首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Synthesis and apoenzyme attachment of lipoic acid have emerged as a new complex metabolic pathway. Mutations in several genes involved in the lipoic acid de novo pathway have recently been described (i.e., LIAS, NFU1, BOLA3, IBA57), but no mutation was found so far in genes involved in the specific process of attachment of lipoic acid to apoenzymes pyruvate dehydrogenase (PDHc), α-ketoglutarate dehydrogenase (α-KGDHc) and branched chain α-keto acid dehydrogenase (BCKDHc) complexes.

Methods

Exome capture was performed in a boy who developed Leigh disease following a gastroenteritis and had combined PDH and α-KGDH deficiency with a unique amino acid profile that partly ressembled E3 subunit (dihydrolipoamide dehydrogenase / DLD) deficiency. Functional studies on patient fibroblasts were performed. Lipoic acid administration was tested on the LIPT1 ortholog lip3 deletion strain yeast and on patient fibroblasts.

Results

Exome sequencing identified two heterozygous mutations (c.875C?>?G and c.535A?>?G) in the LIPT1 gene that encodes a mitochondrial lipoyltransferase which is thought to catalyze the attachment of lipoic acid on PDHc, α-KGDHc, and BCKDHc. Anti-lipoic acid antibodies revealed absent expression of PDH E2, BCKDH E2 and α-KGDH E2 subunits. Accordingly, the production of 14CO2 by patient fibroblasts after incubation with 14Cglucose, 14Cbutyrate or 14C3OHbutyrate was very low compared to controls. cDNA transfection experiments on patient fibroblasts rescued PDH and α-KGDH activities and normalized the levels of pyruvate and 3OHbutyrate in cell supernatants. The yeast lip3 deletion strain showed improved growth on ethanol medium after lipoic acid supplementation and incubation of the patient fibroblasts with lipoic acid decreased lactate level in cell supernatants.

Conclusion

We report here a putative case of impaired free or H protein-derived lipoic acid attachment due to LIPT1 mutations as a cause of PDH and α-KGDH deficiencies. Our study calls for renewed efforts to understand the mechanisms of pathology of lipoic acid-related defects and their heterogeneous biochemical expression, in order to devise efficient diagnostic procedures and possible therapies.
  相似文献   

2.
Lipoic acid is an essential prosthetic group of four mitochondrial enzymes involved in the oxidative decarboxylation of pyruvate, α-ketoglutarate, and branched chain amino acids and in the glycine cleavage. Lipoic acid is synthesized stepwise within mitochondria through a process that includes lipoic acid synthetase. We identified the homozygous mutation c.746G>A (p.Arg249His) in LIAS in an individual with neonatal-onset epilepsy, muscular hypotonia, lactic acidosis, and elevated glycine concentration in plasma and urine. Investigation of the mitochondrial energy metabolism showed reduced oxidation of pyruvate and decreased pyruvate dehydrogenase complex activity. A pronounced reduction of the prosthetic group lipoamide was found in lipoylated proteins.  相似文献   

3.
The pyruvate dehydrogenase complex of Escherichia coli contains two lipoic acid residues per dihydrolipoamide acetyltransferase chain, and these are known to engage in the part-reactions of the enzyme. The enzyme complex was treated with trypsin at pH 7.0, and a partly proteolysed complex was obtained that had lost almost 60% of its lipoic acid residues although it retained 80% of its pyruvate dehydrogenase-complex activity. When this complex was treated with N-ethylmaleimide in the presence of pyruvate and the absence of CoASH, the rate of modification of the remaining S-acetyldihydrolipoic acid residues was approximately equal to the accompanying rate of loss of enzymic activity. This is in contrast with the native pyruvate dehydrogenase complex, where under the same conditions modification proceeds appreciably faster than the loss of enzymic activity. The native pyruvate dehydrogenase complex was also treated with lipoamidase prepared from Streptococcus faecalis. The release of lipoic acid from the complex followed zero-order kinetics for most of the reaction, whereas the accompanying loss of pyruvate dehydrogenase-complex activity lagged substantially behind. These results eliminate a model for the enzyme mechanism in which specifically one of the two lipoic acid residues on each dihydrolipoamide acetyltransferase chain is essential for the reaction. They are consistent with a model in which the dihydrolipoamide acetyltransferase component contains more lipoic acid residues than are required to serve the pyruvate decarboxylase subunits under conditions of saturating substrates, enabling the function of an excised or inactivated lipoic acid residue to be taken over by another one. Unusual structural properties of the enzyme complex might permit this novel feature of the enzyme mechanism.  相似文献   

