首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytochrome P450 2E1 (CYP2E1) plays an important role in alcohol-induced toxicity and oxidative stress. Recently, we showed that this predominantly microsomal protein is also localized in rat hepatic mitochondria. In this report, we show that the N-terminal 30 amino acids of CYP2E1 contain a chimeric signal for bimodal targeting of the apoprotein to endoplasmic reticulum (ER) and mitochondria. We demonstrate that the cryptic mitochondrial targeting signal at sequence 21-31 of the protein is activated by cAMP-dependent phosphorylation at Ser-129. S129A mutation resulted in lower affinity for binding to cytoplasmic Hsp70, mitochondrial translocases (TOM40 and TIM44) and reduced mitochondrial import. S129A mutation, however, did not affect the extent of binding to the signal recognition particle and association with ER membrane translocator protein Sec61. Addition of saturating levels of signal recognition particle caused only a partial inhibition of CYP2E1 translation under in vitro conditions, and saturating levels of ER resulted only in partial membrane integration. cAMP enhanced the mitochondrial CYP2E1 (referred to as P450MT5) level but did not affect its level in the ER. Our results provide new insights on the mechanism of cAMP-mediated activation of a cryptic mitochondrial targeting signal and regulation of P450MT5 targeting to mitochondria.  相似文献   

2.
A large number of mitochondrial proteins lack canonical mitochondrial-targeting signals. The bimodal transport of cytochromes P450 (CYPs) to endoplasmic reticulum and mitochondria (MT), reported previously by us, likely represents one mode of non-canonical protein targeting to MT. Herein, we have studied the mechanism of mouse MT-CYP1A1 targeting to gain insight into the regulatory features and evolutionary conservation of bimodal targeting mechanism. Mouse MT-CYP1A1 consists of two NH2-terminal-truncated molecular species, +91A1 and +331A1. Mutations Pro-2 --> Leu and Tyr-5 --> Leu, which increase the signal recognition particle (SRP) binding, diminished MT targeting of the protein in intact cells. By contrast, mutations Leu-7 --> Asn and Leu-17 --> Asn, which decreased SRP-binding affinity, enhanced MT targeting, thus suggesting that SRP binding is an important regulatory step that modulates bimodal targeting. Protein kinase C (PKC)-mediated phosphorylation of nascent chains at Thr-35 vastly decreased affinity for SRP binding suggesting an important regulatory step. In support of these results, COS cell transfection experiments show that phosphomimetic mutation Thr-35 --> Asp or induced cellular PKC caused increased CYP1A1 targeting to MT and correspondingly lower levels to the endoplasmic reticulum. Results suggest evolutionary conservation of chimeric signals and bimodal targeting of CYP1A1 in different species. The mouse MT-CYP1A1 is an extrinsic membrane protein, which exhibited high FDX1 plus FDXR-mediated N-demethylation of a number of tricyclic antidepressants, pain killers, anti-psychotics, and narcotics that are poor substrates for microsomal CYP1A1.  相似文献   

3.
Previously we showed that xenobiotic-inducible cytochrome P450 (CYP) proteins are bimodally targeted to the endoplasmic reticulum and mitochondria. In the present study, we investigated the mechanism of delivery of chimeric signal-containing CYP proteins to the peripheral and channel-forming mitochondrial outer membrane translocases (TOMs). CYP+33/1A1 and CYP2B1 did not require peripheral TOM70, TOM20, or TOM22 for translocation through the channel-forming TOM40 protein. In contrast, CYP+5/1A1 and CYP2E1 were able to bypass TOM20 and TOM22 but required TOM70. CYP27, which contains a canonical cleavable mitochondrial signal, required all of the peripheral TOMs for its mitochondrial translocation. We investigated the underlying mechanisms of bypass of peripheral TOMs by CYPs with chimeric signals. The results suggested that interaction of CYPs with Hsp70, a cytosolic chaperone involved in the mitochondrial import, alone was sufficient for the recognition of chimeric signals by peripheral TOMs. However, sequential interaction of chimeric signal-containing CYPs with Hsp70 and Hsp90 resulted in the bypass of peripheral TOMs, whereas CYP27 interacted only with Hsp70 and was not able to bypass peripheral TOMs. Our results also show that delivery of chimeric signal-containing client proteins by Hsp90 required the cytosol-exposed N-terminal 143 amino acids of TOM40. TOM40 devoid of this domain was unable to bind CYP proteins. These results suggest that, compared with the unimodal mitochondria-targeting signals, the chimeric mitochondria-targeting signals are highly evolved and dynamic in nature.  相似文献   

