首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The genetic code is established by the aminoacylation reactions of aminoacyl tRNA synthetases, where amino acids are matched with triplet anticodons imbedded in the cognate tRNAs. The code established in this way is so robust that it gave birth to the entire tree of life. The tRNA synthetases are organized into two classes, based on their active site architectures. The details of this organization, and other considerations, suggest how the synthetases evolved by gene duplications, and how early proteins may have been statistical in nature, that is, products of a primitive code where one of several similar amino acids was used at a specific position in a polypeptide. The emergence of polypeptides with unique, defined sequences--true chemical entities--required extraordinary specificity of the aminoacylation reaction. This high specificity was achieved by editing activities that clear errors of aminoacylation and thereby prevent mistranslation. Defects in editing activities can be lethal and lead to pathologies in mammalian cells in culture. Even a mild defect in editing is casually associated with neurological disease in the mouse. Defects in editing are also mutagenic in an aging organism and suggest how mistranslation can lead to mutations that are fixed in the genome. Thus, clearance of mischarged tRNAs by the editing activities of tRNA synthetases was essential for development of the tree of life and has a role in the etiology of diseases that is just now being understood.  相似文献   

2.
Mistranslation can follow two events during protein synthesis: production of non-cognate amino acid:transfer RNA (tRNA) pairs by aminoacyl-tRNA synthetases (aaRSs) and inaccurate selection of aminoacyl-tRNAs by the ribosome. Many aaRSs actively edit non-cognate amino acids, but editing mechanisms are not evolutionarily conserved, and their physiological significance remains unclear. To address the connection between aaRSs and mistranslation, the evolutionary divergence of tyrosine editing by phenylalanyl-tRNA synthetase (PheRS) was used as a model. Certain PheRSs are naturally error prone, most notably a Mycoplasma example that displayed a low level of specificity consistent with elevated mistranslation of the proteome. Mycoplasma PheRS was found to lack canonical editing activity, relying instead on discrimination against the non-cognate amino acid by kinetic proofreading. This mechanism of discrimination is inadequate for organisms where translation is more accurate, as Mycoplasma PheRS failed to support Escherichia coli growth. However, minor changes in the defunct editing domain of the Mycoplasma enzyme were sufficient to restore E. coli growth, indicating that translational accuracy is an evolutionarily selectable trait.  相似文献   

3.
All living cells must conduct protein synthesis with a high degree of accuracy maintained in the transmission and flow of information from gene to finished protein product. One crucial "quality control" point in maintaining a high level of accuracy is the selectivity by which aminoacyl-tRNA synthetases furnish correctly activated amino acids, attached to tRNA species, as the building blocks for growing protein chains. During selection of amino acids, synthetases very often have to distinguish the cognate substrate from a homolog having just one fewer methyl group in its structure. The binding energy of a methyl group is estimated to contribute only a factor of 100 to the specificity of binding, yet synthetases distinguish such closely related amino acids with a discrimination factor of 10,000 to 100,000. Examples of this include methionine versus homocysteine, isoleucine versus valine, alanine versus glycine, and threonine versus serine. Many investigators have demonstrated in vitro the ability of certain aminoacyl-tRNA synthetases to edit, that is, correct or prevent incorrect attachment of amino acids to tRNA molecules. Several major editing pathways are now established from in vitro data. Further, at least some aminoacyl-tRNA synthetases have recently been shown to carry out the editing function in vivo. Editing has been demonstrated to occur in both Escherichia coli and Saccharomyces cerevisiae. Significant energy is expended by the cell for editing of misactivated amino acids, which can be reflected in the growth rate. Because of this, cellular levels of aminoacyl-tRNA synthetases, as well as amino acid biosynthetic pathways which yield competing substrates for protein synthesis, must be carefully regulated to prevent excessive editing. High-level expression of recombinant proteins imposes a strain on the biosynthetic capacity of the cell which frequently results in misincorporation of abnormal or wrong amino acids owing in part to limited editing by synthetases. Unbalanced amino acid pools associated with some genetic disorders in humans may also lead to errors in tRNA aminoacylation. The availability of X-ray crystallographic structures of some synthetases, combined with site-directed mutagenesis, allows insights into molecular details of the extraordinary selectivity of synthetases, including the editing function.  相似文献   