4.
Branched-chain keto acid dehydrogenase, an enzyme in the common pathway of branched-chain amino acid catabolism of Pseudomonas putida, is a multienzyme complex which catalyzes the oxidative decarboxylation of branched-chain keto acids. The objective of the present study was to isolate strains with mutations of this and other keto acid dehydrogenases and to map the location of the mutations on the chromosome of P. putida. Several strains with mutations of branched-chain keto acid dehydrogenase, two pyruvate and two 2-ketoglutarate dehydrogenase, were isolated, and the defective subunits were identified by biochemical analysis. By using a recombinant XYL-K plasmid to mediate conjugation, these mutations were mapped in relation to a series of auxotrophic and other catabolic mutations. The last time of entry recorded was at approximately 35 min, and the data were consistent with a single point of entry. Branched-chain keto acid dehydrogenase mutations affecting E1, E1 plus E2, and E3 subunits mapped at approximately 35 min. One other strain affected in the common pathway was deficient in branched-chain amino acid transaminase, and the mutation was mapped at 16 min. The mutations in the two pyruvate dehydrogenase mutants, one deficient in E1 and the other deficient in E1 plus E2, mapped at 22 minutes. The 2-ketoglutarate dehydrogenase mutation affecting the E1 subunit mapped at 12 minutes. A 2-ketoglutarate dehydrogenase mutant deficient in E3 was isolated, but the mutation proved too leaky to map.  相似文献   

5.
Lipoic acid (1,2-dithiolane-pentanoic acid) is a dithiol which is effective in affording protection against oxidative stress by virtue of its two sulphydryl moieties. It is present in all kinds of eukaryotic and prokaryotic cells. As lipoamide, it functions as a cofactor in the multienzyme complexes that catalyse the oxidative decarboxylation of α-keto acids such as pyruvate, α-ketoglutarate, and branched-chain α-keto acids. The complete enzyme pathway responsible for the de novo synthesis of lipoic acid has not yet been elucidated. Octanoic acid appears to be the precursor for the eight-carbon fatty acid chain, and cysteine the source of sulfur. Lipoic acid is unique, among antioxidants, because it retains powerful antioxidant properties in both its reduced (dihydrolipoic acid) and oxidised (lipoic acid) forms. Both lipoic and dihydrolipoic acids have metal-chelating ability and quench activated oxygen species either in the cytosol or in the hydrophobic domains. Dihydrolipoic acid has more antioxidant properties than lipoic acid, and it plays an important role in the recycling of other oxidised radical scavengers such as glutathione, ascorbate and tocopherol. However, dihydrolipoic acid can also exert pro-oxidant properties both by its iron-reducing ability and by its ability to generate sulfur-containing radicals that can damage proteins. There are few quantitative data on lipoic acid contents in vegetables. It has been found in asparagus, wheat and potatoes, and recently, the presence of both lipoic and dihydrolipoic acids in roots, leaves and in the stroma of wheat has been demonstrated.  相似文献   

