首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The stacking interaction between a tyrosine residue and the sugar ring at the catalytic subsite -1 is strictly conserved in the glycoside hydrolase family 13 enzymes. Replacing Tyr100 with leucine in cyclodextrin glycosyltransferase (CGTase) from Bacillus sp. 1011 to prevent stacking significantly decreased all CGTase activities. The adjacent stacking interaction with both Phe183 and Phe259 onto the sugar ring at subsite +2 is essentially conserved among CGTases. F183L/F259L mutant CGTase affects donor substrate binding and/or acceptor binding during transglycosylation [Nakamura et al. (1994) Biochemistry 33, 9929-9936]. To elucidate the precise role of carbohydrate/aromatic stacking interaction at subsites -1 and +2 on the substrate binding of CGTases, we analyzed the X-ray structures of wild-type (2.0 A resolution), and Y100L (2.2 A resolution) and F183L/F259L mutant (1.9 A resolution) CGTases complexed with the inhibitor, acarbose. The refined structures revealed that acarbose molecules bound to the Y100L mutant moved from the active center toward the side chain of Tyr195, and the hydrogen bonding and hydrophobic interaction between acarbose and subsites significantly diminished. The position of pseudo-tetrasaccharide binding in the F183L/F259L mutant was closer to the non-reducing end, and the torsion angles of glycosidic linkages at subsites -1 to +1 on molecule 1 and subsites -2 to -1 on molecule 2 significantly changed compared with that of each molecule of wild-type-acarbose complex to adopt the structural change of subsite +2. These structural and biochemical data suggest that substrate binding in the active site of CGTase is critically affected by the carbohydrate/aromatic stacking interaction with Tyr100 at the catalytic subsite -1 and that this effect is likely a result of cooperation between Tyr100 and Phe259 through stacking interaction with substrate at subsite +2.  相似文献   

2.
T Miura  H Takeuchi  I Harada 《Biochemistry》1991,30(24):6074-6080
The state of H-bonding and the hydrophobic interaction of six tryptophan side chains in lysozyme bound to substrate-analogous inhibitors were investigated by combining H----D exchange labeling and Raman difference spectroscopy. The frequency of the W17 band due to Trp-63 shifts downward upon inhibitor binding, indicating a specific and strong H-bond formation between the N1 site of the side chain and the inhibitor molecule. On the other hand, the H-bonding state of Trp-62 in the complex is as weak as that in inhibitor-free lysozyme, suggesting no contribution of this residue to the inhibitor binding. Intensity increases of W17 and W18 bands observed upon inhibitor binding are, respectively, ascribed to an increase at Trp-28 and a decrease at Trp-111 in hydrophobic interactions with the environment. The environmental changes are explained consistently by a movement of the Met-105 side chain sandwiched by two indole rings of Trp-28 and 111 in the direction from Trp-111 to Trp-28. The sandwich structure in a core domain, hydrophobic box, and its rearrangement are considered to play an important role in the enzymatic function of lysozyme.  相似文献   

3.
Phospholipase A(2) is an important enzyme involved in the production of prostaglandins and their related compounds causing inflammatory disorders. Among the several peptides tested, the peptide Phe-Leu-Ser-Tyr-Lys (FLSYK) showed the highest inhibition. The dissociation constant (K(d)) for this peptide was calculated to be 3.57 +/- 0.05 x 10(-9) m. In order to further improve the degree of inhibition of phospholipase A(2), a complex between Russells viper snake venom phospholipase A(2) and a peptide inhibitor FLSYK was crystallized, and its structure was determined by crystallographic methods and refined to an R-factor of 0.205 at 1.8 A resolution. The structure contains two crystallographically independent molecules of phospholipase A(2) (molecules A and B) and a peptide molecule specifically bound to molecule A only. The two molecules formed an asymmetric dimer. The dimerization caused a modification in the binding site of molecule A. The overall conformations of molecules A and B were found to be generally similar except three regions i.e. the Trp-31-containing loop (residues 25-34), the beta-wing consisting of two antiparallel beta-strands (residues 74-85) and the C-terminal region (residues 119-133). Out of the above three, the most striking difference pertains to the conformation of Trp-31 in the two molecules. The orientation of Trp-31 in molecule A was suitable for the binding of FLSYK, while it disallowed the binding of peptide to molecule B. The structure of the complex clearly shows that the peptide is so placed in the binding site of molecule A that the side chain of its lysine residue interacted extensively with the enzyme and formed several hydrogen bonds in addition to a strong electrostatic interaction with critical Asp-49. The C-terminal carboxylic group of the peptide interacted with the catalytic residue His-48.  相似文献   

