首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
医用几丁聚糖在临床医学中的应用   总被引:5,自引:0,他引:5  
医用几丁聚糖是从虾/蟹壳中藉生物提取的几丁质(chi tin)经脱乙酰基后为几丁糖(chito san),再经深加工达到医用级水平的天然生物材料,是继纤维素后的世上第二大天然资源,据报导有100万~1000万亿吨之多。目前仅利用了数万吨,其中大约25%用于医学领域。早在1811年,法国布Brac on not发现了蘑菇中含有几丁质,当时称之为Fung in,1823年法国科学家Odier在昆虫表面坚硬的皮质中发现了这种物质,并用希腊语chitin将其命名,因此沿用迄今。尽管发现是如此之早,但对其研究却十分缓慢。一百多年后,1977年4月第一届几丁  相似文献   

2.
胶原蛋白在组织工程及临床中的应用   总被引:8,自引:1,他引:8  
1.前言 胶原蛋白(以下简称为胶原)呈纤维状,是哺乳动物中含量最为丰富的动物蛋白。胶原能与各种细胞结合以构成性能各异的组织,如:软骨、皮肤、骨骼和肌腱。由于胶原是构成哺乳动物和人类众多组织的成份之一,所以近年来成为一种在组织工程上应用十分广泛的生物材料。尽管其研究的面涉及范围较广,但其主要有三个方面:①分子结  相似文献   

3.
组织工程与生物材料   总被引:8,自引:0,他引:8  
介绍了组织工程的原理、研究现状,以及相关生物材料的基本概念和生物材料的发展概况。指出目前组织工程的研究为生物材料提供了极大的发展机会,认为可降解生物材料是组织工程用支架材料的研究重点,未来组织工程相关生物材料的发展方向是仿生化和智能化,组织工程学的发展将会促进材料的发展.并将由此产生巨大的社会效益和经济效益。  相似文献   

4.
当今社会半月板损伤十分常见。近些年,伴随生命科学和生物工程学不断发展,用组织工程原理和技术修复损伤的半月板成为热点。许多支架材料也应运而生并取得良好效果,而天然半月板支架材料起着重要的作用,如何选取理想的天然支架材料已成为这一课题的关键,其材料包含种类繁多,可分为可注射类半月板支架材料,不可注射类半月板材料。每种材料都有其独特的优势及缺陷,根据不同的需要来选择合适的材料。迄今为止,运用组织工程技术还不能完全模拟半月板组织,没有一种材料达到最理想的水平。本文着重介绍半月板组织工程天然支架材料。并对未来半月板组织工程支架材料的研究提出展望。  相似文献   

5.
形状记忆聚合物是由固定相和可逆相构成的具有在外界刺激条件下诱导形状改变特性的一类高分子智能材料。相较于传统的形状记忆合金与陶瓷,其具有特定的生物可降解性、更高的机械性能调控空间、更强的形变恢复能力及更优良的生物相容性。凭借材料特性,近阶段针对形状记忆聚合物在组织工程领域的应用研究愈发广泛,包括血管组织、骨骼肌组织、神经组织与骨组织等方面。综述近年来形状记忆聚合物在多种组织工程领域研究中的实验创新、技术突破与应用拓展,例如将其作为新型多孔血管支架、骨骼肌修复支架、神经修复导管与骨缺损填充物等。可预见随着技术和材料的不断发展,形状记忆聚合物在组织工程领域的应用将更加成熟。  相似文献   

6.
组织工程皮肤从概念提出至今技术发展迅速.本文对现有的组织工程皮肤进展展开论述,组织工程皮肤主要分3大类:由种子细胞和支架材料体外三维构建培养的组织工程皮肤、由细胞组成的组织工程化皮肤和由支架材料构成的组织工程化皮肤,根据其结构组成、形态或来源又分成2~3种,每种选1~3个代表具体描述.然后针对现有组织工程存在的再生修复性能不足、细胞来源受限、生产运输成本过高等技术问题进行分析讨论,同时就目前国家对该领域的管理办法进行了讨论和建议,并提出了组织工程皮肤的一些非移植性扩展应用.通过对组织工程皮肤领域技术成果的总结、技术问题与现有研究热点的讨论和未来前景的分析,希望能更好地促进该领域发展.  相似文献   