6.
Cannabinoid CB1 receptors peripherally modulate energy metabolism. Here, we investigated the role of CB1 receptors in the expression of glucose/pyruvate/tricarboxylic acid (TCA) metabolism in rat abdominal muscle. Dihydrolipoamide dehydrogenase (DLD), a flavoprotein component (E3) of α-ketoacid dehydrogenase complexes with diaphorase activity in mitochondria, was specifically analyzed. After assessing the effectiveness of the CB1 receptor antagonist AM251 (3 mg kg-1, 14 days) on food intake and body weight, we could identified seven key enzymes from either glycolytic pathway or TCA cycle—regulated by both diet and CB1 receptor activity—through comprehensive proteomic approaches involving two-dimensional electrophoresis and MALDI-TOF/LC-ESI trap mass spectrometry. These enzymes were glucose 6-phosphate isomerase (GPI), triosephosphate isomerase (TPI), enolase (Eno3), lactate dehydrogenase (LDHa), glyoxalase-1 (Glo1) and the mitochondrial DLD, whose expressions were modified by AM251 in hypercaloric diet-induced obesity. Specifically, AM251 blocked high-carbohydrate diet (HCD)-induced expression of GPI, TPI, Eno3 and LDHa, suggesting a down-regulation of glucose/pyruvate/lactate pathways under glucose availability. AM251 reversed the HCD-inhibited expression of Glo1 and DLD in the muscle, and the DLD and CB1 receptor expression in the mitochondrial fraction. Interestingly, we identified the presence of CB1 receptors at the membrane of striate muscle mitochondria. DLD over-expression was confirmed in muscle of CB 1 -/- mice. AM251 increased the pyruvate dehydrogenase and glutathione reductase activity in C2C12 myotubes, and the diaphorase/oxidative activity in the mitochondria fraction. These results indicated an up-regulation of methylglyoxal and TCA cycle activity. Findings suggest that CB1 receptors in muscle modulate glucose/pyruvate/lactate pathways and mitochondrial oxidative activity by targeting DLD.  相似文献   

7.
SYNOPSIS. The occurrence and levels of activity of various enzymes of carbohydrate catabolism in culture forms (promastigotes) of 4 human species of Leishmania (L. brasiliensis, L. donovani, L. mexicana, and L. tropica) were compared. These organisms possess enzymes of the Embden-Meyerhof pathway but lack lactate dehydrogenase. No evidence could be found for the production of lactic acid by growing cultures and lactic acid could not be detected either in cell-free preparations or after incubation of cell-free extracts with pyruvate and NADH under appropriate conditions. All 4 species possess α-glycerophosphate dehydrogenase and α-glycerophosphate phosphatase which together could regenerate NAD, thus compensating for the absence of lactate dehydrogenase. The oxidative and nonoxidative reactions of the hexose monophosphate pathway are present in all 4 species. Cell-free extracts have pyruvate dehydrogenase activity which allows the entry of pyruvate into and its subsequent oxidation through the tricarboxylic acid cycle. All enzymes of this cycle, including a thiamine pyrophosphate dependent α-ketoglutarate dehydrogenase are present. Both NAD and NADP-linked malate dehydrogenase activities are present. The isocitrate dehydrogenase is NADP specific. There is an active glutamate dehydrogenase which could compete with α-ketoglutarate dehydrogenase for the common substrate (α-ketoglutarate). Replenishment of C4 acids is accomplished by heterotrophic CO2 fixation catalyzed by pyruvate carboxylase. All 4 species have high levels of NADH oxidase activity. Several enzymes thus far not found in any species of Leishmania have been demonstrated. These are: phosphoglucose isomerase, triose phosphate isomerase, fructose-1, 6-diphosphatase, 3-phosphoglycerate kinase, enolase, α-glycerophosphate dehydrogenase, α-glycerophosphate phosphatase, pyruvate dehydrogenase complex, citrate synthase, aconitase, α-ketoglutarate dehydrogenase, glutamate dehydrogenase, and NADH oxidase.  相似文献   

