首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Immobilization of cellulases on magnetic nanoparticles, especially magnetite nanoparticles, has been the main approach studied to make this enzyme, economically and industrially, more attractive. However, magnetite nanoparticles tend to agglomerate, are very reactive and easily oxidized in air, which has strong impact on their useful life. Thus, it is very important to provide proper surface coating to avoid the mentioned problems. This study aimed to investigate the immobilization of cellulase on magnetic nanoparticles encapsulated in polymeric nanospheres. The support was characterized in terms of morphology, average diameter, magnetic behavior and thermal decomposition analyses. The polymer nanospheres containing encapsulated magnetic nanoparticles showed superparamagnetic behavior and intensity average diameter about 150 nm. Immobilized cellulase exhibited broader temperature stability than in the free form and great reusability capacity, 69% of the initial enzyme activity was maintained after eight cycles of use. The magnetic support showed potential for cellulase immobilization and allowed fast and easy biocatalyst recovery through a single magnet.

  相似文献   

2.
Yadav SC  Kumari A  Yadav R 《Peptides》2011,32(1):173-187
The targeted delivery of therapeutic peptide by nanocarriers systems requires the knowledge of interactions of nanomaterials with the biological environment, peptide release, and stability of therapeutic peptides. Therapeutic application of nanoencapsulated peptides are increasing exponentially and >1000 peptides in nanoencapsulated form are in different clinical/trial phase. This review covers current scenario of therapeutic protein and peptides encapsulation on polymer to metallic nanocarriers including methods of protein encapsulation, peptide bioconjugation on nanoparticles, stability enhancement of encapsulated proteins and its biomedical applications.  相似文献   

3.
BACKGROUND: Magnetic nanoparticles have been significantly used for coupling with biomolecules, due to their unique properties. METHODS: Magnetic nanoparticles were synthesized by thermal co-precipitation of ferric and ferrous chloride using two different base solutions. Glucose oxidase was bound to the particles by direct attachment via carbodiimide activation or by thiophene acetylation of magnetic nanoparticles. Transmission electron microscopy was used to characterize the size and structure of the particles while the binding of glucose oxidase to the particles was confirmed using Fourier transform infrared spectroscopy. RESULTS: The direct binding of glucose oxidase via carbodiimide activity was found to be more effective, resulting in bound enzyme efficiencies between 94-100% while thiophene acetylation was 66-72% efficient. Kinetic and stability studies showed that the enzyme activity was more preserved upon binding onto the nanoparticles when subjected to thermal and various pH conditions. The overall activity of glucose oxidase was improved when bound to magnetic nanoparticles CONCLUSION: Binding of enzyme onto magnetic nanoparticles via carbodiimide activation is a very efficient method for developing bioconjugates for biological applications.  相似文献   

4.
The aim of this study was enhancing of stability properties of catalase enzyme by encapsulation in alginate/nanomagnetic beads. Amounts of carrier (10–100 mg) and enzyme concentrations (0.25–1.5 mg/mL) were analyzed to optimize immobilization conditions. Also, the optimum temperature (25–50°C), optimum pH (3.0–8.0), kinetic parameters, thermal stability (20–70°C), pH stability (4.0–9.0) operational stability (0–390 min), and reusability were investigated for characterization of the immobilized catalase system. The optimum pH levels of both free and immobilized catalase were 7.0. At the thermal stability studies, the magnetic catalase beads protected 90% activity, while free catalase maintained only 10% activity at 70°C. The thermal profile of magnetic catalase beads was spread over a large area. Similarly, this system indicated the improving of the pH stability. The reusability, which is especially important for industrial applications, was also determined. Thus, the activity analysis was done 50 times in succession. Catalase encapsulated magnetic alginate beads protected 83% activity after 50 cycles.  相似文献   

5.
Drug delivery systems prepared with nanostructures are able to overcome biological barriers. However, one of the main challenges in the use of these nanosystems is their internalization by macrophages. This study aims to prepare and characterize chitosan nanoparticles incorporating maghemite nanoparticles and investigate their intracellular tracking in RAW 264.7 macrophages in vitro. Then, maghemite nanoparticles were encapsulated within chitosan nanoparticles by ionotropic gelification method. The images from transmission electron microscopy were used to investigate the intracellular penetration of conjugated nanoparticles by macrophages using different times. Our data suggests that magnetic nanoparticles are suitable to act as a contrast agent to investigate the cellular internalization of chitosan nanoparticles.  相似文献   