4.
Evidence that tRNA synthetase-directed proton transfer stops mistranslation   总被引:1,自引:0,他引:1  
Waas WF  Schimmel P 《Biochemistry》2007,46(43):12062-12070
To prevent mistranslation, aminoacyl-tRNA synthetases (AARSs) discriminate against noncognate amino acids and cellular metabolites. Defects in specificity produce statistical proteins which, in mammalian cells, lead to activation of the unfolded protein response and cell death. Because of inherent limitations in amino acid discrimination by a single active site, AARSs evolved a separate domain to clear mischarged amino acids. Although the structure of a widely distributed editing domain for ThrRS and AlaRS is known, the mechanism of amino acid clearance remains elusive. This domain has two motifs that together have four conserved residues in the pocket used to clear serine from mischarged tRNAs. Here, using ThrRS as an example, rapid single-turnover kinetics, mutagenesis, and solvent isotope analysis show that a strictly conserved histidine (between ThrRS and AlaRS) extracts a proton in the chemical step of the editing reaction. Three other conserved residues, and two additional residues in the editing pocket, are not directly implicated in the chemical step. These results are relevant to the previously reported mutagenesis of the homologous editing pocket of alanyl-tRNA synthetase, where even a mild defect in editing causes neurodegeneration in the mouse. Thus, a single proton-transfer event needed to prevent mistranslation can have profound implications for disease.  相似文献   

5.
AlaXp is a widely distributed (from bacteria to humans) genome-encoded homolog of the editing domain of alanyl-tRNA synthetases. Editing repairs the confusion of serine and glycine for alanine through clearance of mischarged (with Ser or Gly) tRNA(Ala). Because genome-encoded fragments of editing domains of other synthetases are scarce, the AlaXp redundancy of the editing domain of alanyl-tRNA synthetase is thought to reflect an unusual sensitivity of cells to mistranslation at codons for Ala. Indeed, a small defect in the editing activity of alanyl-tRNA synthetase is causally linked to neurodegeneration in the mouse. Although limited earlier studies demonstrated that AlaXp deacylated mischarged tRNA(Ala) in vitro, the significance of this activity in vivo has not been clear. Here we describe a bacterial system specifically designed to investigate activity of AlaXp in vivo. Serine toxicity, experienced by a strain harboring an editing-defective alanyl-tRNA synthetase, was rescued by an AlaXp-encoding transgene. Rescue was dependent on amino acid residues in AlaXp that are needed for its in vitro catalytic activity. Thus, the editing activity per se of AlaXp was essential for suppressing mistranslation. The results support the idea that the unique widespread distribution of AlaXp arises from the singular difficulties, for translation, poised by alanine.  相似文献   

6.
Mistranslation describes errors during protein synthesis that prevent the amino acid sequences specified in the genetic code from being reflected within proteins. For a long time, mistranslation has largely been considered an aberrant cellular process that cells actively avoid at all times. However, recent evidence has demonstrated that cells from all three domains of life not only tolerate certain levels and forms of mistranslation, but actively induce mistranslation under certain circumstances. To this end, dedicated biological mechanisms have recently been found to reduce translational fidelity, which indicates that mistranslation is not exclusively an erroneous process and can even benefit cells in particular cellular contexts. There currently exists a spectrum of mistranslational processes that differ not only in their origins, but also in their molecular and cellular effects. These findings suggest that the optimal degree of translational fidelity largely depends on a specific cellular context. This review aims to conceptualize the basis and functional consequence of the diverse types of mistranslation that have been described so far.  相似文献   

