首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The centrosome organizes microtubules, which are made up of alpha-tubulin and beta-tubulin, and contains centrosome-bound gamma-tubulin, which is involved in microtubule nucleation. Here we identify two new human tubulins and show that they are associated with the centrosome. One is a homologue of the Chlamydomonas delta-tubulin Uni3, and the other is a new tubulin, which we have named epsilon-tubulin. Localization of delta-tubulin and epsilon-tubulin to the centrosome is independent of microtubules, and the patterns of localization are distinct from each other and from that of gamma-tubulin. Delta-tubulin is found in association with the centrioles, whereas epsilon-tubulin localizes to the pericentriolar material. epsilon-Tubulin exhibits a cell-cycle-specific pattern of localization, first associating with only the older of the centrosomes in a newly duplicated pair and later associating with both centrosomes. epsilon-Tubulin thus distinguishes the old centrosome from the new at the level of the pericentriolar material, indicating that there may be a centrosomal maturation event that is marked by the recruitment of epsilon-tubulin.  相似文献   

2.
The functional significance of distinct gamma-tubulins in several unrelated eukaryotes remains an enigma due to the difficulties to investigate this question experimentally. Using specific nucleotidic and immunological probes, we have demonstrated that the two divergent Drosophila gamma-tubulins, gamma-tub23C and gamma-tub37CD, are expressed in cultured cells. Gamma-tub37CD is constantly detected at the centrosome and absent in the mitotic spindle, while gamma-tub23C is extensively recruited to the centrosome during mitosis and relocalizes in the mitotic spindle. The two gamma-tubulins exhibit distinct biochemical properties. Gamma-tub23C is present in the soluble gamma-tubulin small complexes (10S) and gamma-tubulin big complexes (35S) and is loosely associated to the cytoskeleton. In contrast, gamma-tub37CD is undetectable in the soluble fraction and exhibits a tight binding to the centrosome. Syncytial embryos also contain the two gamma-tubulin isotypes, which are differentially recruited at the centrosome. Gamma-tub23C is present in the 10S soluble complexes only, while y-tub37CD is contained in the two soluble complexes and is recruited at the centrosome where it exhibits an heterogeneous binding. These results demonstrated an heterogeneity of the two Drosophila gamma-tubulin isotypes both in the cytoskeletal and the soluble fractions. They suggest the direct implication of the 35S complex in the centrosomal recruitment of gamma-tubulin and a conditional functional redundancy between the two gamma-tubulins.  相似文献   

3.
gamma-Tubulin is a centrosomal component involved in microtubule nucleation. To determine how this molecule behaves during the cell cycle, we have established several vertebrate somatic cell lines that constitutively express a gamma-tubulin/green fluorescent protein fusion protein. Near simultaneous fluorescence and DIC light microscopy reveals that the amount of gamma-tubulin associated with the centrosome remains relatively constant throughout interphase, suddenly increases during prophase, and then decreases to interphase levels as the cell exits mitosis. This mitosis-specific recruitment of gamma-tubulin does not require microtubules. Fluorescence recovery after photobleaching (FRAP) studies reveal that the centrosome possesses two populations of gamma-tubulin: one that turns over rapidly and another that is more tightly bound. The dynamic exchange of centrosome-associated gamma-tubulin occurs throughout the cell cycle, including mitosis, and it does not require microtubules. These data are the first to characterize the dynamics of centrosome-associated gamma-tubulin in vertebrate cells in vivo and to demonstrate the microtubule-independent nature of these dynamics. They reveal that the additional gamma-tubulin required for spindle formation does not accumulate progressively at the centrosome during interphase. Rather, at the onset of mitosis, the centrosome suddenly gains the ability to bind greater than three times the amount of gamma-tubulin than during interphase.  相似文献   