4.
Studies of the binding of the four sugars alpha- and beta-N-acetyl-D-glucosamine (GlcNAc) and its alpha- and beta-methyl glycosides to hen egg-white lysozyme (EC 3.2.1.17) by means of high-resolution 1H n.m.r. at 270 MHz are reported. The details of the binding analyses are described in an Appendix. The results show that the sugars bind independently to more than one site in lysozyme. The apparent fully bound chemical shifts to the inhibitor proton signals show that, although the major binding modes are generally similar for the four sugars, the binding of alpha GlcNAc is distinct from that of alpha MeGlcNAc and beta MeClcNAc. The binding of beta GlcNAc is intermediate in character between these two modes. The observed shift changes of the inhibitor signals are correlated with the crystal structures of lysozyme-inhibitor complexes by the use of Johnson-Bovey ring-current calculations. Together with consideration of the chemical-shift anisotropy of the GlcNAc amide group, these suggest that GlcNAc-binding sites in solution are in subsites C and E. The calculations show also that the indole rings of Trp-62 and Trp-63 rotate towards subsite C on the binding of GlcNAc, whereas Trp-108 moves away slightly. These findings indicate a difference between the solution and tetragonal crystal forms of lysozyme-GlcNAc and lysozymes-beta MeGlcNAc complexes. In the crystal structure, binding of acetamido monosaccharides is only observed in subsite C, and binding in subsite E is prevented by crystal packing.  相似文献   

5.
A novel series of highly potent substituted pyridone Pim-1 kinase inhibitors is described. Structural requirements for in vitro activity are outlined as well as a complex crystal structure with the most potent Pim-1 inhibitor reported (IC(50)=50 nM). A hydrogen bond matrix involving the Pim-1 inhibitor, two water molecules, and the catalytic core, together with a potential weak hydrogen bond between an aromatic hydrogen on the R(1) phenyl ring and a main-chain carbonyl of Pim-1, accounts for the overall potency of this inhibitor.  相似文献   

6.
The binding of FtsZ to ZipA is a potential target for antibacterial therapy. Based on a small molecule inhibitor of the ZipA-FtsZ interaction, a parallel synthesis of small molecules was initiated which targeted a key region of ZipA involved in FtsZ binding. The X-ray crystal structure of one of these molecules complexed with ZipA was solved. The structure revealed an unexpected binding mode, facilitated by desolvation of a loosely bound surface water.  相似文献   

7.
Bifurcated electron transfer during ubiquinol oxidation is the key reaction of cytochrome bc1 complex catalysis. Binding of the competitive inhibitor 5-n-heptyl-6-hydroxy-4,7-dioxobenzothiazole to the Qo site of the cytochrome bc1 complex from Saccharomyces cerevisiae was analyzed by x-ray crystallography. This alkylhydroxydioxobenzothiazole is bound in its ionized form as evident from the crystal structure and confirmed by spectroscopic analysis, consistent with a measured pKa = 6.1 of the hydroxy group in detergent micelles. Stabilizing forces for the hydroxyquinone anion inhibitor include a polarized hydrogen bond to the iron-sulfur cluster ligand His181 and on-edge interactions via weak hydrogen bonds with cytochrome b residue Tyr279. The hydroxy group of the latter contributes to stabilization of the Rieske protein in the b-position by donating a hydrogen bond. The reported pH dependence of inhibition with lower efficacy at alkaline pH is attributed to the protonation state of His181 with a pKa of 7.5. Glu272, a proposed primary ligand and proton acceptor of ubiquinol, is not bound to the carbonyl group of the hydroxydioxobenzothiazole ring but is rotated out of the binding pocket toward the heme bL propionate A, to which it is hydrogen-bonded via a single water molecule. The observed hydrogen bonding pattern provides experimental evidence for the previously proposed proton exit pathway involving the heme propionate and a chain of water molecules. Binding of the alkyl-6-hydroxy-4,7-dioxobenzothiazole is discussed as resembling an intermediate step of ubiquinol oxidation, supporting a single occupancy model at the Qo site.  相似文献   

