首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 725 毫秒
1.
Fumarase and aconitase in yeast are dual localized to the cytosol and mitochondria by a similar targeting mechanism. These two tricarboxylic acid cycle enzymes are single translation products that are targeted to and processed by mitochondrial processing peptidase in mitochondria prior to distribution. The mechanism includes reverse translocation of a subset of processed molecules back into the cytosol. Here, we show that either depletion or overexpression of Cit2 (cytosolic citrate synthase) causes the vast majority of fumarase to be fully imported into mitochondria with a tiny amount or no fumarase in the cytosol. Normal dual distribution of fumarase (similar amounts in the cytosol and mitochondria) depends on an enzymatically active Cit2. Glyoxylate shunt deletion mutations ( Δmls1 , Δaco1 and Δicl1 ) exhibit an altered fumarase dual distribution (like in Δcit2 ). Finally, when succinic acid, a product of the glyoxylate shunt, is added to the growth medium, fumarase dual distribution is altered such that there are lower levels of fumarase in the cytosol. This study suggests that the cytosolic localization of a distributed mitochondrial protein is governed by intracellular metabolite cues. Specifically, we suggest that metabolites of the glyoxylate shunt act as 'nanosensors' for fumarase subcellular targeting and distribution. The possible mechanisms involved are discussed.  相似文献   

2.
Fumarase, a mitochondrial matrix protein, is previously indicated to be present in substantial amounts in the cytosol as well. However, recent studies show that newly synthesized human fumarase is efficiently imported into mitochondria with no detectable amount in the cytosol. To clarify its subcellular localization, the subcellular distribution of fumarase in mammalian cells/tissues was examined by a number of different methods. Cell fractionation using either a mitochondria fraction kit or extraction with low concentrations of digitonin, detected no fumarase in a 100,000 g supernatant fraction. Immunoflourescence labeling with an affinity-purified antibody to fumarase and an antibody to the mitochondrial Hsp60 protein showed identical labeling pattern with labeling seen mainly in mitochondria. Detailed studies were performed using high-resolution immunogold electron microscopy to determine the subcellular localization of fumarase in rat tissues, embedded in LR White resin. In thin sections from kidney, liver, heart, adrenal gland and anterior pituitary, strong and specific labeling due to fumarase antibody was only detected in mitochondria. However, in the pancreatic acinar cells, in addition to mitochondria, highly significant labeling was also observed in the zymogen granules and endoplasmic reticulum. The observed labeling in all cases was completely abolished upon omission of the primary antibody indicating that it was specific. In a western blot of purified zymogen granules, a fumarase-antibody cross-reactive protein of the same molecular mass as seen in the mitochondria was present. These results provide evidence that fumarase in mammalian cells/tissues is mainly localized in mitochondria and significant amounts of this protein are not present in the cytosol. However, these studies also reveal that in certain tissues, in addition to mitochondria, this protein is also present at specific extramitochondrial sites. Although the cellular function of fumarase at these extramitochondrial locations is not known, the appearance/localization of fumarase outside mitochondria may help explain how mutations in this mitochondrial protein can give rise to a number of different types of cancers.  相似文献   

3.
We have previously proposed that a single translation product of the FUM1 gene encoding fumarase is distributed between the cytosol and mitochondria of Saccharomyces cerevisiae and that all fumarase translation products are targeted and processed in mitochondria before distribution. Thus, fumarase processed in mitochondria returns to the cytosol. In the current work, we (i) generated mutations throughout the coding sequence which resulted in fumarases with altered conformations that are targeted to mitochondria but have lost their ability to be distributed; (ii) showed by mass spectrometry that mature cytosolic and mitochondrial fumarase isoenzymes are identical; and (iii) showed that hsp70 chaperones in the cytosol (Ssa) and mitochondria (Ssc1) can affect fumarase distribution. The results are discussed in light of our model of targeting and distribution, which suggests that rapid folding of fumarase into an import-incompetent state provides the driving force for retrograde movement of the processed protein back to the cytosol through the translocation pore.  相似文献   

4.
5.
We have previously proposed that a single translation product of the FUM1 gene encoding fumarase is distributed between the cytosol and mitochondria of Saccharomyces cerevisiae and that all fumarase translation products are targeted and processed in mitochondria before distribution. Alternative models for fumarase distribution have been proposed that require more than one translation product. In the current work (i) we show by using sequential Edman degradation and mass spectrometry that fumarase cytosolic and mitochondrial isoenzymes have an identical amino terminus that is formed by cleavage by the mitochondrial processing peptidase, (ii) we have generated fumarase mutants in which the second potential translation initiation codon (Met-24) has been substituted, yet the protein is processed efficiently and retains its ability to be distributed between the cytosol and mitochondria, and (iii) we show that although a signal peptide is required for fumarase targeting to mitochondria the specific fumarase signal peptide and the sequence immediately downstream to the cleavage site are not required for the dual distribution phenomenon. Our results are discussed in light of our model of fumarase targeting and distribution that suggests rapid folding into an import-incompetent state and retrograde movement of the processed protein back to the cytosol through the translocation pore.  相似文献   