4.
Dynamin 2 binds gamma-tubulin and participates in centrosome cohesion   总被引:6,自引:0,他引:6  
Dynamin 2 (Dyn2) is a large GTPase involved in vesicle formation and actin reorganization. In this study, we report a novel role for Dyn2 as a component of the centrosome that is involved in centrosome cohesion. By light microscopy, Dyn2 localized aside centrin and colocalized with gamma-tubulin at the centrosome; by immunoelectron microscopy, however, Dyn2 was detected in the pericentriolar material as well as on centrioles. Exogenously expressed green fluorescent protein (GFP)-tagged Dyn2 also localized to the centrosome, whereas glutathione S-transferase (GST)-tagged Dyn2 pulled down a protein complex(es) containing actin, alpha-tubulin and gamma-tubulin from liver homogenate. Furthermore, gel overlay and immunoprecipitation indicated a direct interaction between gamma-tubulin and a 219-amino-acid middle domain of Dyn2. Reduction of Dyn2 protein levels with small-interfering RNA (siRNA) resulted in centrosome splitting, whereas microtubule nucleation from centrosomes was not affected, suggesting a role for Dyn2 in centrosome cohesion. Finally, fluorescence recovery after photobleaching (FRAP) analysis of a GFP-tagged Dyn2 middle domain indicated that Dyn2 is a dynamic exchangeable component of the centrosome. These findings suggest a novel function for Dyn2 as a participant in centrosome cohesion.  相似文献   

5.
The cycle of spindle pole body (SPB) duplication, differentiation, and segregation in Schizosaccharomyces pombe is different from that in some other yeasts. Like the centrosome of vertebrate cells, the SPB of S. pombe spends most of interphase in the cytoplasm, immediately next to the nuclear envelope. Some gamma-tubulin is localized on the SPB, suggesting that it plays a role in the organization of interphase microtubules (MTs), and serial sections demonstrate that some interphase MTs end on or very near to the SPB. gamma-Tubulin is also found on osmiophilic material that lies near the inner surface of the nuclear envelope, immediately adjacent to the SPB, even though there are no MTs in the interphase nucleus. Apparently, the MT initiation activities of gamma-tubulin in S. pombe are regulated. The SPB duplicates in the cytoplasm during late G2 phase, and the two resulting structures are connected by a darkly staining bridge until the mitotic spindle forms. As the cell enters mitosis, the nuclear envelope invaginates beside the SPB, forming a pocket of cytoplasm that accumulates dark amorphous material. The nuclear envelope then opens to form a fenestra, and the duplicated SPB settles into it. Each part of the SPB initiates intranuclear MTs, and then the two structures separate to lie in distinct fenestrae as a bipolar spindle forms. Through metaphase, the SPBs remain in their fenestrae, bound to the polar ends of spindle MTs; at about this time, a small bundle of cytoplasmic MTs forms in association with each SPB. These MTs are situated with one end near to, but not on, the SPBs, and they project into the cytoplasm at an orientation that is oblique to the simple axis. As anaphase proceeds, the nuclear fenestrae close, and the SPBs are extruded back into the cytoplasm. These observations define new fields of enquiry about the control of SPB duplication and the dynamics of the nuclear envelope.  相似文献   

6.
Centrioles organize microtubules in two ways: either microtubules elongate from the centriole cylinder itself, forming a flagellum or a cilium ("template elongation"), or pericentriolar material assembles and nucleates a microtubule aster ("astral nucleation"). During spermatogenesis in most species, a motile flagellum elongates from one of the sperm centrioles, whereas after fertilization a large aster of microtubules forms around the sperm centrioles in the egg cytoplasm. Using Xenopus egg extracts we have developed an in vitro system to study this change in microtubule-organizing activity. An aster of microtubules forms around the centrioles of permeabilized frog sperm in egg extracts, but not in pure tubulin. However, when the sperm heads are incubated in the egg extract in the presence of nocodazole, they are able to nucleate a microtubule aster after isolation and incubation with pure calf brain tubulin. This provides a two-step assay that distinguishes between centrosome assembly and subsequent microtubule nucleation. We have studied several centrosomal antigens during centrosome assembly. The CTR2611 antigen is present in the sperm head in the peri-centriolar region. gamma-tubulin and certain phosphorylated epitopes appear in the centrosome only after incubation in the egg extract. gamma-tubulin is recruited from the egg extract and associated with electron-dense patches dispersed in a wide area around the centrioles. Immunodepletion of gamma-tubulin and associated molecules from the egg extract before sperm head incubation prevents the change in microtubule-organizing activity of the sperm heads. This suggests that gamma-tubulin and/or associated molecules play a key role in centrosome formation and activity.  相似文献   