8.
Biochemical, luminescence and mass spectroscopy approaches indicate that Trp-151 (helix V) plays an important role in hydrophobic stacking with the galactopyranosyl ring of substrate and that Glu-269 (helix VIII) is essential for substrate affinity and specificity. The x-ray structure of the lactose permease (LacY) with bound substrate is consistent with these conclusions and suggests that a possible H-bond between Glu-269 and Trp-151 may play a critical role in the architecture of the binding site. We have now probed this relationship by exploiting the intrinsic luminescence of a single Trp-151 LacY with various replacements for Glu-269. Mutations at position 269 dramatically alter the environment of Trp-151 in a manner that correlates with binding affinity of LacY substrates. Furthermore, chemical modification of Trp-151 with N-bromosuccinimide indicates that Glu-269 forms an H-bond with the indole N. It is concluded that 1) an H-bond between the indole N and Glu-269 optimizes the formation of the substrate binding site in the inward facing conformation of LacY, and 2) the disposition of the residues implicated in sugar binding in different conformers suggests that sugar binding by LacY involves induced fit.  相似文献   

9.
Cardiolipin (CL) has been shown to play a crucial role in regulating the function of proteins in the inner mitochondrial membrane. As the most abundant protein of the inner mitochondrial membrane, the ADP/ATP carrier (AAC) has long been the model of choice to study CL-protein interactions, and specifically bound CLs have been identified in a variety of crystal structures of AAC. However, how CL binding affects the structural dynamics of AAC in atomic detail remains largely elusive. Here we compared all-atom molecular dynamics simulations on bovine AAC1 in lipid bilayers with and without CLs. Our results show that on the current microsecond simulation time scale: 1) CL binding does not significantly affect overall stability of the carrier or structural symmetry at the matrix-gate level; 2) pocket volumes of the carrier and interactions involved in the matrix-gate network become more heterogeneous in parallel simulations with membranes containing CLs; 3) CL binding consistently strengthens backbone hydrogen bonds within helix H2 near the matrix side; and 4) CLs play a consistent stabilizing role on the domain 1-2 interface through binding with the R30:R71:R151 stacking structure and fixing the M2 loop in a defined conformation. CL is necessary for the formation of this stacking structure, and this structure in turn forms a very stable CL binding site. Such a delicate equilibrium suggests the strictly conserved R30:R71:R151stacking structure of AACs could function as a switch under regulation of CLs. Taken together, these results shed new light on the CL-mediated modulation of AAC function.  相似文献   

10.
The product specificity of cyclodextrin glucanotransferase (CGTase) from alkalophilic Bacillus sp. #1011 is improved to near-uniformity by mutation of histidine-233 to asparagine. Asparagine 233-replaced CGTase (H233N-CGTase) no longer produces alpha-cyclodextrin, while the wild-type CGTase from the same bacterium produces a mixture of predominantly alpha-, beta-, and gamma-cyclodextrins, catalyzing the conversion of starch into cyclic or linear alpha-1,4-linked glucopyranosyl chains. In order to better understand the protein engineering of H233N-CGTase, the crystal structure of the mutant enzyme complexed with a maltotetraose analog, acarbose, was determined at 2.0 A resolution with a final crystallographic R value of 0.163 for all data. Taking a close look at the active site cleft in which the acarbose molecule is bound, the most probable reason for the improved specificity of H233N-CGTase is the removal of interactions needed to form a compact ring like a-cyclodextrin.  相似文献   

11.
Blair-Johnson M  Fiedler T  Fenna R 《Biochemistry》2001,40(46):13990-13997
The 1.9 A X-ray crystal structure of human myeloperoxidase complexed with cyanide (R = 0.175, R(free) = 0.215) indicates that cyanide binds to the heme iron with a bent Fe-C-N angle of approximately 157 degrees, and binding is accompanied by movement of the iron atom by 0.2 A into the porphyrin plane. The bent orientation of the cyanide allows the formation of three hydrogen bonds between its nitrogen atom and the distal histidine as well as two water molecules in the distal cavity. The 1.85 A X-ray crystal structure of an inhibitory complex with thiocyanate (R = 0.178, R(free) = 0.210) indicates replacement of chloride at a proximal helix halide binding site in addition to binding in the distal cavity in an orientation parallel with the heme. The thiocyanate replaces two water molecules in the distal cavity and is hydrogen bonded to Gln 91. The 1.9 A structures of the complexes formed by bromide (R = 0.215, R(free) = 0.270) and thiocyanate (R = 0.198, R(free) = 0.224) with the cyanide complex of myeloperoxidase show how the presence of bound cyanide alters the binding site for bromide in the distal heme cavity, while having little effect on thiocyanate binding. These results support a model for a single common binding site for halides and thiocyanate as substrates or as inhibitors near the delta-meso carbon of the porphyrin ring in myeloperoxidase.  相似文献   