8.
d-2-hydroxyglutaric aciduria is a neurometabolic disorder with both a mild and a severe phenotype and with unknown etiology. Recently, a novel enzyme, d-2-hydroxyglutarate dehydrogenase, which converts d-2-hydroxyglutarate into 2-ketoglutarate, and its gene were identified. In the genes of two unrelated patients affected with d-2-hydroxyglutaric aciduria, we identified disease-causing mutations. One patient was homozygous for a missense mutation (c.1331T-->C; p.Val444Ala). The other patient was compound heterozygous for a missense mutation (c.440T-->G; p.Ile147Ser) and a splice-site mutation (IVS1-23A-->G) that resulted in a null allele. Overexpression studies in HEK-293 cells of proteins containing the missense mutations showed a marked reduction of d-2-hydroxyglutarate dehydrogenase activity, proving that mutations in the d-2-hydroxyglutarate dehydrogenase gene cause d-2-hydroxyglutaric aciduria.  相似文献   

9.
CitrLactococcus lactis subsp. lactis 3022 produced more biomass and converted most of the glucose substrate to diacetyl and acetoin when grown aerobically with hemin and Cu. The activity of diacetyl synthase was greatly stimulated by the addition of hemin or Cu, and the activity of NAD-dependent diacetyl reductase was very high. Hemin did not affect the activities of NADH oxidase and lactate dehydrogenase. These results indicated that the pyruvate formed via glycolysis would be rapidly converted to diacetyl and that the diacetyl would then be converted to acetoin by the NAD-dependent diacetyl reductase to reoxidize NADH when the cells were grown aerobically with hemin or Cu. On the other hand, the Y(Glu) value for the hemincontaining culture was lower than for the culture without hemin, because acetate production was repressed when an excess of glucose was present. However, in the presence of lipoic acid, an essential cofactor of the dihydrolipoamide acetyltransferase part of the pyruvate dehydrogenase complex, hemin or Cu enhanced acetate production and then repressed diacetyl and acetoin production. The activity of diacetyl synthase was lowered by the addition of lipoic acid. These results indicate that hemin or Cu stimulates acetyl coenzyme A (acetyl-CoA) formation from pyruvate and that lipoic acid inhibits the condensation of acetyl-CoA with hydroxyethylthiamine PP(i). In addition, it appears that acetyl-CoA not used for diacetyl synthesis is converted to acetate.  相似文献   

10.
The fungicide zinc dimethyldithiocarbamate (ziram) is a sulfhydryl reagent which inhibits specifically the growth of the yeast Saccharomyces cerevisiae on nonfermentable substrates. In isolated mitochondria, the uncoupled as well as the state 3 oxidations of succinate, α-ketoglutarate, ethanol, and malate plus pyruvate are sensitive to ziram concentrations of 10 to 30 μm. The oxidations of isocitrate, of external NADH, of α-glycerophosphate, and of ascorbate plus tetramethylphenylenediamine exhibit a lower sensitivity to ziram. Succinate, α-ketoglutarate, and pyruvate dehydrogenases activities are 50% inhibited by concentration of ziram lower than 10 μm. At the same concentrations, neither the mitochondrial transports of succinate, ADP, or phosphate nor oxidative phosphorylation and adenosine triphosphatase activities are modified. The kinetic study of the inhibition by ziram of succinate dehydrogenase activity shows that ziram is noncompetitive with succinate and produces sigmoidal inhibitions of state 3 and of uncoupled oxidation of succinate by intact mitochondria. Inhibition of succinate:phenazine methosulfate oxidoreductase activity yields exponential kinetics. However sigmoidal-type inhibition is observed when succinate dehydrogenase activity is stimulated by ATP.  相似文献   