7.
Human gamma-tubulin functions in fission yeast   总被引:3,自引:2,他引:1       下载免费PDF全文
《The Journal of cell biology》1994,126(6):1465-1473
gamma-Tubulin is a phylogenetically conserved component of microtubule- organizing centers that is essential for viability and microtubule function. To examine the functional conservation of gamma-tubulin, we have tested the ability of human gamma-tubulin to function in the fission yeast Schizosaccharomyces pombe. We have found that expression of a human gamma-tubulin cDNA restores viability and a near-normal growth rate to cells of S. pombe lacking endogenous gamma-tubulin. Immunofluorescence microscopy showed that these cells contained normal mitotic spindles and interphase microtubule arrays, and that human gamma-tubulin, like S. pombe gamma-tubulin, localized to spindle pole bodies, the fungal microtubule-organizing centers. These results demonstrate that human gamma-tubulin functions in fission yeast, and they suggest that in spite of the great morphological differences between the microtubule-organizing centers of humans and fission yeasts, gamma-tubulin is likely to perform the same tasks in both. They suggest, moreover, that the proteins that interact with gamma-tubulin, including, most obviously, microtubule-organizing center proteins, must also be conserved. We have also found that a fivefold overexpression of S. pombe gamma-tubulin causes no reduction in growth rates or alteration of microtubule organization. We hypothesize that the excess gamma-tubulin is maintained in the cytoplasm in a form incapable of nucleating microtubule assembly. Finally, we have found that expression of human gamma-tubulin or overexpression of S. pombe gamma-tubulin causes no significant alteration of resistance to the antimicrotubule agents benomyl, thiabendazole and nocodazole.  相似文献   

8.
gamma-Tubulin is a conserved essential protein required for assembly and function of the mitotic spindle in humans and yeast. For example, human gamma-tubulin can replace the gamma-tubulin gene in Schizosaccharomyces pombe. To understand the structural/functional domains of gamma-tubulin, we performed a systematic alanine-scanning mutagenesis of human gamma-tubulin (TUBG1) and studied phenotypes of each mutant allele in S. pombe. Our screen, both in the presence and absence of the endogenous S. pombe gamma-tubulin, resulted in 11 lethal mutations and 12 cold-sensitive mutations. Based on structural mapping onto a homology model of human gamma-tubulin generated by free energy minimization, all deleterious mutations are found in residues predicted to be located on the surface, some in positions to interact with alpha- and/or beta-tubulins in the microtubule lattice. As expected, one class of tubg1 mutations has either an abnormal assembly or loss of the mitotic spindle. Surprisingly, a subset of mutants with abnormal spindles does not arrest in M phase but proceeds through anaphase followed by abnormal cytokinesis. These studies reveal that in addition to its previously appreciated role in spindle microtubule nucleation, gamma-tubulin is involved in the coordination of postmetaphase events, anaphase, and cytokinesis.  相似文献   

9.
Genetic evidence has shown the presence of a common spindle pole organiser in Physarum amoebae and plasmodia. But the typical centrosome and mitosis observed in amoebae are replaced in plasmodia by an intranuclear mitosis devoid of any structurally defined organelle. The fate of gamma-tubulin and of another component (TPH17) of the centrosome of Physarum amoebae was investigated in the nuclei of synchronous plasmodia. These two amoebal centrosomal elements were present in the nuclear compartment during the entire cell cycle and exhibited similar relocalisation from metaphase to telophase. Three preparation methods showed that gamma-tubulin containing material was dispersed in the nucleoplasm during interphase. It constituted an intranuclear thread-like structure. In contrast, the TPH17 epitope exhibited a localisation close to the nucleolus. In late G2-phase, the gamma-tubulin containing elements condensed in a single organelle which further divided. Intranuclear microtubules appeared before the condensation of the gamma-tubulin material and treatment with microtubule poisons suggested that microtubules were required in this process. The TPH17 epitope relocalised in the intranuclear spindle later than the gamma-tubulin containing material suggesting a maturation process of the mitotic poles. The decondensation of the gamma-tubulin material and of the material containing the TPH17 epitope occurred immediately after telophase. Hence in the absence of a structurally defined centrosome homologue, the microtubule nucleating material undergoes a cycle of condensation and decondensation during the cell cycle.  相似文献   