12.
The fluorescence of Trp-226 in the regulatory subunit of bovine type II cAMP-dependent protein kinase is unaffected by the binding of cAMP, but is quenched by the binding of 2'-dansyl-cAMP (DNS-cAMP). Up to 67% of the fluorescence of Trp-226 can be quenched by resonant energy transfer to the DNS-cAMP bound to the first site, and 96% of the fluorescence can be quenched by saturating both sites with DNS-cAMP. The observed efficiencies of energy transfer gave a distance of 16 A between Trp-226 and the DNS-cAMP bound at the first site and a distance of 12.7 A between Trp-226 and the DNS-cAMP bound at second site. The fluorescence of Trp-226 was suppressed by incubation of RII with the self-complementary octanucleotide TGACGTCA (CRE) due to binding of the oligonucleotide to RII. A detailed study of the binding equilibrium showed that each RII(cAMP)2 molecule binds 1 molecule of CRE with Kd = 80 nM. The corresponding Kd value for cAMP-depleted RII was found to be 25-fold higher. RII was also found to bind randomly selected DNA fragments with an average Kd value much higher than that of CRE. These observations show for the first time that the binding of oligonucleotide to RII is cAMP-enhanced and sequence-selective.  相似文献   

13.
Cyclodextrin glycosyltransferases (CGTase) (EC 2.4.1.19) are extracellular bacterial enzymes that generate cyclodextrins from starch. All known CGTases produce mixtures of alpha, beta, and gamma-cyclodextrins. A maltononaose inhibitor bound to the active site of the CGTase from Bacillus circulans strain 251 revealed sugar binding subsites, distant from the catalytic residues, which have been proposed to be involved in the cyclodextrin size specificity of these enzymes. To probe the importance of these distant substrate binding subsites for the alpha, beta, and gamma-cyclodextrin product ratios of the various CGTases, we have constructed three single and one double mutant, Y89G, Y89D, S146P and Y89D/S146P, using site-directed mutagenesis. The mutations affected the cyclization, coupling; disproportionation and hydrolyzing reactions of the enzyme. The double mutant Y89D/S146P showed a twofold increase in the production of alpha-cyclodextrin from starch. This mutant protein was crystallized and its X-ray structure, in a complex with a maltohexaose inhibitor, was determined at 2.4 A resolution. The bound maltohexaose molecule displayed a binding different from the maltononaose inhibitor, allowing rationalization of the observed change in product specificity. Hydrogen bonds (S146) and hydrophobic contacts (Y89) appear to contribute strongly to the size of cyclodextrin products formed and thus to CGTase product specificity. Changes in sugar binding subsites -3 and -7 thus result in mutant proteins with changed cyclodextrin production specificity.  相似文献   

14.
U Heinemann  C Alings    M Bansal 《The EMBO journal》1992,11(5):1931-1939
The self-complementary DNA fragment CCGGCGCCGG crystallizes in the rhombohedral space group R3 with unit cell parameters a = 54.07 A and c = 44.59 A. The structure has been determined by X-ray diffraction methods at 2.2 A resolution and refined to an R value of 16.7%. In the crystal, the decamer forms B-DNA double helices with characteristic groove dimensions: compared with B-DNA of random sequence, the minor groove is wide and deep and the major groove is rather shallow. Local base pair geometries and stacking patterns are within the range commonly observed in B-DNA crystal structures. The duplex bears no resemblance to A-form DNA as might have been expected for a sequence with only GC base pairs. The shallow major groove permits an unusual crystal packing pattern with several direct intermolecular hydrogen bonds between phosphate oxygens and cytosine amino groups. In addition, decameric duplexes form quasi-infinite double helices in the crystal by end-to-end stacking. The groove geometries and accessibilities of this molecule as observed in the crystal may be important for the mode of binding of both proteins and drug molecules to G/C stretches in DNA.  相似文献   