11.
Avidin can form intermolecular cross-links between particles of the pyruvate dehydrogenase multienzyme complex from various sources. Avidin does this by binding to lipoic acid-containing regions of the dihydrolipoamide acetyltransferase polypeptide chains that comprise the structural core of the complex. It is inferred that the lipoyl domains of the acetyltransferase chain extend outwards from the interior of the enzyme particle, interdigitating between the subunits of the other two enzymes bound peripherally in the assembled structure, with the lipoyl-lysine residues capable of reaching to within at least 1-2 nm of the outer surface of the enzyme complex (diameter ca. 37 nm). The distribution of enzymic activities between different domains of the dihydrolipoamide acetyltransferase chain implies that considerable movement of the lipoyl domains is a feature of the catalytic activity of the enzyme complex. There is evidence that the lipoyl domain of the 2-oxo acid dehydrogenase complexes is similar in structure to a domain that binds the cofactor biotin, also in amide linkage with a specific lysine residue, in the biotin-dependent class of carboxylases.  相似文献   

12.
We have extended the method of active-enzyme chromatography to include the use of broad zones of enzyme. This allows examination of interacting systems in a way formally analogous to sedimentation velocity so that simulation of the observed activity profiles is possible. The method has been applied using pyridine nucleotide-linked active enzyme assays. At the concentrations presently accessible by this technique, hexokinase and glucose-6-phosphate dehydrogenase, both associating systems, show single symmetrical boundaries, as does isolated diaphorase, while pyruvate and α-ketoglutarate dehydrogenases show more complex patterns, with the position of the reaction boundary for diaphorase activity being dependent on enzyme concentration.  相似文献   

13.
To examine the stereospecific effects of lipoic compounds on pyruvate metabolism, the effects of R-lipoic acid (R-LA), S-lipoic acid (S-LA) and 1,2-diselenolane-3-pentanoic acid (Se-LA) on the activities of the mammalian pyruvate dehydrogenase complex (PDC) and its catalytic components were investigated. Both S-LA and R-LA markedly inhibited PDC activity; whereas Se-LA displayed inhibition only at higher concentrations. Examination of the effects on the individual catalytic components indicated that Se-LA inhibited the pyruvate dehydrogenase component; whereas R-LA and S-LA inhibited the dihydrolipoamide acetyltransferase component. The three lipoic compounds lowered dihydrolipoamide dehydrogrenase (E3) activity in the forward reaction by about 30 to 45%. The kinetic data of E3 showed that both R-LA and Se-LA are used as substrates by E3 for the reverse reaction. Decarboxylation of [1-14C]pyruvate via PDC by cultured HepG2 cells was not affected by R-LA, but moderately decreased with S-LA and Se-LA. These findings indicate that (i) purified PDC and its catalytic components are affected by lipoic compounds based on their stereoselectivity; and (ii) the oxidation of pyruvate by intact HepG2 cells is not inhibited by R-LA. The later finding with the intact cells is in support of therapeutic role of R-LA as an antioxidant.  相似文献   

14.
Human dihydrolipoamide dehydrogenase (LADH, E3) is a component in the pyruvate-, alpha-ketoglutarate- and branched-chain ketoacid dehydrogenase complexes and in the glycine cleavage system. The pathogenic mutations of LADH cause severe metabolic disturbances, called E3 deficiency that often involve cardiological and neurological symptoms and premature death. Our laboratory has recently shown that some of the known pathogenic mutations augment the reactive oxygen species (ROS) generation capacity of LADH, which may contribute to the clinical presentations. A recent report concluded that elevated oxidative stress generated by the above mutants turns the lipoic acid cofactor on the E2 subunits dysfunctional. In the present contribution we generated by molecular dynamics (MD) simulation the conformation of LADH that is proposed to be compatible with ROS generation. We propose here for the first time the structural changes, which are likely to turn the physiological LADH conformation to its ROS-generating conformation. We also created nine of the pathogenic mutants of the ROS-generating conformation and again used MD simulation to detect structural changes that the mutations induced in this LADH conformation. We propose the structural changes that may lead to the modulation in ROS generation of LADH by the pathogenic mutations.  相似文献   