10.
Microtubule nucleation and organization by the centrosome require gamma-tubulin, a protein that exists in a macromolecular complex called the gamma-tubulin ring complex (gammaTuRC). We report characterization of CDK5RAP2, a novel centrosomal protein whose mutations have been linked to autosomal recessive primary microcephaly. In somatic cells, CDK5RAP2 localizes throughout the pericentriolar material in all stages of the cell cycle. When overexpressed, CDK5RAP2 assembled a subset of centrosomal proteins including gamma-tubulin onto the centrosomes or under the microtubule-disrupting conditions into microtubule-nucleating clusters in the cytoplasm. CDK5RAP2 associates with the gammaTuRC via a short conserved sequence present in several related proteins found in a range of organisms from fungi to mammals. The binding of CDK5RAP2 is required for gammaTuRC attachment to the centrosome but not for gammaTuRC assembly. Perturbing CDK5RAP2 function delocalized gamma-tubulin from the centrosomes and inhibited centrosomal microtubule nucleation, thus leading to disorganization of interphase microtubule arrays and formation of anastral mitotic spindles. Together, CDK5RAP2 is a pericentriolar structural component that functions in gammaTuRC attachment and therefore in the microtubule organizing function of the centrosome. Our findings suggest that centrosome malfunction due to the CDK5RAP2 mutations may underlie autosomal recessive primary microcephaly.  相似文献   

11.
The centrosome is the major microtubule organizing structure in somatic cells. Centrosomal microtubule nucleation depends on the protein gamma-tubulin. In mammals, gamma-tubulin associates with additional proteins into a large complex, the gamma-tubulin ring complex (gammaTuRC). We characterize NEDD1, a centrosomal protein that associates with gammaTuRCs. We show that the majority of gammaTuRCs assemble even after NEDD1 depletion but require NEDD1 for centrosomal targeting. In contrast, NEDD1 can target to the centrosome in the absence of gamma-tubulin. NEDD1-depleted cells show defects in centrosomal microtubule nucleation and form aberrant mitotic spindles with poorly separated poles. Similar spindle defects are obtained by overexpression of a fusion protein of GFP tagged to the carboxy-terminal half of NEDD1, which mediates binding to gammaTuRCs. Further, we show that depletion of NEDD1 inhibits centriole duplication, as does depletion of gamma-tubulin. Our data suggest that centriole duplication requires NEDD1-dependent recruitment of gamma-tubulin to the centrosome.  相似文献   

12.
In this study we find that the function of BRCA1 inhibits the microtubule nucleation function of centrosomes. In particular, cells in early S phase have quiescent centrosomes due to BRCA1 activity, which inhibits the association of gamma-tubulin with centrosomes. We find that modification of either of two specific lysine residues (Lys-48 and Lys-344) of gamma-tubulin, a known substrate for BRCA1-dependent ubiquitination activity, led to centrosome hyperactivity. Interestingly, mutation of gamma-tubulin lysine 344 had a minimal effect on centrosome number but a profound effect on microtubule nucleation function, indicating that the processes regulating centrosome duplication and microtubule nucleation are distinct. Using an in vitro aster formation assay, we found that BRCA1-dependent ubiquitination activity directly inhibits microtubule nucleation by centrosomes. Mutant BRCA1 protein that was inactive as a ubiquitin ligase did not inhibit aster formation by the centrosome. Further, a BRCA1 carboxy-terminal truncation mutant that was an active ubiquitin ligase lacked domains critical for the inhibition of centrosome function. These experiments reveal an important new functional assay regulated by the BRCA1-dependent ubiquitin ligase, and the results suggest that the loss of this BRCA1 activity could cause the centrosome hypertrophy and subsequent aneuploidy typically found in breast cancers.  相似文献   

13.
Axons and dendrites contain dense microtubule (MT) assays that are not attached to a traditional MT nucleating structure such as the centrosome. Nevertheless, the MTs within these neurites are highly organized with respect to their polarity, and consist of a regular 13-protofilament lattice, the two known characteristics of MTs nucleated at the centrosome. These observations suggest either that axonal and dendritic MTs arise at the centrosome, or that they are nucleated locally, following a redistribution of MT nucleating material from the centrosome during neuronal development. To begin distinguishing between these possibilities, we have determined the distribution of gamma-tubulin within cultured sympathetic neurons. gamma-tubulin, a newly discovered protein which is specifically localized to the pericentriolar region of nonneuronal cells (Zheng, Y., M. K. Jung, and B. R. Oakley. 1991. Cell. 65:817-823; Stearns, T., L. Evans, and M. Kirschner. 1991. Cell. 65:825-836), has been shown to play a critical role in MT nucleation in vivo (Joshi, H. C., M. J. Palacios, L. McNamara, and D. W. Cleveland. 1992. Nature (Lond.). 356:80-83). Because the gamma-tubulin content of individual cells is extremely low, we relied principally on the high degree of resolution and sensitivity afforded by immunoelectron microscopy. Our studies reveal that, like the situation in nonneuronal cells, gamma-tubulin is restricted to the pericentriolar region of the neuron. Furthermore, serial reconstruction analyses indicate that the minus ends of MTs in both axons and dendrites are free of gamma-tubulin immunoreactivity. The absence of gamma-tubulin from the axon was confirmed by immunoblot analyses of pure axonal fractions obtained from explant cultures. The observation that gamma-tubulin is restricted to the pericentriolar region of the neuron provides compelling support for the notion that MTs destined for axons and dendrites are nucleated at the centrosome, and subsequently released for translocation into these neurites.  相似文献   