15.
The active center of a serine protease is the catalytic triad composed of His-57, Ser-195 and Asp-102. The existing crystal structure data on serine proteases have not fully answered a number of fundamental questions relating to the catalytic activity of serine proteases. The new high resolution native porcine beta-trypsin (BPT) structure is aimed at extending the knowledge on the conformation of the active site and the ordered water structure within and around the active site. The crystal structure of BPT has been determined at 1.63 A resolution. An acetate ion bound at the active site of a trypsin molecule by both classical hydrogen bonds and C-HellipsisO hydrogen bonds has been identified for the first time. A large network of water molecules extending from the recognition amino acid Asp-184 to the entry of the active site has been observed in the BPT structure. A detailed comparison with inhibitor complexes and autolysates indicates that the sulfate ion and the acetate ion bind at the same site of the trypsin molecule. The Ser-195 Cbeta-Ogamma-His-57 Nepsilon angle in the catalytic triad of BPT is intermediate between the corresponding values of the complex and native structure due to acetate ion binding. The network of waters from the recognition amino acid to the active site entry is probably the first ever complete picture of functional waters around the active site. Structural comparisons show that the functional waters involved in the binding of small molecule inhibitors and protease inhibitors are distinctly different.  相似文献   

16.
The presence of bound water in the solution structure of the IgG binding domain of streptococcal protein G has been investigated by nuclear magnetic resonance using three-dimensional 1H rotating frame Overhauser 1H-15N multiple quantum coherence spectroscopy. The backbone amide protons of three residues, Ala20, Gln32 and Tyr33, are found to be in close proximity to bound water. Examination of the three-dimensional structure of the IgG binding domain indicates that in the vicinity of these three residues there are no backbone groups that do not already participate in hydrogen bonding and there are no suitably placed side-chain groups available for hydrogen bonding with water. As the lifetime of the bound water detected in this nuclear magnetic resonance experiment is greater than about one nanosecond, it is likely that the two bound water molecules participate in a bifurcating hydrogen bonding network comprising a CO-NH hydrogen bonded pair, such that the water molecule accepts a hydrogen bond from the NH proton and donates one to the carbonyl oxygen with the result that the amide proton is involved in a three center hydrogen bond. On the basis of the structure, one water molecule participates in such an interaction with the Ala20(NH)-Met1(CO) hydrogen bonded pair at the beginning of an anti-parallel beta-sheet, and the other with the Tyr33(NH)-Val29(CO) hydrogen bonded pair in the single alpha-helix. The latter, which is external and solvent accessible, is associated with a distortion in the alpha-helix centered around Tyr33 which consists of a significant increase in the CO(i-4)-N(i) and CO(i-4)-NH(i) distances relative to those in the rest of the helix, as well as a significant departure in the phi, psi angles of Tyr33 relative to regular helical geometry. Such solvent induced distortions in alpha-helices have been previously noticed in crystal structures and were postulated as possible folding intermediates for helical structures. The present observation of this phenomenon in solution indicates, however, that these water molecules are tightly bound and represent an integral part of the protein framework.  相似文献   

17.
In many vertebrate tissues CD39-like ecto-nucleoside triphosphate diphosphohydrolases (NTPDases) act in concert with ecto-5′-nucleotidase (e5NT, CD73) to convert extracellular ATP to adenosine. Extracellular ATP is a cytotoxic, pro-inflammatory signalling molecule whereas its product adenosine constitutes a universal and potent immune suppressor. Interference with these ectonucleotidases by use of small molecule inhibitors or inhibitory antibodies appears to be an effective strategy to enhance anti-tumour immunity and suppress neoangiogenesis. Here we present the first crystal structures of an NTPDase catalytic ectodomain in complex with the Reactive Blue 2 (RB2)-derived inhibitor PSB-071. In both of the two crystal forms presented the inhibitor binds as a sandwich of two molecules at the nucleoside binding site. One of the molecules is well defined in its orientation. Specific hydrogen bonds are formed between the sulfonyl group and the nucleoside binding loop. The methylphenyl side chain functionality that improved NTPDase2-specificity is sandwiched between R245 and R394, the latter of which is exclusively found in NTPDase2. The second molecule exhibits great in-plane rotational freedom and could not be modelled in a specific orientation. In addition to this structural insight into NTPDase inhibition, the observation of the putative membrane interaction loop (MIL) in two different conformations related by a 10° rotation identifies the MIL as a dynamic section of NTPDases that is potentially involved in regulation of catalysis.  相似文献   