7.
绍了羟基丁酸酯-羟基己酸酯共聚物的降解性、亲水性、力学性能、表面形态,改性研究、细胞相容性、降解产物的毒性等性能,并对这种材料在组织工程中的应用现状作了阐述,提出了需要改进研究的方向,指出这种微生物来源的新型生物医药材料在组织工程的应用中将具有极大的潜力。  相似文献   

8.
天然可降解生物材料在组织工程中的应用研究进展   总被引:5,自引:0,他引:5  
细胞培养支架材料是组织工程学的重要研究内容之一 ,是实现产业化的关键。天然可降解生物材料是细胞培养支架材料中的重要组成部分 ,目前用于细胞培养支架的天然可降解生物材料主要有多糖类和蛋白质类。多糖类主要包括壳多糖、透明质酸 ;蛋白质类主要包括胶原纤维蛋白和血纤维蛋白。  相似文献   

9.
透明质酸是由β(1-3)-N - 乙酰-D- 葡萄糖胺和 β(1-4)-D- 葡萄糖醛酸的双糖反复交替连接而构成的酸性黏多糖,广泛分布于脊 椎动物体内各种组织细胞间质中,具有重要生理功能。而外源性透明质酸具有理想的生物相容性和可降解性,其作为支架材料在组织工 程领域的应用具有独特优势。综述近年来透明质酸在组织工程不同领域的应用研究进展。  相似文献   

10.
组织工程的基本科学问题   总被引:6,自引:0,他引:6  
曹谊林 《生命科学》2005,17(2):106-111
疾病和创伤引起的组织、器官的缺损或功能障碍是人类健康所面临的主要危害之一,也是导致人类死亡的最主要原因。如何克服自体或异体组织、器官移植中存在的“以创伤修复创伤”、供体来源不足等缺陷,从根本上解决组织、器官缺损修复和功能重建等问题,己成为生命科学领域的国际性前沿课题。组织工程的提出、建立和发展,为解决这一问题提供了新的策略,  相似文献   

11.
Chitosan sponges as tissue engineering scaffolds for bone formation   总被引:15,自引:0,他引:15  
Rat calvarial osteoblasts were grown in porous chitosan sponges fabricated by freeze drying. The prepared chitosan sponges had a porous structure with a 100-200 microm pore diameter, which allowed cell proliferation. Cell density, alkaline phosphatase activity and calcium deposition were monitored for up to 56 d culture. Cell numbers were 4 x 10(6) (day 1), 11 x 10(6) (day 28) and 12 x 10(6) (day 56) per g sponge. Calcium depositions were 9 (day 1), 40 (day 28) and 48 (day 56) microg per sponge. Histological results corroborated that bone formation within the sponges had occurred. These results show that chitosan sponges can be used as effective scaffolding materials for tissue engineered bone formation in vitro.  相似文献   

12.
组织工程技术为修复病损的组织和器官提供了一种新的途径,在组织工程中,细胞支架起着支撑细胞生长、引导组织再生、控制组织结构和释放活性因子等作用。针对电纺技术的新发展和细胞支架的新理念,综述了国内外利用电纺技术制备细胞支架的工艺条件、制备方法、组织细胞培养等方面的研究进展,并结合作者所在研究团队的研究工作提出了对未来电纺技术在组织工程中应用的研究重点和发展方向的认识。  相似文献   