7.
Errors in protein synthesis due to mispairing of amino acids with tRNAs jeopardize cell viability. Several checkpoints to prevent formation of Ala- and Cys-tRNAPro have been described, including the Ala-specific editing domain (INS) of most bacterial prolyl-tRNA synthetases (ProRSs) and an autonomous single-domain INS homolog, YbaK, which clears Cys-tRNAPro in trans. In many species where ProRS lacks an INS domain, ProXp-ala, another single-domain INS-like protein, is responsible for editing Ala-tRNAPro. Although the amino acid specificity of these editing domains has been established, the role of tRNA sequence elements in substrate selection has not been investigated in detail. Critical recognition elements for aminoacylation by bacterial ProRS include acceptor stem elements G72/A73 and anticodon bases G35/G36. Here, we show that ProXp-ala and INS require these same acceptor stem and anticodon elements, respectively, whereas YbaK lacks inherent tRNA specificity. Thus, these three related domains use divergent approaches to recognize tRNAs and prevent mistranslation. Whereas some editing domains have borrowed aspects of tRNA recognition from the parent aminoacyl-tRNA synthetase, relaxed tRNA specificity leading to semi-promiscuous editing may offer advantages to cells.  相似文献   

8.
Aminoacyl-tRNA synthetases ensure the fidelity of protein synthesis by accurately selecting and activating cognate amino acids for aminoacylation of the correct tRNA. Some tRNA synthetases have evolved an editing active site that is separate from the amino acid activation site providing two steps or "sieves" for amino acid selection. These two sieves rely on different strategies for amino acid recognition to significantly enhance the accuracy of aminoacylation. We have performed alanine scanning mutagenesis in a conserved threonine-rich region of the Escherichia coli leucyl-tRNA synthetase's CP1 domain that is hypothesized to contain a putative editing active site. Characterization of purified mutant proteins led to the identification of a single conserved threonine that prevents the cognate leucine amino acid from being hydrolyzed after aminoacylation of the tRNA. Mutation of this threonine to an alanine eliminates discrimination of the cognate amino acid in the editing active site. This provides a molecular example of an amino acid discrimination mechanism in the tRNA synthetase's editing active site.  相似文献   

9.
《Journal of molecular biology》2019,431(6):1284-1297
Aminoacyl-tRNA synthetases (aaRSs), the enzymes responsible for coupling tRNAs to their cognate amino acids, minimize translational errors by intrinsic hydrolytic editing. Here, we compared norvaline (Nva), a linear amino acid not coded for protein synthesis, to the proteinogenic, branched valine (Val) in their propensity to mistranslate isoleucine (Ile) in proteins. We show that in the synthetic site of isoleucyl-tRNA synthetase (IleRS), Nva and Val are activated and transferred to tRNA at similar rates. The efficiency of the synthetic site in pre-transfer editing of Nva and Val also appears to be similar. Post-transfer editing was, however, more rapid with Nva and consequently IleRS misaminoacylates Nva-tRNAIle at slower rate than Val-tRNAIle. Accordingly, an Escherichia coli strain lacking IleRS post-transfer editing misincorporated Nva and Val in the proteome to a similar extent and at the same Ile positions. However, Nva mistranslation inflicted higher toxicity than Val, in agreement with IleRS editing being optimized for hydrolysis of Nva-tRNAIle. Furthermore, we found that the evolutionary-related IleRS, leucyl- and valyl-tRNA synthetases (I/L/VRSs), all efficiently hydrolyze Nva-tRNAs even when editing of Nva seems redundant. We thus hypothesize that editing of Nva-tRNAs had already existed in the last common ancestor of I/L/VRSs, and that the editing domain of I/L/VRSs had primarily evolved to prevent infiltration of Nva into modern proteins.  相似文献   

10.
All living organisms conduct protein synthesis with a high degree of accuracy maintained in the transmission and flow of information from a gene to protein product. One crucial 'quality control' point in maintaining a high level of accuracy is the selectivity by which aminoacyl-tRNA synthetases furnish correctly activated amino acids, attached to tRNA species, as the building blocks for growing protein chains. When differences in binding energies of amino acids to an aminoacyl-tRNA synthetase are inadequate, editing is used as a major determinant of enzyme selectivity. Some incorrect amino acids are edited at the active site before the transfer to tRNA (pre-transfer editing), while others are edited after transfer to tRNA at a separate editing site (post-transfer editing). Access of natural non-protein amino acids, such as homocysteine, homoserine, or ornithine to the genetic code is prevented by the editing function of aminoacyl-tRNA synthetases. Disabling editing function leads to tRNA mischarging errors and incorporation of incorrect amino acids into protein, which is detrimental to cell homeostasis and inhibits growth. Continuous homocysteine editing by methionyl-tRNA synthetase, resulting in the synthesis of homocysteine thiolactone, is part of the process of tRNA aminoacylation in living organisms, from bacteria to man. Excessive homocysteine thiolactone synthesis in hyperhomocysteinemia caused by genetic or nutritional deficiencies is linked to human vascular and neurological diseases.  相似文献   