15.
In the long-slender bloodstream form of Trypanosoma brucei, the enzyme dihydrolipoamide dehydrogenase exists in the absence of the 2-oxo-acid dehydrogenase complexes of which it is normally a component, and appears to be associated with the plasma membrane of the organism [Danson, M. J., Conroy, K., McQuattie, A. & Stevenson, K. J. (1987) Biochem. J. 243, 661-665]. In the present paper, a complete subcellular fractionation of T. brucei has been carried out and, by comparison with marker enzymes, it is confirmed that the dihydrolipoamide dehydrogenase is indeed associated with the plasma membrane. In addition, we now provide evidence that the distribution of the enzyme is over the whole surface of the membrane, including the flagellar pocket region, and that the enzyme is not found in any other cellular fraction. A study of the latency of the enzyme suggests that it is located on the cytoplasmic surface of the plasma membrane. The discovery of the presumed substrate of dihydrolipoamide dehydrogenase, lipoic acid, is reported for T. brucei. Using a biological assay involving a strain of Escherichia coli that requires lipoic acid for growth, we have found that acid-hydrolysed extracts of T. brucei contain 1.7 (+/- 0.2) ng of the cofactor/mg protein. The chemical nature of the lipoic acid was confirmed by gas chromatography/mass spectrometry.  相似文献   

16.
D S Flournoy  P A Frey 《Biochemistry》1986,25(20):6036-6043
The pyruvate dehydrogenase component (E1) of the pyruvate dehydrogenase complex catalyzes the decomposition of 3-fluoropyruvate to CO2, fluoride anion, and acetate. Acetylthiamin pyrophosphate (acetyl-TPP) is an intermediate in this reaction. Incubation of the pyruvate dehydrogenase complex with 3-fluoro[1,2-14C]pyruvate, TPP, coenzyme A (CoASH), and either NADH or pyruvate as reducing systems leads to the formation of [14C]acetyl-CoA. In this reaction the acetyl group of acetyl-TPP is partitioned by transfer to both CoASH (87 +/- 2%) and water (13 +/- 2%). When the E1 component is incubated with 3-fluoro[1,2-14C]pyruvate, TPP, and dihydrolipoamide, [14C]acetyldihydrolipoamide is produced. The formation of [14C]acetyldihydrolipoamide was examined as a function of dihydrolipoamide concentration (0.25-16 mM). A plot of the extent of acetyl group partitioning to dihydrolipoamide as a function of 1/[dihydrolipoamide] showed 95 +/- 2% acetyl group transfer to dihydrolipoamide when dihydrolipoamide concentration was extrapolated to infinity. It is concluded that acetyl-TPP is chemically competent as an intermediate for the pyruvate dehydrogenase complex catalyzed oxidative decarboxylation of pyruvate.  相似文献   

17.
Yarrowia lipolytica WSH-Z06 harbours a promising capability to oversynthesize α-ketoglutarate (α-KG). Its wide utilization is hampered by the formation of high concentrations of pyruvate. In this study, a metabolic strategy for the overexpression of the α and β subunits of pyruvate dehydrogenase E1, E2 and E3 components was designed to reduce the accumulation of pyruvate. Elevated expression level of α subunit of E1 component improved the α-KG production and reduced the pyruvate accumulation. Due to a reduction in the acetyl-CoA supply, neither the growth of cells nor the synthesis of α-KG was restrained by the overexpression of β subunit of E1, E2 and E3 components. Furthermore, via the overexpression of these thiamine pyrophosphate (TPP)-binding subunits, the dependency of pyruvate dehydrogenase on thiamine was diminished in strains T1 and T2, in which α and β subunits of E1 component were separately overexpressed. In these two recombinant strains, the accumulation of pyruvate was insensitive to variations in exogenous thiamine. The results suggest that α-KG production can be enhanced by altering the dependence on TPP of pyruvate dehydrogenase and that the competition for the cofactor can be switched to ketoglutarate dehydrogenase via separate overexpression of the TPP-binding subunits of pyruvate dehydrogenase. The results presented here provided new clue to improve α-KG production.  相似文献   