6.
d-Amino acid oxidase from Rhodosporidium toruloides (RtDAO) and Fe3O4 magnetic nanoparticles were encapsulated simultaneously within biomimetic silica, as mediated by polyallylamine. The capacity for this enzyme reached 193 mg/g of biomimetic silica when 15 mg/ml RtDAO was used during encapsulation; the average encapsulation efficiency was approximately 74%. The Tm value (the temperature at which 50% of the initial activity was retained after 1 h of incubation) was increased from 44.3 °C of the free RtDAO to 57.7 °C, clearly indicating the thermal stability was improved by encapsulation. In the presence of 50 mM hydrogen peroxide, encapsulated RtDAO had a half-life of 148 min, an approximately 2-fold increase in resistance to hydrogen peroxide as compared to 78-min half-life of the free form. The encapsulation process is simple and can be completed within minutes; besides, the resultant enzymes can be recovered easily under magnetic field. Such preparation of encapsulated d-amino acid oxidase could be exploited for many potential applications.  相似文献   

7.
葡聚糖磁性毫微粒固定化L-天冬酰胺酶的研究   总被引:2,自引:0,他引:2  
葡聚糖磁性毫微粒固定化L-天冬酰胺酶的研究徐慧显,李民勤,潘再群,马建标,何炳林(南开大学高分子化学研究所,天津300071)大肠杆菌天冬酰胺酶对急性淋巴白血病有明显疗效[1],注射入体内以后,可迅速清除血清中的天冬酰胺──敏感性肿瘤细胞的必需营养成...  相似文献   

8.
Strong coupling between non‐noble metal and carbon materials that enables fast electrochemical reaction kinetics is highly desired in many energy‐related applications. Herein, a volatile organic salt–induced heterogeneous molten salt method is proposed to couple embedded cobalt oxide nanocrystals and encapsulated cobalt nanoparticles on a 2D graphitic carbon matrix, featuring enhanced charge transport and increased exposed active sites. Originating from its unique structure, this hybrid delivers excellent electrocatalytic and electrochemical activity with impressive stability. This work represents a new synthetic strategy to create bridged bonds in 2D‐encapsulated nanostructures for various energy applications.  相似文献   

9.
In this paper, the enhancement of thermal properties of polymer-coated silver nanoparticles by the addition of plasmid DNA is described. Nanoparticles of noble metals such as gold and silver possess specific characteristics by virtue of their quantum size effects. Therefore, noble metal nanoparticles are used for chemical sensing and biosensing applications based on their localized surface plasmon resonance absorption that can be measured in the visible region. The polyvinylpyrrolidone (PVP)-coated noble metal nanoparticles, in particular, with high dispersion ability in water, offer several advantages for sensing applications. However, some difficulties are encountered in the use of these PVP-coated noble metal nanoparticles for sensing applications due to their poor thermal properties. To improve the thermal properties of PVP-coated noble metal nanoparticles, we found that the addition of plasmid DNA to PVP-coated silver nanoparticles enhances their thermal properties due to good thermal stability of DNA. The introduction of plasmid DNA into PVP-coated silver nanoparticle dispersion enhanced the thermal properties through the formation of a complex between the nanoparticles and plasmid DNA. Furthermore, other polymers such as proteins and polyethylene glycol did not enhance the thermal properties of PVP-coated silver nanoparticles. Thus, the PVP-coated silver nanoparticle–plasmid DNA complex with enhanced thermal properties has a great potential for use in medical and drug delivery applications.  相似文献   

10.
Abstract

The aim of this study was to prepare the encapsulation of Candida rugosa lipase (CRL) with magnetic sporopollenin. The sporopollenin was covalent immobilized onto magnetic nanoparticles (Fe3O4), grafted amino (APTES), or epoxy groups (EPPTMS). CRL was sol-gel encapsulated in the presence of magnetic sporopollenin/Fe3O4 nanoparticles. The influence of activation agents ([3-(2,3-epoxypropoxy) propyl] trimethoxysilane (EPPTMS), (3-Aminopropyl)triethoxysilane (APTES) and pH and thermal stabilities of the biocatalyst were assessed. Experimental data showed the improved catalytic activity at different pH and temperature values. At 60?°C, free lipase lost its initial activity within 80?min of time, although the encapsulated lipases retained their initial activities of about 65% by APTES and 60% by EPPTMS after 120?min of heat treatment at 60?°C. The catalytic properties of the encapsulated lipases were utilized to hydrolysis of racemic aromatic carboxylic acid methyl esters (Naproxen and 2-phenoxypropionic acid). The results show that the sporopollenin-based encapsulated lipase (Fe-A-Spo-E) has greater enantioselectivity and conversion in comparison with the encapsulated lipase without supports (lipase-enc).  相似文献   