11.
Nordin BE  Schimmel P 《Biochemistry》2003,42(44):12989-12997
The genetic code depends on amino acid fine structure discrimination by aminoacyl-tRNA synthetases. For isoleucyl- (IleRS) and valyl-tRNA synthetases (ValRS), reactions that hydrolyze misactivated noncognate amino acids help to achieve high accuracy in aminoacylation. Two editing pathways contribute to aminoacylation fidelity: pretransfer and post-transfer. In pretransfer editing, the misactivated amino acid is hydrolyzed as an aminoacyl adenylate, while in post-transfer editing a misacylated tRNA is deacylated. Both reactions are dependent on a tRNA cofactor and require translocation to a site located approximately 30 A from the site of amino acid activation. Using a series of 3'-end modified tRNAs that are deficient in either aminoacylation, deacylation, or both, total editing (the sum of pre- and post-transfer editing) was shown to require both aminoacylation and deacylation activities. These and additional results with IleRS are consistent with a post-transfer deacylation event initiating formation of an editing-active enzyme/tRNA complex. In this state, the primed complex processively edits misactivated valyl-adenylate via the pretransfer route. Thus, misacylated tRNA is an obligatory intermediate for editing by either pathway.  相似文献   

12.
Aminoacyl-tRNA synthetases are essential enzymes that help to ensure the fidelity of protein translation by accurately aminoacylating (or "charging") specific tRNA substrates with cognate amino acids. Many synthetases have an additional catalytic activity to confer amino acid editing or proofreading. This activity relieves ambiguities during translation of the genetic code that result from one synthetase activating multiple amino acid substrates. In this review, we describe methods that have been developed for assaying both pre- and post-transfer editing activities. Pre-transfer editing is defined as hydrolysis of a misactivated aminoacyl-adenylate prior to transfer to the tRNA. This reaction has been reported to occur either in the aminoacylation active site or in a separate editing domain. Post-transfer editing refers to the hydrolysis reaction that cleaves the aminoacyl-ester linkage formed between the carbonyl carbon of the amino acid and the 2' or 3' hydroxyl group of the ribose on the terminal adenosine. Post-transfer editing takes place in a hydrolytic active site that is distinct from the site of amino acid activation. Here, we focus on methods for determination of steady-state reaction rates using editing assays developed for both classes of synthetases.  相似文献   

13.
Aminoacyl-tRNA synthetases catalyze the attachment of amino acids to their cognate tRNAs. To prevent errors in protein synthesis, many synthetases have evolved editing pathways by which misactivated amino acids (pre-transfer editing) and misacylated tRNAs (post-transfer editing) are hydrolyzed. Previous studies have shown that class II prolyl-tRNA synthetase (ProRS) possesses both pre- and post-transfer editing functions against noncognate alanine. To assess the relative contributions of pre- and post-transfer editing, presented herein are kinetic studies of an Escherichia coli ProRS mutant in which post-transfer editing is selectively inactivated, effectively isolating the pre-transfer editing pathway. When post-transfer editing is abolished, substantial levels of alanine mischarging are observed under saturating amino acid conditions, indicating that pre-transfer editing alone cannot prevent the formation of Ala-tRNA Pro. Steady-state kinetic parameters for aminoacylation measured under these conditions reveal that the preference for proline over alanine is 2000-fold, which is well within the regime where editing is required. Simultaneous measurement of AMP and Ala-tRNA Pro formation in the presence of tRNA Pro suggested that misactivated alanine is efficiently transferred to tRNA to form the mischarged product. In the absence of tRNA, enzyme-catalyzed Ala-AMP hydrolysis is the dominant form of editing, with "selective release" of noncognate adenylate from the active site constituting a minor pathway. Studies with human and Methanococcus jannaschii ProRS, which lack a post-transfer editing domain, suggest that enzymatic pre-transfer editing occurs within the aminoacylation active site. Taken together, the results reported herein illustrate how both pre- and post-transfer editing pathways work in concert to ensure accurate aminoacylation by ProRS.  相似文献   