18.
Deoxynucleotide sequencing of a cDNA for the dihydrolipoamide acetyltransferase (PDC-E2) component of human pyruvate dehydrogenase complex (PDC) revealed an open reading frame of 1848 base pairs corresponding to a leader sequence of 54 amino acids and a mature protein of 561 amino acids (59 551 Da). Both an amino-terminal lipoyl-bearing domain and a carboxy-terminal catalytic domain are present in the deduced amino acid sequence. The lipoyl-bearing domain contains two repeating units of 127 amino acids, each harboring one lipoic acid-binding lysine. Thus, mammalian PDC-E2 differs as to the number of lipoic acid-binding sites from other dihydrolipoamide acyltransferases in both prokaryotic and eukaryotic organisms.  相似文献   

19.
Dihydrolipohyl dehydrogenase (DLD) is a FAD-dependent enzyme that catalyzes the reversible oxidation of dihydrolipoamide. Herein, we report medium optimization for the production of a recombinant DLD with NADH-dependent diaphorase activity from a strain of Bacillus sphaericus PAD-91. The DLD gene that consisted of 1413 bp was expressed in Escherichia coli BL21 (DE3), and its enzymatic properties were studied. The composition of production medium was optimized using one-variable-at-a-time method followed by response surface methodology (RSM). B. sphaericus DLD catalyzed the reduction of lipoamide by NAD+ and exhibited diaphorase activity. The molecular weight of enzyme was about 50 kDa and determined to be a monomeric protein. Recombinant diaphorase showed its optimal activity at temperature of 30 °C and pH 8.5. K m and V max values with NADH were estimated to be 0.025 mM and 275.8 U/mL, respectively. Recombinant enzyme was optimally produced in fermentation medium containing 10 g/L sucrose, 25 g/L yeast extract, 5 g/L NaCl and 0.25 g/L MgSO4. At these concentrations, the actual diaphorase activity was calculated to be 345.0 ± 4.1 U/mL. By scaling up fermentation from flask to bioreactor, enzyme activity was increased to 486.3 ± 5.5 U/mL. Briefly, a DLD with diaphorase activity from a newly isolated B. sphaericus PAD-91 was characterized and the production of recombinant enzyme was optimized using RSM technique.  相似文献   

20.
The four pyruvate dehydrogenase kinase (PDK) and two pyruvate dehydrogenase phosphatase (PDP) isoenzymes that are present in mammalian tissues regulate activity of the pyruvate dehydrogenase complex (PDC) by phosphorylation/dephosphorylation of its pyruvate dehydrogenase (E1) component. The effect of lipoic acids on the activity of PDKs and PDPs was investigated in purified proteins system. R-lipoic acid, S-lipoic acid and R-dihydrolipoic acid did not significantly affect activities of PDPs and at the same time inhibited PDKs to different extents (PDK1?>?PDK4?~?PDK2?>?PDK3 for R-LA). Since lipoic acids inhibited PDKs activity both when reconstituted in PDC and in the presence of E1 alone, dissociation of PDK from the lipoyl domains of dihydrolipoamide acetyltransferase in the presence of lipoic acids is not a likely explanation for inhibition. The activity of PDK1 towards phosphorylation sites 1, 2 and 3 of E1 was decreased to the same extent in the presence of R-lipoic acid, thus excluding protection of the E1 active site by lipoic acid from phosphorylation. R-lipoic acid inhibited autophosphorylation of PDK2 indicating that it exerted its effect on PDKs directly. Inhibition of PDK1 by R-lipoic acid was not altered by ADP but was decreased in the presence of pyruvate which itself inhibits PDKs. An inhibitory effect of lipoic acid on PDKs would result in less phosphorylation of E1 and hence increased PDC activity. This finding provides a possible mechanism for a glucose (and lactate) lowering effect of R-lipoic acid in diabetic subjects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号