18.
Succinyl-Gln-Val-Val-Ala-Ala-p-nitroanilide corresponding to a common sequence of endogenous thiol protease inhibitors is a noncompetitive reversible inhibitor of papain. In order to elucidate the binding mode of the inhibitor at the atomic level, its complex with papain was crystallized at ca. pH 7.0 using the hanging drop method, and the crystal structure was analyzed at 1.7-A resolution. The crystal has space group P2(1)2(1)2(1), with a = 43.09, b = 102.32, c = 49.69 A, and Z = 4. A total of 47,215 observed reflections were collected on the imaging plates using the same single crystal, and 19,833 unique reflections with Fo > sigma (Fo) were used for structure determination and refinement. The papain structure was determined by use of the atomic coordinates of papain previously reported, and then refined by the X-PLOR program. The inhibitor molecule was located on a difference Fourier map and fitted into the electron density with the aid of computer graphics. The complex structure was finally refined to R = 19.6% including 118 solvent molecules. The X-ray analysis of the complex crystal shows that the inhibitor is located at the R-domain side, not in the center of the binding site created by the R- and L-domains of papain. Such a binding mode of the inhibitor explains well the biological behavior that the inhibitor exhibits against papain. Comparison with the structure of papain-stefin B complex indicates that the structure of the Gln-Val-Val-Ala-Gly sequence itself is not necessarily the essential requisite for inhibitory activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
N-Acetyllactosamine is the most prevalent disaccharide moiety in the glycans on the surface of mammalian cells and often found as repeat units in the linear and branched polylactosamines, known as i- and I-antigen, respectively. The β1-4-galactosyltransferase-I (β4Gal-T1) enzyme is responsible for the synthesis of the N-acetyllactosamine moiety. To understand its oligosaccharide acceptor specificity, we have previously investigated the binding of tri- and pentasaccharides of N-glycan with a GlcNAc at their nonreducing end and found that the extended sugar moiety in these acceptor substrates binds to the crevice present at the acceptor substrate binding site of the β4Gal-T1 molecule. Here we report seven crystal structures of β4Gal-T1 in complex with an oligosaccharide acceptor with a nonreducing end GlcNAc that has a β1-6-glycosidic link and that are analogous to either N-glycan or i/I-antigen. In the crystal structure of the complex of β4Gal-T1 with I-antigen analog pentasaccharide, the β1-6-branched GlcNAc moiety is bound to the sugar acceptor binding site of the β4Gal-T1 molecule in a way similar to the crystal structures described previously; however, the extended linear tetrasaccharide moiety does not interact with the previously found extended sugar binding site on the β4Gal-T1 molecule. Instead, it interacts with the different hydrophobic surface of the protein molecule formed by the residues Tyr-276, Trp-310, and Phe-356. Results from the present and previous studies suggest that β4Gal-T1 molecule has two different oligosaccharide binding regions for the binding of the extended oligosaccharide moiety of the acceptor substrate.  相似文献   

20.
Cyclic adenosine 5'-monophosphate (cAMP) is an ancient signaling molecule, and in vertebrates, a primary target for cAMP is cAMP-dependent protein kinase (PKA). (R(p))-adenosine 3',5'-cyclic monophosphothioate ((R(p))-cAMPS) and its analogues are the only known competitive inhibitors and antagonists for cAMP activation of PKA, while (S(p))-adenosine 3',5'-cyclic monophosphothioate ((S(p))-cAMPS) functions as an agonist. The crystal structures of a Delta(1-91) deletion mutant of the RIalpha regulatory subunit of PKA bound to (R(p))-cAMPS and (S(p))-cAMPS were determined at 2.4 and 2.3 A resolution, respectively. While the structures are similar to each other and to the crystal structure of RIalpha bound to cAMP, differences in the dynamical properties of the protein when (R(p))-cAMPS is bound are apparent. The structures highlight the critical importance of the exocyclic oxygen's interaction with the invariant arginine in the phosphate binding cassette (PBC) and the importance of this interaction for the dynamical properties of the interactions that radiate out from the PBC. The conformations of the phosphate binding cassettes containing two invariant arginine residues (Arg209 on domain A, and Arg333 on domain B) are somewhat different due to the sulfur interacting with this arginine. Furthermore, the B-site ligand together with the entire domain B show significant differences in their overall dynamic properties in the crystal structure of Delta(1-91) RIalpha complexed with (R(p))-cAMPS phosphothioate analogue ((R(p))-RIalpha) compared to the cAMP- and (S(p))-cAMPS-bound type I and II regulatory subunits, based on the temperature factors. In all structures, two structural solvent molecules exist within the A-site ligand binding pocket; both mediate water-bridged interactions between the ligand and the protein. No structured waters are in the B-site pocket. Owing to the higher resolution data, the N-terminal segment (109-117) of the RIalpha subunit can also be traced. This strand forms an intermolecular antiparallel beta-sheet with the same strand in an adjacent molecule and implies that the RIalpha subunit can form a weak homodimer even in the absence of its dimerization domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号