13.
Tissue engineering is a clinically driven field and has emerged as a potential alternative to organ transplantation. The cornerstone of successful tissue engineering rests upon two essential elements: cells and scaffolds. Recently, it was found that stem cells have unique capabilities of self-renewal and multilineage differentiation to serve as a versatile cell source, while nanomaterials have lately emerged as promising candidates in producing scaffolds able to better mimic the nanostructure in natural extracellular matrix and to efficiently replace defective tissues. This article, therefore, reviews the key developments in tissue engineering, where the combination of stem cells and nanomaterial scaffolds has been utilized over the past several years. We consider the high potential, as well as the main issues related to the application of stem cells and nanomaterial scaffolds for a range of tissues including bone, cartilage, nerve, liver, eye etc. Promising in vitro results such as efficient attachment, proliferation and differentiation of stem cells have been compiled in a series of examples involving different nanomaterials. Furthermore, the merits of the marriage of stem cells and nanomaterial scaffolds are also demonstrated in vivo, providing early successes to support subsequent clinical investigations. This progress simultaneously drives mechanistic research into the mechanotransduction process responsible for the observations in order to optimize the process further. Current understanding is chiefly reported to involve the interaction of stem cells and the anchoring nanomaterial scaffolds by activating various signaling pathways. Substrate surface characteristics and scaffold bulk properties are also reported to influence not only short term stem cell adhesion, spreading and proliferation, but also longer term lineage differentiation, functionalization and viability. It is expected that the combination of stem cells and nanomaterials will develop into an important tool in tissue engineering for the innovative treatment of many diseases.  相似文献   

14.
Tendinopathies negatively affect the life quality of millions of people in occupational and athletic settings, as well as the general population. Tendon healing is a slow process, often with insufficient results to restore complete endurance and functionality of the tissue. Tissue engineering, using tendon progenitors, artificial matrices and bioreactors for mechanical stimulation, could be an important approach for treating rips, fraying and tissue rupture. In our work, C3H10T1/2 murine fibroblast cell line was exposed to a combination of stimuli: a biochemical stimulus provided by Transforming Growth Factor Beta (TGF‐β) and Ascorbic Acid (AA); a three‐dimensional environment represented by PEGylated‐Fibrinogen (PEG‐Fibrinogen) biomimetic matrix; and a mechanical induction exploiting a custom bioreactor applying uniaxial stretching. In vitro analyses by immunofluorescence and mechanical testing revealed that the proposed combined approach favours the organization of a three‐dimensional tissue‐like structure promoting a remarkable arrangement of the cells and the neo‐extracellular matrix, reflecting into enhanced mechanical strength. The proposed method represents a novel approach for tendon tissue engineering, demonstrating how the combined effect of biochemical and mechanical stimuli ameliorates biological and mechanical properties of the artificial tissue compared to those obtained with single inducement.  相似文献   

15.
The combination of computational methods with 3D printing allows for the control of scaffolds microstructure. Lately, triply periodic minimal surfaces (TPMS) have been used to design porosity-controlled scaffolds for bone tissue engineering (TE). The goal of this work was to assess the mechanical properties of TPMS Gyroid structures with two porosity levels (50 and 70%). The scaffold stiffness function of porosity was determined by the asymptotic homogenisation method and confirmed by mechanical testing. Additionally, microCT analysis confirmed the quality of the printed parts. Thus, the potential of both design and manufacturing processes for bone TE applications is here demonstrated.  相似文献   

16.
Scaffold‐based tissue engineering is considered as a promising approach in the regenerative medicine. Graft instability of collagen, by causing poor mechanical properties and rapid degradation, and their hard handling remains major challenges to be addressed. In this research, a composite structured nano‐/microfibrous scaffold, made from a mixture of chitosan–ß‐glycerol phosphate–gelatin (chitosan–GP–gelatin) using a standard electrospinning set‐up was developed. Gelatin–acid acetic and chitosan ß‐glycerol phosphate–HCL solutions were prepared at ratios of 30/70, 50/50, 70/30 (w/w) and their mechanical and biological properties were engineered. Furthermore, the pore structure of the fabricated nanofibrous scaffolds was investigated and predicted using a theoretical model. Higher gelatin concentrations in the polymer blend resulted in significant increase in mean pore size and its distribution. Interaction between the scaffold and the contained cells was also monitored and compared in the test and control groups. Scaffolds with higher chitosan concentrations showed higher rate of cell attachment with better proliferation property, compared with gelatin‐only scaffolds. The fabricated scaffolds, unlike many other natural polymers, also exhibit non‐toxic and biodegradable properties in the grafted tissues. In conclusion, the data clearly showed that the fabricated biomaterial is a biologically compatible scaffold with potential to serve as a proper platform for retaining the cultured cells for further application in cell‐based tissue engineering, especially in wound healing practices. These results suggested the potential of using mesoporous composite chitosan–GP–gelatin fibrous scaffolds for engineering three‐dimensional tissues with different inherent cell characteristics. © 2015 Wiley Periodicals, Inc. Biopolymers 105: 163–175, 2016.  相似文献   