6.
There are a growing number of proteins which are reported to reside in multiple compartments within the eukaryotic cell. However, lack of appropriate methods limits our knowledge on the true extent of this phenomenon. In this study, we demonstrate a novel application of beta-galactosidase alpha-complementation to study dual distribution of proteins in yeast cells. Using a simple colony color phenotype, we show that alpha-complementation depends on co-compartmentalization of alpha and omega fragments and exploit this to probe dual localization of proteins between the cytosol and mitochondria in yeast. The quality of our assay was assessed by analysis of the known dual targeted enzyme fumarase and several mutant derivatives, which are exclusively localized to one or the other of these subcellular compartments. Addition of the alpha fragment did not abolish the enzymatic activity of the tagged proteins nor did it affect their localization. By examining 10 yeast gene products for distribution between the cytosol and the mitochondria, we demonstrate the potential of alpha-complementation to screen the mitochondrial proteome for dual distribution. Our data indicate the distribution of two uncharacterized proteins--Bna3 and Nif3--between the cytosol and the mitochondria.  相似文献   

7.
The majority of mitochondrial proteins can be imported into mitochondria following termination of their translation in the cytosol. Import of fumarase and several other proteins into mitochondria does not appear to occur post-translationally according to standard in vivo and in vitro assays. However, the nature of interaction between the translation and translocation apparatuses during import of these proteins is unknown. Therefore, a major question is whether the nascent chains of these proteins are exposed to the cytosol during import into mitochondria. We asked directly if the presequence of fumarase can be cleaved by externally added mitochondrial processing peptidase (MPP) during import, using an in vitro translation-translocation coupled reaction. The presequence of fumarase was cleaved by externally added MPP during import, indicating a lack of, or a loose physical connection between, the translation and translocation of this protein. Exchanging the authentic presequence of fumarase for that of the more efficient Su9-ATPase presequence reduced the exposure of fumarase precursors to externally added MPP en route to mitochondria. Therefore, exposure to cytosolic MPP is dependent on the presequence and not on the mature part of fumarase. On the other hand, following translation in the absence of mitochondria, the authentic fumarase presequence and that of Su9-ATPase become inaccessible to added MPP when attached to mature fumarase. Thus, folding of the mature portion of fumarase, which conceals the presequence, is the reason for its inability to be imported in classical post-translational assays. Another unique feature of fumarase is its distribution between the mitochondria and the cytosol. We show that in vivo the switch of the authentic presequence with that of Su9-ATPase caused more fumarase molecules to be localized to the mitochondria. A possible mechanism by which the cytosolic exposure, the targeting efficiency, and the subcellular distribution of fumarase are dictated by the presequence is discussed.  相似文献   

8.
9.
Rossmanith W 《PloS one》2011,6(4):e19152
RNase Z is an endonuclease responsible for the removal of 3' extensions from tRNA precursors, an essential step in tRNA biogenesis. Human cells contain a long form (RNase Z(L)) encoded by ELAC2, and a short form (RNase Z(S); ELAC1). We studied their subcellular localization by expression of proteins fused to green fluorescent protein. RNase Z(S) was found in the cytosol, whereas RNase Z(L) localized to the nucleus and mitochondria. We show that alternative translation initiation is responsible for the dual targeting of RNase Z(L). Due to the unfavorable context of the first AUG of ELAC2, translation apparently also starts from the second AUG, whereby the mitochondrial targeting sequence is lost and the protein is instead routed to the nucleus. Our data suggest that RNase Z(L) is the enzyme involved in both, nuclear and mitochondrial tRNA 3' end maturation.  相似文献   

10.
A-kinase anchoring proteins (AKAPs) tether the cAMP-dependent protein kinase (PKA) and other signaling enzymes to distinct subcellular organelles. Using the yeast two-hybrid approach, we demonstrate that Rab32, a member of the Ras superfamily of small molecular weight G-proteins, interacts directly with the type II regulatory subunit of PKA. Cellular and biochemical studies confirm that Rab32 functions as an AKAP inside cells. Anchoring determinants for PKA have been mapped to sites within the conserved alpha5 helix that is common to all Rab family members. Subcellular fractionation and immunofluorescent approaches indicate that Rab32 and a proportion of the cellular PKA pool are associated with mitochondria. Transient transfection of a GTP binding-deficient mutant of Rab32 promotes aberrant accumulation of mitochondria at the microtubule organizing center. Further analysis of this mutant indicates that disruption of the microtubule cytoskeleton results in aberrantly elongated mitochondria. This implicates Rab32 as a participant in synchronization of mitochondrial fission. Thus, Rab32 is a dual function protein that participates in both mitochondrial anchoring of PKA and mitochondrial dynamics.  相似文献   