14.
Some aminoacyl-tRNA synthetases have two catalytic centers that together achieve fine-structure discrimination of closely similar amino acids. The role of tRNA is to stimulate translocation of a misactivated amino acid from the active site to the editing site where the misactivated substrate is eliminated by hydrolysis. Using isoleucyl-tRNA synthetase as an example, we placed mutations in the catalytic center for editing at residues strongly conserved from bacteria to humans. A particular single substitution and one double substitution resulted in production of mischarged tRNA, by interfering specifically with the chemical step of hydrolytic editing. The substitutions affected neither amino acid activation nor aminoacylation, with the cognate amino acid. Thus, because of the demonstrated functional independence of the two catalytic sites, errors of aminoacylation can be generated by selective mutations in the center for editing.  相似文献   

15.
Aminoacyl-tRNA synthetases are a family of enzymes responsible for ensuring the accuracy of the genetic code by specifically attaching a particular amino acid to their cognate tRNA substrates. Through primary sequence alignments, prolyl-tRNA synthetases (ProRSs) have been divided into two phylogenetically divergent groups. We have been interested in understanding whether the unusual evolutionary pattern of ProRSs corresponds to functional differences as well. Previously, we showed that some features of tRNA recognition and aminoacylation are indeed group-specific. Here, we examine the species-specific differences in another enzymatic activity, namely amino acid editing. Proofreading or editing provides a mechanism by which incorrectly activated amino acids are hydrolyzed and thus prevented from misincorporation into proteins. "Prokaryotic-like" Escherichia coli ProRS has recently been shown to be capable of misactivating alanine and possesses both pretransfer and post-transfer hydrolytic editing activity against this noncognate amino acid. We now find that two ProRSs belonging to the "eukaryotic-like" group exhibit differences in their hydrolytic editing activity. Whereas ProRS from Methanococcus jannaschii is similar to E. coli in its ability to hydrolyze misactivated alanine via both pretransfer and post-transfer editing pathways, human ProRS lacks these activities. These results have implications for the selection or design of antibiotics that specifically target the editing active site of the prokaryotic-like group of ProRSs.  相似文献   

16.
Aminoacyl-tRNA synthetases are a family of enzymes that are responsible for translating the genetic code in the first step of protein synthesis. Some aminoacyl-tRNA synthetases have editing activities to clear their mistakes and enhance fidelity. Leucyl-tRNA synthetases have a hydrolytic active site that resides in a discrete amino acid editing domain called CP1. Mutational analysis within yeast mitochondrial leucyl-tRNA synthetase showed that the enzyme has maintained an editing active site that is competent for post-transfer editing of mischarged tRNA similar to other leucyl-tRNA synthetases. These mutations that altered or abolished leucyl-tRNA synthetase editing were introduced into complementation assays. Cell viability and mitochondrial function were largely unaffected in the presence of high levels of non-leucine amino acids. In contrast, these editing-defective mutations limited cell viability in Escherichia coli. It is possible that the yeast mitochondria have evolved to tolerate lower levels of fidelity in protein synthesis or have developed alternate mechanisms to enhance discrimination of leucine from non-cognate amino acids that can be misactivated by leucyl-tRNA synthetase.  相似文献   