17.
18.
Ideally, rationally designed tissue engineering scaffolds promote natural wound healing and regeneration. Therefore, we sought to synthesize a biomimetic hydrogel specifically designed to promote tissue repair and chose hyaluronic acid (HA; also called hyaluronan) as our initial material. Hyaluronic acid is a naturally occurring polymer associated with various cellular processes involved in wound healing, such as angiogenesis. Hyaluronic acid also presents unique advantages: it is easy to produce and modify, hydrophilic and nonadhesive, and naturally biodegradable. We prepared a range of glycidyl methacrylate-HA (GMHA) conjugates, which were subsequently photopolymerized to form crosslinked GMHA hydrogels. A range of hydrogel degradation rates was achieved as well as a corresponding, modest range of material properties (e.g., swelling, mesh size). Increased amounts of conjugated methacrylate groups corresponded with increased crosslink densities and decreased degradation rates and yet had an insignificant effect on human aortic endothelial cell cytocompatibility and proliferation. Rat subcutaneous implants of the GMHA hydrogels showed good biocompatibility, little inflammatory response, and similar levels of vascularization at the implant edge compared with those of fibrin positive controls. Therefore, these novel GMHA hydrogels are suitable for modification with adhesive peptide sequences (e.g., RGD) and use in a variety of wound-healing applications.  相似文献   

19.
Nanofibers and their applications in tissue engineering   总被引:2,自引:0,他引:2  
Developing scaffolds that mimic the architecture of tissue at the nanoscale is one of the major challenges in the field of tissue engineering. The development of nanofibers has greatly enhanced the scope for fabricating scaffolds that can potentially meet this challenge. Currently, there are three techniques available for the synthesis of nanofibers: electrospinning, self-assembly, and phase separation. Of these techniques, electrospinning is the most widely studied technique and has also demonstrated the most promising results in terms of tissue engineering applications. The availability of a wide range of natural and synthetic biomaterials has broadened the scope for development of nanofibrous scaffolds, especially using the electrospinning technique. The three dimensional synthetic biodegradable scaffolds designed using nanofibers serve as an excellent framework for cell adhesion, proliferation, and differentiation. Therefore, nanofibers, irrespective of their method of synthesis, have been used as scaffolds for musculoskeletal tissue engineering (including bone, cartilage, ligament, and skeletal muscle), skin tissue engineering, vascular tissue engineering, neural tissue engineering, and as carriers for the controlled delivery of drugs, proteins, and DNA. This review summarizes the currently available techniques for nanofiber synthesis and discusses the use of nanofibers in tissue engineering and drug delivery applications.  相似文献   

20.
Osteochondral tissue engineering has shown an increasing development to provide suitable strategies for the regeneration of damaged cartilage and underlying subchondral bone tissue. For reasons of the limitation in the capacity of articular cartilage to self-repair, it is essential to develop approaches based on suitable scaffolds made of appropriate engineered biomaterials. The combination of biodegradable polymers and bioactive ceramics in a variety of composite structures is promising in this area, whereby the fabrication methods, associated cells and signalling factors determine the success of the strategies. The objective of this review is to present and discuss approaches being proposed in osteochondral tissue engineering, which are focused on the application of various materials forming bilayered composite scaffolds, including polymers and ceramics, discussing the variety of scaffold designs and fabrication methods being developed. Additionally, cell sources and biological protein incorporation methods are discussed, addressing their interaction with scaffolds and highlighting the potential for creating a new generation of bilayered composite scaffolds that can mimic the native interfacial tissue properties, and are able to adapt to the biological environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号