11.
The COP9 signalosome (CSN) is an evolutionarily conserved protein complex that participates in the regulation of the ubiquitin/26S proteasome pathway by controlling the function of cullin-RING-ubiquitin ligases. Impressive progress has been made in deciphering its critical role in diverse cellular and developmental processes. However, little is known about the underlying regulatory principles that coordinate its function. Through biochemical and fluorescence microscopy analyses, we determined that the complex is localized in the cytoplasm, nucleoplasm, and chromatin-bound fractions, each differing in the composition of posttranslationally modified subunits, depending on its location within the cell. During the cell cycle, the segregation between subcellular localizations remains steady. However, upon UV damage, a dose-dependent temporal shuttling of the CSN complex into the nucleus was seen, accompanied by upregulation of specific phosphorylations within CSN1, CSN3, and CSN8. Taken together, our results suggest that the specific spatiotemporal composition of the CSN is highly controlled, enabling the complex to rapidly adapt and respond to DNA damage.  相似文献   

12.
13.
Intracellular distribution of fumarase in various animals   总被引:2,自引:0,他引:2  
The subcellular distribution of fumarase was investigated in the liver of various animals and in several tissues of the rat. In the rat liver, fumarase was predominantly located in the cytosolic and mitochondrial fractions, but not in the peroxisomal fraction. The amount of fumarase associated with the microsomes was less than 5% of the total enzyme activity. The investigation of the intracellular distribution of hepatic fumarase of the rat, mouse, rabbit, dog, chicken, snake, frog, and carp revealed that the amount of the enzyme located in the cytosol was comparable to that in the mitochondria of all these animals. The subcellular distribution of the enzyme in the kidney, brain, heart, and skeletal muscle of rat, and in hepatoma cells (AH-109A) was also investigated. Among these tissues, the brain was the only exception, having no fumarase activity in the cytosolic fraction, and the other tissues showed a bimodal distribution of fumarase in the cytosol and the mitochondria. The mitochondrial fumarase was predominantly located in the matrix. About 10% of the total fumarase was found in the outer and inner membrane, although it was unclear whether this fumarase was originally located in these fractions. No fumarase activity was detected in the intermembranous space.  相似文献   

14.
Studies on yeast fumarase provide the main evidence for dual localization of a protein in mitochondria and cytosol by means of retrograde translocation. We have examined the subcellular targeting of yeast and human fumarase in live cells to identify factors responsible for this. The cDNAs for mature yeast or human fumarase were fused to the gene for enhanced green fluorescent protein (eGFP) and they contained, at their N-terminus, a mitochondrial targeting sequence (MTS) derived from either yeast fumarase, human fumarase, or cytochrome c oxidase subunit VIII (COX) protein. Two nuclear localization sequences (2x NLS) were also added to these constructs to facilitate detection of any cytosolic protein by its targeting to nucleus. In Cos-1 cells transfected with these constructs, human fumarase with either the native or COX MTSs was detected exclusively in mitochondria in >98% of the cells, while the remainder 1-2% of the cells showed varying amounts of nuclear labeling. In contrast, when human fumarase was fused to the yeast MTS, >50% of the cells showed nuclear labeling. Similar studies with yeast fumarase showed that with its native MTS, nuclear labeling was seen in 80-85% of the cells, but upon fusion to either human or COX MTS, nuclear labeling was observed in only 10-15% of the cells. These results provide evidence that extramitochondrial presence of yeast fumarase is mainly caused by the poor mitochondrial targeting characteristics of its MTS (but also affected by its primary sequence), and that the retrograde translocation mechanism does not play a significant role in the extramitochondrial presence of mammalian fumarase.  相似文献   

15.
16.
The distribution of identical enzymatic activities between different subcellular compartments is a fundamental process of living cells. At present, the Saccharomyces cerevisiae aconitase enzyme has been detected only in mitochondria, where it functions in the tricarboxylic acid (TCA) cycle and is considered a mitochondrial matrix marker. We developed two strategies for physical and functional detection of aconitase in the yeast cytosol: 1) we fused the alpha peptide of the beta-galactosidase enzyme to aconitase and observed alpha complementation in the cytosol; and 2) we created an ACO1-URA3 hybrid gene, which allowed isolation of strains in which the hybrid protein is exclusively targeted to mitochondria. These strains display a specific phenotype consistent with glyoxylate shunt elimination. Together, our data indicate that yeast aconitase isoenzymes distribute between two distinct subcellular compartments and participate in two separate metabolic pathways; the glyoxylate shunt in the cytosol and the TCA cycle in mitochondria. We maintain that such dual distribution phenomena have a wider occurrence than recorded currently, the reason being that in certain cases there is a small fraction of one of the isoenzymes, in one of the locations, making its detection very difficult. We term this phenomenon of highly uneven isoenzyme distribution "eclipsed distribution."  相似文献   