17.
Farrow MA  Schimmel P 《Biochemistry》2001,40(14):4478-4483
Aminoacyl-tRNA synthetases establish the rules of the genetic code by aminoacylation reactions. Occasional activation of the wrong amino acid can lead to errors of protein synthesis. For isoleucyl-tRNA synthetase, these errors are reduced by tRNA-dependent hydrolytic editing reactions that occur at a site 25 A from the active site. These reactions require that the misactivated amino acid be translocated from the active site to the center for editing. One mechanism describes translocation as requiring the mischarging of tRNA followed by a conformational change in the tRNA that moves the amino acid from one site to the other. Here a specific DNA aptamer is investigated. The aptamer can stimulate amino acid-specific editing but cannot be aminoacylated. Although the aptamer could in principle stimulate hydrolysis of a misactivated amino acid by an idiosyncratic mechanism, the aptamer is shown here to induce translocation and hydrolysis of misactivated aminoacyl adenylate at the same site as that seen with the tRNA cofactor. Thus, translocation to the site for editing does not require joining of the amino acid to the nucleic acid. Further experiments demonstrated that aptamer-induced editing is sensitive to aptamer sequence and that the aptamer is directed to a site other than the active site or tRNA binding site of the enzyme.  相似文献   

18.
Farrow MA  Nordin BE  Schimmel P 《Biochemistry》1999,38(51):16898-16903
The high accuracy of the genetic code relies on the ability of tRNA synthetases to discriminate rigorously between closely similar amino acids. While the enzymes can detect differences between closely similar amino acids at an accuracy of about 1 part in 100-200, a finer discrimination requires the presence of the cognate tRNA. The role of the tRNA is to direct the misactivated amino acid to a distinct catalytic site for editing where hydrolysis occurs. Previous work showed that three nucleotides at the corner of the L-shaped tRNA were collectively required. Here we show that each of these nucleotides individually contributes to the efficiency of editing. However, all are dispensable for the chemical step of hydrolysis. Instead, these nucleotides are required for translocation of a misactivated amino acid from the active site to the center for editing.  相似文献   

19.
Aminoacyl-tRNA synthetases catalyze the attachment of cognate amino acids to specific tRNA molecules. To prevent potential errors in protein synthesis caused by misactivation of noncognate amino acids, some synthetases have evolved editing mechanisms to hydrolyze misactivated amino acids (pre-transfer editing) or misacylated tRNAs (post-transfer editing). In the case of post-transfer editing, synthetases employ a separate editing domain that is distinct from the site of amino acid activation, and the mechanism is believed to involve shuttling of the flexible CCA-3' end of the tRNA from the synthetic active site to the site of hydrolysis. The mechanism of pre-transfer editing is less well understood, and in most cases, the exact site of pre-transfer editing has not been conclusively identified. Here, we probe the pre-transfer editing activity of class II prolyl-tRNA synthetases from five species representing all three kingdoms of life. To locate the site of pre-transfer editing, truncation mutants were constructed by deleting the insertion domain characteristic of bacterial prolyl-tRNA synthetase species, which is the site of post-transfer editing, or the N- or C-terminal extension domains of eukaryotic and archaeal enzymes. In addition, the pre-transfer editing mechanism of Escherichia coli prolyl-tRNA synthetase was probed in detail. These studies show that a separate editing domain is not required for pre-transfer editing by prolyl-tRNA synthetase. The aminoacylation active site plays a significant role in preserving the fidelity of translation by acting as a filter that selectively releases non-cognate adenylates into solution, while protecting the cognate adenylate from hydrolysis.  相似文献   

20.
Abstract

The genetic code is based on the aminoacylation of tRNA with amino acids catalyzed by the aminoacyl-tRNA synthetases. The synthetases are constructed from discrete domains and all synthetases possess a core catalytic domain that catalyzes amino acid activation, binds the acceptor stem of tRNA, and transfers the amino acid to tRNA. Fused to the core domain are additional domains that mediate RNA interactions distal to the acceptor stem. Several synthetases catalyze the aminoacylation of RNA oligonucleotide substrates that recreate only the tRNA acceptor stems. In one case, a relatively small catalytic domain catalyzes the aminoacylation of these substrates independent of the rest of the protein. Thus, the active site domain may represent a primordial synthetase in which polypeptide insertions that mediate RNA acceptor stem interactions are tightly integrated with determinants for aminoacyl adenylate synthesis. The relationship between nucleotide sequences in small RNA oligonucleotides and the specific amino acids that are attached to these oligonucleotides could constitute a second genetic code.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号