14.
《The Journal of cell biology》1995,130(5):1137-1147
alpha-, beta-, and gamma-tubulins are evolutionarily highly conserved members of the tubulin gene superfamily. While the abundant members, alpha- and beta-tubulins, constitute the building blocks of cellular microtubule polymers, gamma-tubulin is a low abundance protein which localized to the pericentriolar material and may play a role in microtubule assembly. To test whether gamma-tubulin mediates the nucleation of microtubule assembly in vivo, and co-assembles with alpha- and beta-tubulins into microtubules or self-assembles into macro- molecular structures, we experimentally elevated the expression of gamma-tubulin in the cell cytoplasm. In most cells, overexpression of gamma-tubulin causes a dramatic reorganization of the cellular microtubule network. Furthermore, we show that when overexpressed, gamma-tubulin causes ectopic nucleation of microtubules which are not associated with the centrosome. In a fraction of cells, gamma-tubulin self-assembles into novel tubular structures with a diameter of approximately 50 nm (named gamma-tubules). Furthermore, unlike microtubules, gamma-tubules are resistant to cold or drug induced depolymerization. These data provide evidence that gamma-tubulin can cause nucleation of microtubule assembly and can self-assemble into novel tubular structures.  相似文献   

15.
gamma-Tubulin is typically associated with microtubule organising centres, such as the centrosome, and appears to mediate microtubule nucleation. Centrosomes are usually not found in higher plants, but active genes homologous to gamma-tubulin have been identified in the plant kingdom, including the angiosperms Arabidopsis, maize and rice. We have isolated and characterised gamma-tubulin cDNA sequences of two further angiosperm species, barley and tobacco. Sequence comparison revealed a phylogenetic tree with distinct clusters corresponding to the systematic position of the species. Furthermore, domains, thought to be exposed in the folded protein and to be candidates for interaction with associated, nucleation-site related proteins, exhibited motifs highly specific of multicellular plants. Strong expression of the gamma-tubulin genes, as determined by Northern blotting, correlated with mitotic activity. Expression dropped distinctly when mitotic activity ceased. Thus, in post-mitotic tissues that showed intricate reshuffling of cortical microtubule arrays related to cell shaping only very low gamma-tubulin steady-state RNA levels were found, contrasting with the situation for alpha-tubulin. The findings indicate that gamma-tubulin expression in plants may be more tightly linked to mitosis, although there is some gamma-tubulin expression at the RNA level even after mitosis. It follows that the post-mitotic changes in microtubular arrays may be less dependent on concurrent gamma-tubulin RNA expression than mitotic cells.  相似文献   

16.
The gamma-tubulin complex, via its ability to organize microtubules, is critical for accurate chromosome segregation and cytokinesis in the fission yeast, Schizosaccharomyces pombe. To better understand its roles, we have purified the S. pombe gamma-tubulin complex. Mass spectrometric analyses of the purified complex revealed known components and identified two novel proteins (i.e., Mbo1p and Gfh1p) with homology to gamma-tubulin-associated proteins from other organisms. We show that both Mbo1p and Gfh1p localize to microtubule organizing centers. Although cells deleted for either mbo1(+) or gfh1(+) are viable, they exhibit a number of defects associated with altered microtubule function such as defects in cell polarity, nuclear positioning, spindle orientation, and cleavage site specification. In addition, mbo1Delta and gfh1Delta cells exhibit defects in astral microtubule formation and anchoring, suggesting that these proteins have specific roles in astral microtubule function. This study expands the known roles of gamma-tubulin complex components in organizing different types of microtubule structures in S. pombe.  相似文献   