11.
Biofilm infections are extremely hard to eradicate and controlled, triggered and controlled drug release properties may prolong drug release time. In this study, the ability to externally control drug release from micro and nanoparticles was investigated. We prepared micro/nanoparticles containing ciprofloxacin (CIP) and magnetic nanoparticles encapsulated in poly (lactic-co-glycolic acid) PLGA. Both micro/nanoparticles were observed to have narrow size distributions. We investigated and compared their passive and externally triggered drug release properties based on their different encapsulation structures for the nano and micro systems. In passive release studies, CIP demonstrated a fast rate of release in first 2 days which then slowed and sustained release for approximately 4 weeks. Significantly, magnetic nanoparticles containing systems all showed ability to have triggered drug release when exposed to an external oscillating magnetic field (OMF). An experiment where the OMF was turned on and off also confirmed the ability to control the drug release in a pulsatile manner. The magnetically triggered release resulted in a 2-fold drug release increase compared with normal passive release. To confirm drug integrity following release, the antibacterial activity of released drug was evaluated in Pseudomonas aeruginosa biofilms in vitro. CIP maintained its antimicrobial activity after encapsulation and triggered release.  相似文献   

12.
Using a modified sol-gel technique, we have succeeded in encapsulating ferric cytochrome c in silica nanoparticles obtained from hydrolysis and polycondensation of tetramethylorthosilicate. Particles dimensions have been determined with dynamic light scattering; this technique yields an hydrodynamic radius of about 100 nm, each nanoparticle containing about 10(2)-10(3) proteins. If stored in the cold at low ionic strength, nanoparticles are stable for more than one week, even if a slow radius increase with time is observed. CD measurements show that encapsulated proteins exhibit substantially increased stability against guanidinium hydrochloride induced denaturation. Reduction kinetics of encapsulated ferric cytochrome c by sodium dithionite, measured with standard stopped flow techniques, are slower by a factor of ten with respect to those measured in solution. Analogous experiments with myoglobin suggest that this slowing down is due to the diffusion time of dithionite within the silica matrix. Indeed, if a smaller ligand like CO is used, the intrinsic kinetic properties of encapsulated proteins are found to be unaltered even in the millisecond time range. The reported data show that our nanoparticles are extremely useful both for basic research, to study the stability and functions of encapsulated proteins, and for their potential biotechnological applications.  相似文献   

13.
Nanofluids are candidate materials for thermal management of heat transfer equipment. Practical applications of thermally enhanced nanofluids contribute to the reduction of weight of systems, leading to improved energy efficiency. Microsize particles sink into the systems because of gravity, therefore rendering the addition meaningless in terms of improving thermal properties. However, nanoparticles can be buoyant, leading to Brownian motion in the fluid, when they do not aggregate with each other. The most important factor in nanofluids is long-term stability of the dispersion in the fluid. Numerous studies have reported the dispersion stability; functional groups attached to nanoparticles play a role in causing steric hindrance and have an affinity for the surrounding fluid, resulting in preserving the dispersion. We investigate the structural effects on dispersion by molecular dynamics simulations of nanofluid containing graphene sheets with functional groups of varying lengths at the surface. The results demonstrate that short functional groups were too short to cause significant steric hindrance, while relatively longer functional groups tended to stack onto the graphene sheets, leading to trapping due to strong van der Waals interactions. Additionally, we discuss the minimum number of functional groups necessary for maintaining dispersion through calculations of the area of a single functional group.  相似文献   

14.
The development of new and effective drug delivery systems for cancer treatment represents one of the significant challenges facing biomedical technology in the last decade. Among the different methods of drug delivery, magnetic drug targeting, by enabling specific delivery of chemotherapeutic agents through the use of magnetic nanoparticles and magnetic field gradient, could be a promising approach. Recently, magnetic nanoparticles have attracted additional attention because of their potential as contrast agents for magnetic resonance imaging and heat mediators for cancer therapy. This review summarizes these approaches in the use of magnetic nanoparticles in biomedical applications and novel methods for their optimization.  相似文献   

15.
Magnetic single-enzyme nanoparticles (SENs) encapsulated within a composite inorganic/organic polymer network were fabricated via the surface modification and in situ aqueous polymerization of separate enzyme molecule. The resultant nanoparticles were characterized by transmission electron microscope (TEM), Fourier transform infrared (FTIR) spectrometer and X-ray diffraction (XRD). These particles are almost spherical in shape and have a unique size of about 50 nm in diameter. Electrical and magnetic measurements reveal that the magnetic SENs have a conductivity of 2.7 × 10−3 S cm−1, and are superparamagnetic with a saturation magnetization of 14.5 emu g−1 and a coercive force of 60 Oe. Compared with free enzyme, encapsulated enzyme exhibits a strong tolerance to the variation of solution pH, high temperature, organic solvent and long-term storage, thus showing significantly enhanced enzyme performance and stability.  相似文献   

