detailed knowledge of each system at a molecular and atomic level. Several recent studies have identified and/or characterised specific interactions from various disease systems, including cervical cancer, bacterial infection, leukaemia and neurodegenerative disease. A range of approaches are being developed to generate inhibitors of protein-protein interactions that may form useful therapeutics for human disease. 相似文献
16.
We present an algorithm to detect remote homology, which arises through circular permutation and discontinuous domains. It is also helpful in detecting small domain proteins that are characterized by few conserved residues. The input to the algorithm is a set of multiply aligned protein sequence profiles. This method, coded as FASSM, examines the sequence conservation and positions of protein family signatures or motifs for the annotation of protein sequences and to facilitate the analysis of their domains. The overall coverage of FASSM is 93% in comparison to other validation tools like HMM and IMPALA. The method is especially useful for difficult relationships such as discontinuous domains during whole-genome surveys and is demonstrated to perform accurate family associations at sequence identities as low as 15%. 相似文献
17.
Mayer BJ 《Molecular biotechnology》1999,13(3):201-213
The process of signal transduction is dependent on specific protein-protein interactions. In many cases these interactions
are mediated by modular protein domains that confer specific binding activity to the proteins in which they are found. Rapid
progress has been made in the biochemical characterization of binding interactions, the identification of binding partners,
and determination of the three-dimensional structures of binding modules and their ligands. The resulting information establishes
the logical framework for our current understanding of the signal transduction machinery. In this overview a variety of protein
interaction modules are discussed, and issues relating to binding specificity and the significance of a particular interaction
are considered. 相似文献
18.
Lee AG 《Biochimica et biophysica acta》2003,1612(1):1-40
Lipid molecules bound to membrane proteins are resolved in some high-resolution structures of membrane proteins. An analysis of these structures provides a framework within which to analyse the nature of lipid-protein interactions within membranes. Membrane proteins are surrounded by a shell or annulus of lipid molecules, equivalent to the solvent layer surrounding a water-soluble protein. The lipid bilayer extends right up to the membrane protein, with a uniform thickness around the protein. The surface of a membrane protein contains many shallow grooves and protrusions to which the fatty acyl chains of the surrounding lipids conform to provide tight packing into the membrane. An individual lipid molecule will remain in the annular shell around a protein for only a short period of time. Binding to the annular shell shows relatively little structural specificity. As well as the annular lipid, there is evidence for other lipid molecules bound between the transmembrane alpha-helices of the protein; these lipids are referred to as non-annular lipids. The average thickness of the hydrophobic domain of a membrane protein is about 29 A, with a few proteins having significantly smaller or greater thicknesses than the average. Hydrophobic mismatch between a membrane protein and the surrounding lipid bilayer generally leads to only small changes in membrane thickness. Possible adaptations in the protein to minimise mismatch include tilting of the helices and rotation of side chains at the ends of the helices. Packing of transmembrane alpha-helices is dependent on the chain length of the surrounding phospholipids. The function of membrane proteins is dependent on the thickness of the surrounding lipid bilayer, sometimes on the presence of specific, usually anionic, phospholipids, and sometimes on the phase of the phospholipid. 相似文献
19.
A.G Lee 《生物化学与生物物理学报:生物膜》2003,1612(1):1-40
Lipid molecules bound to membrane proteins are resolved in some high-resolution structures of membrane proteins. An analysis of these structures provides a framework within which to analyse the nature of lipid-protein interactions within membranes. Membrane proteins are surrounded by a shell or annulus of lipid molecules, equivalent to the solvent layer surrounding a water-soluble protein. The lipid bilayer extends right up to the membrane protein, with a uniform thickness around the protein. The surface of a membrane protein contains many shallow grooves and protrusions to which the fatty acyl chains of the surrounding lipids conform to provide tight packing into the membrane. An individual lipid molecule will remain in the annular shell around a protein for only a short period of time. Binding to the annular shell shows relatively little structural specificity. As well as the annular lipid, there is evidence for other lipid molecules bound between the transmembrane α-helices of the protein; these lipids are referred to as non-annular lipids. The average thickness of the hydrophobic domain of a membrane protein is about 29 Å, with a few proteins having significantly smaller or greater thicknesses than the average. Hydrophobic mismatch between a membrane protein and the surrounding lipid bilayer generally leads to only small changes in membrane thickness. Possible adaptations in the protein to minimise mismatch include tilting of the helices and rotation of side chains at the ends of the helices. Packing of transmembrane α-helices is dependent on the chain length of the surrounding phospholipids. The function of membrane proteins is dependent on the thickness of the surrounding lipid bilayer, sometimes on the presence of specific, usually anionic, phospholipids, and sometimes on the phase of the phospholipid. 相似文献
20.
Veselovsky AV Ivanov YD Ivanov AS Archakov AI Lewi P Janssen P 《Journal of molecular recognition : JMR》2002,15(6):405-422
Protein-protein interactions form the proteinaceous network, which plays a central role in numerous processes in the cell. This review highlights the main structures, properties of contact surfaces, and forces involved in protein-protein interactions. The properties of protein contact surfaces depend on their functions. The characteristics of contact surfaces of short-lived protein complexes share some similarities with the active sites of enzymes. The contact surfaces of permanent complexes resemble domain contacts or the protein core. It is reasonable to consider protein-protein complex formation as a continuation of protein folding. The contact surfaces of the protein complexes have unique structure and properties, so they represent prospective targets for a new generation of drugs. During the last decade, numerous investigations have been undertaken to find or design small molecules that block protein dimerization or protein(peptide)-receptor interaction, or on the other hand, induce protein dimerization. 相似文献