17.
Since the discovery of gamma-tubulin, attention has focused on its involvement as a microtubule nucleator at the centrosome. However, mislocalization of gamma-tubulin away from the centrosome does not inhibit mitotic spindle formation in Drosophila melanogaster, suggesting that a critical function for gamma-tubulin might reside elsewhere. A previous RNA interference (RNAi) screen identified five genes (Dgt2-6) required for localizing gamma-tubulin to spindle microtubules. We show that the Dgt proteins interact, forming a stable complex. We find that spindle microtubule generation is substantially reduced after knockdown of each Dgt protein by RNAi. Thus, the Dgt complex that we name "augmin" functions to increase microtubule number. Reduced spindle microtubule generation after augmin RNAi, particularly in the absence of functional centrosomes, has dramatic consequences on mitotic spindle formation and function, leading to reduced kinetochore fiber formation, chromosome misalignment, and spindle bipolarity defects. We also identify a functional human homologue of Dgt6. Our results suggest that an important mitotic function for gamma-tubulin may lie within the spindle, where augmin and gamma-tubulin function cooperatively to amplify the number of microtubules.  相似文献   

18.
Microtubule assembly is initiated by the gamma-tubulin ring complex (gamma-TuRC). In yeast, the microtubule is nucleated from gamma-TuRC anchored to the amino-terminus of the spindle pole body component Spc110p, which interacts with calmodulin (Cmd1p) at the carboxy-terminus. However, mammalian protein that anchors gamma-TuRC remains to be elucidated. A giant coiled-coil protein, CG-NAP (centrosome and Golgi localized PKN-associated protein), was localized to the centrosome via the carboxyl-terminal region. This region was found to interact with calmodulin by yeast two-hybrid screening, and it shares high homology with the carboxyl-terminal region of another centrosomal coiled-coil protein, kendrin. The amino-terminal region of either CG-NAP or kendrin indirectly associated with gamma-tubulin through binding with gamma-tubulin complex protein 2 (GCP2) and/or GCP3. Furthermore, endogenous CG-NAP and kendrin were coimmunoprecipitated with each other and with endogenous GCP2 and gamma-tubulin, suggesting that CG-NAP and kendrin form complexes and interact with gamma-TuRC in vivo. These proteins were localized to the center of microtubule asters nucleated from isolated centrosomes. Pretreatment of the centrosomes by antibody to CG-NAP or kendrin moderately inhibited the microtubule nucleation; moreover, the combination of these antibodies resulted in stronger inhibition. These results imply that CG-NAP and kendrin provide sites for microtubule nucleation in the mammalian centrosome by anchoring gamma-TuRC.  相似文献   

19.
Centrosomes are dynamic organelles that consist of a pair of cylindrical centrioles, surrounded by pericentriolar material. The pericentriolar material contains factors that are involved in microtubule nucleation and organization, and its recruitment varies during the cell cycle. We report here that proteasome inhibition in HeLa cells induces the accumulation of several proteins at the pericentriolar material, including gamma-tubulin, GCP4, NEDD1, ninein, pericentrin, dynactin, and PCM-1. The effect of proteasome inhibition on centrosome proteins does not require intact microtubules and is reversed after removal of proteasome inhibitors. This accrual of centrosome proteins is paralleled by accumulation of ubiquitin in the same area and increased polyubiquitylation of nonsoluble gamma-tubulin. Cells that have accumulated centrosome proteins in response to proteasome inhibition are impaired in microtubule aster formation. Our data point toward a role of the proteasome in the turnover of centrosome proteins, to maintain proper centrosome function.  相似文献   

20.
The small Ran GTPase, a key regulator of nucleocytoplasmic transport, is also involved in microtubule assembly and nuclear membrane formation. Herein, we show by immunofluorescence, immunoelectron microscopy, and biochemical analysis that a fraction of Ran is tightly associated with the centrosome throughout the cell cycle. Ran interaction with the centrosome is mediated by the centrosomal matrix A kinase anchoring protein (AKAP450). Accordingly, when AKAP450 is delocalized from the centrosome, Ran is also delocalized, and as a consequence, microtubule regrowth or anchoring is altered, despite the persisting association of gamma-tubulin with the centrosome. Moreover, Ran is recruited to Xenopus sperm centrosome during its activation for microtubule nucleation. We also demonstrate that centrosomal proteins such as centrin and pericentrin, but not gamma-tubulin, AKAP450, or ninein, undertake a nucleocytoplasmic exchange as they concentrate in the nucleus upon export inhibition by leptomycin B. Together, these results suggest a challenging possibility, namely, that centrosome activity could depend upon nucleocytoplasmic exchange of centrosomal proteins and local Ran-dependent concentration at the centrosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号