16.
Methods for the generation of nanoparticles encapsulated within cage proteins, such as ferritins, provide particles with low polydispersities due to size constraint by the cage. The proteins can provide enhanced water solubility to enable biological applications and affinity and identification tags to facilitate delivery or the assembly of advanced materials. Many effective methods have been developed, however, they are often impeded by cage protein instability in the presence of reagents or conditions for formation of the nanoparticles. Although the stability of ferritin cage quaternary structure can be enhanced, application of ferritins to materials science remains limited by unpredictable behaviour. Recently, we reported a medium throughput technique to directly detect the ferritin cage state. Herein, we expand this strategy to screen conditions commonly used for the formation of gold nanoparticles. Not only do we report nanoparticle formation conditions that permit ferritin stability, we establish a general screening strategy based on protein cage stability that could be applied to other protein cages or for the generation of other types of particles.  相似文献   

17.
Magnetic nanoparticles (Fe3O4) were synthesized by thermal co-precipitation of ferric and ferrous chlorides. The sizes and structure of the particles were characterized using transmission electron microscopy (TEM). The size of the particles was in the range between 9.7 and 56.4 nm. Cholesterol oxidase (CHO) was successfully bound to the particles via carbodiimide activation. FTIR spectroscopy was used to confirm the binding of CHO to the particles. The binding efficiency was between 98 and 100% irrespective of the amount of particles used. Kinetic studies of the free and bound CHO revealed that the stability and activity of the enzyme were significantly improved upon binding to the nanoparticles. Furthermore, the bound enzyme exhibited a better tolerance to pH, temperature and substrate concentration. The activation energy for free and bound CHO was 13.6 and 9.3 kJ/mol, respectively. This indicated that the energy barrier of CHO activity was reduced upon binding onto Fe3O4 nanoparticles. The improvements observed in activity, stability, and functionality of CHO resulted from structural and conformational changes of the bound enzyme. The study indicates that the stability and activity of CHO could be enhanced via attachment to magnetic nanoparticles and subsequently will contribute to better uses of this enzyme in various biological and clinical applications.  相似文献   

18.
Various bio-medical applications of magnetic nanoparticles have been explored during the past few decades. As tools that hold great potential for advancing biological sciences, magnetic nanoparticles have been used as platform materials for enhanced magnetic resonance imaging (MRI) agents, biological separation and magnetic drug delivery systems, and magnetic hyperthermia treatment. Furthermore, approaches that integrate various imaging and bioactive moieties have been used in the design of multi-modality systems, which possess synergistically enhanced properties such as better imaging resolution and sensitivity, molecular recognition capabilities, stimulus responsive drug delivery with on-demand control, and spatio-temporally controlled cell signal activation. Below, recent studies that focus on the design and synthesis of multi-mode magnetic nanoparticles will be briefly reviewed and their potential applications in the imaging and therapy areas will be also discussed.  相似文献   

19.
The lungs are an attractive route for non-invasive drug delivery with advantages for both systemic and local applications. Incorporating therapeutics with polymeric nanoparticles offers additional degrees of manipulation for delivery systems, providing sustained release and the ability to target specific cells and organs. However, nanoparticle delivery to the lungs has many challenges including formulation instability due to particle-particle interactions and poor delivery efficiency due to exhalation of low-inertia nanoparticles. Thus, novel methods formulating nanoparticles into the form of micron-scale dry powders have been developed. These carrier particles exhibit improved handling and delivery, while releasing nanoparticles upon deposition in the lungs. This review covers the development of nanoparticle formulations for pulmonary delivery as both individual nanoparticles and encapsulated within carrier particles.  相似文献   

20.
相比于超顺磁性纳米颗粒,具有涡旋磁畴的磁性纳米颗粒,由于独特的磁化闭合分布、较大的粒径尺寸及外加磁场中的磁化翻转特性,使得其兼具弱的颗粒间磁相互作用和更优异的磁学性能,在生物医学领域展现出了更好的应用优势和潜力.本综述结合近年来国内外对涡旋磁畴的研究及涡旋磁纳米颗粒在生物医学领域的报道,提出了一类新型的生物医用涡旋磁溶胶体系,并以涡旋磁氧化铁纳米盘和纳米环为例,介绍了涡旋磁纳米颗粒的化学合成,并着重论述了这类具有独特涡旋畴结构的纳米颗粒在磁共振成像、抗肿瘤治疗等生物医学应用上的最新研究进展.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号