17.
The yeast mitochondrial and cytosolic isoenzymes of fumarase, which are encoded by a single nuclear gene (FUM1), follow a unique mechanism of protein subcellular localization and distribution. Translation of all FUM1 messages initiates only from the 5'-proximal AUG codon and results in a single translation product that contains the targeting sequence located within the first 32 amino acids of the precursor. All fumarase molecules synthesized in the cell are processed by the mitochondrial matrix signal peptidase; nevertheless, most of the enzyme (80 to 90%) ends up in the cytosol. The translocation and processing of fumarase are cotranslational. We suggest that in Saccharomyces cerevisiae, the single type of initial translation product of the FUM1 gene is first partially translocated, and then a subset of these molecules continues to be fully translocated into the organelle, whereas the rest are folded into an import-incompetent state and are released by the retrograde movement of fumarase into the cytosol.  相似文献   

18.
Cloning of the Saccharomyces cerevisiae FUM1 gene downstream of the strong GAL10 promoter resulted in inducible overexpression of fumarase in the yeast. The overproducing strain exhibited efficient bioconversion of fumaric acid to L-malic acid with an apparent conversion value of 88% and a conversion rate of 80.4 mmol of fumaric acid/h per g of cell wet weight, both of which are much higher than parameters known for industrial bacterial strains. The only product of the conversion reaction was L-malic acid, which was essentially free of the unwanted by-product succinic acid. The GAL10 promoter situated upstream of a promoterless FUM1 gene led to production and correct distribution of the two fumarase isoenzyme activities between cytosolic and mitochondrial subcellular fractions. The amino-terminal sequence of fumarase contains the mitochondrial signal sequence since (i) 92 of 463 amino acid residues from the amino terminus of fumarase are sufficient to localize fumarase-lacZ fusions to mitochondria and (ii) fumarase and fumarase-lacZ fusions lacking the amino-terminal sequence are localized exclusively in the cytosol. The possibility that both mitochondrial and cytosolic fumarases are derived from the same initial translation product is discussed.  相似文献   

19.
Cloning of the Saccharomyces cerevisiae FUM1 gene downstream of the strong GAL10 promoter resulted in inducible overexpression of fumarase in the yeast. The overproducing strain exhibited efficient bioconversion of fumaric acid to L-malic acid with an apparent conversion value of 88% and a conversion rate of 80.4 mmol of fumaric acid/h per g of cell wet weight, both of which are much higher than parameters known for industrial bacterial strains. The only product of the conversion reaction was L-malic acid, which was essentially free of the unwanted by-product succinic acid. The GAL10 promoter situated upstream of a promoterless FUM1 gene led to production and correct distribution of the two fumarase isoenzyme activities between cytosolic and mitochondrial subcellular fractions. The amino-terminal sequence of fumarase contains the mitochondrial signal sequence since (i) 92 of 463 amino acid residues from the amino terminus of fumarase are sufficient to localize fumarase-lacZ fusions to mitochondria and (ii) fumarase and fumarase-lacZ fusions lacking the amino-terminal sequence are localized exclusively in the cytosol. The possibility that both mitochondrial and cytosolic fumarases are derived from the same initial translation product is discussed.  相似文献   

20.
Pinin is a desmosome-associated protein occurring in epithelia, cardiac muscle, and meninges. This molecule was found to be capable of enhancing cell junction formation and thought to play a key role in reorganization and stabilization of the desmosome-intermediate filament complex in epithelial cells (J. Cell Biol. (1996) 135, 1027-1042). Recently a protein, claimed to be localized exclusively in the nucleus, however, with amino acid sequence identical to pinin, was reported (E. J. Cell Biol. (1998) 75, 295-298). Here I present evidence that pinin exists simultaneously at the desmosome and within the nucleus by generating location-specific monoclonal antibodies. Although the desmosome-form (d-form) and the nucleus-form (n-form) pinin share identical amino acid sequences as demonstrated by cDNA library screening and DNA sequencing, they exhibit remarkably different biochemical properties, reflecting the apparent different multiprotein nature of their differential cellular locations. In addition, the d-form pinin is characterized by a dynamic transport process which involves the gradual diminishing of nuclear materials relative to enhanced anchoring of pinin to the desmosome upon mature cells. Finally I demonstrate that pinin exists in two forms of different gene product: pinin1 and pinin2. These data argue strongly against the statement that pinin is an exclusive nuclear protein and support the notion that pinin is a moonlighting protein with more than one function as a consequence of its dual cellular location.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号