4.
Bimodal targeting of the endoplasmic reticular protein, cytochrome P4501A1 (CYP1A1), to mitochondria involves activation of a cryptic mitochondrial targeting signal through endoprotease processing of the protein. Here, we characterized the endoprotease that regulates mitochondrial targeting of CYP1A1. The endoprotease, which was induced by beta-naphthoflavone, was a dimer of 90 kDa and 40 kDa subunits, each containing Ser protease domains. The purified protease processed CYP1A1 in a sequence-specific manner, leading to its mitochondrial import. The glucocorticoid receptor, retinoid X receptor, and p53 underwent similar processing-coupled mitochondrial transport. The inducible 90 kDa subunit was a limiting factor in many cells and some tissues and, thus, regulates the mitochondrial levels of these proteins. A number of other mitochondria-associated proteins with noncanonical targeting signals may also be substrates of this endoprotease. Our results describe a new mechanism of mitochondrial protein import that requires an inducible cytoplasmic endoprotease for activation of cryptic mitochondrial targeting signals.  相似文献   

5.
6.
Cytochrome P4501A1 is a hepatic, microsomal membrane–bound enzyme that is highly induced by various xenobiotic agents. Two NH2-terminal truncated forms of this P450, termed P450MT2a and MT2b, are also found localized in mitochondria from β-naphthoflavone–induced livers. In this paper, we demonstrate that P4501A1 has a chimeric NH2-terminal signal that facilitates the targeting of the protein to both the ER and mitochondria. The NH2-terminal 30–amino acid stretch of P4501A1 is thought to provide signals for ER membrane insertion and also stop transfer. The present study provides evidence that a sequence motif immediately COOH-terminal (residues 33–44) to the transmembrane domain functions as a mitochondrial targeting signal under both in vivo and in vitro conditions, and that the positively charged residues at positions 34 and 39 are critical for mitochondrial targeting. Results suggest that 25% of P4501A1 nascent chains, which escape ER membrane insertion, are processed by a liver cytosolic endoprotease. We postulate that the NH2-terminal proteolytic cleavage activates a cryptic mitochondrial targeting signal. Immunofluorescence microscopy showed that a portion of transiently expressed P4501A1 is colocalized with the mitochondrial-specific marker protein cytochrome oxidase subunit I. The mitochondrial-associated MT2a and MT2b are localized within the inner membrane compartment, as tested by resistance to limited proteolysis in both intact mitochondria and mitoplasts. Our results therefore describe a novel mechanism whereby proteins with chimeric signal sequence are targeted to the ER as well as to the mitochondria.  相似文献   

7.
Hydrophobic membrane proteins are cotranslationally targeted to the endoplasmic reticulum (ER) membrane, mediated by hydrophobic signal sequence. Mitochondrial membrane proteins escape this mechanism despite their hydrophobic character. We examined sorting of membrane proteins into the mitochondria, by using mitochondrial ATP-binding cassette (ABC) transporter isoform (ABC-me). In the absence of 135-residue N-terminal hydrophilic segment (N135), the membrane domain was integrated into the ER membrane in COS7 cells. Other sequences that were sufficient to import soluble protein into mitochondria could not import the membrane domain. N135 imports other membrane proteins into mitochondria. N135 prevents cotranslational targeting of the membrane domain to ER and in turn achieves posttranslational import into mitochondria. In a cell-free system, N135 suppresses targeting to the ER membranes, although it does not affect recognition of hydrophobic segments by signal recognition particle. We conclude that the N135 segment blocks the ER targeting of membrane proteins even in the absence of mitochondria and switches the sorting mode from cotranslational ER integration to posttranslational mitochondrial import.  相似文献   

8.
The proteome of the outer membrane of mitochondria and chloroplasts consists of membrane proteins anchored by α-helical or β-sheet elements. While proteins with α-helical transmembrane domains are present in all cellular membranes, proteins with β-barrel structure are specific for these two membranes. The organellar β-barrel proteins are encoded in the nuclear genome and thus, have to be targeted to the outer organellar membrane where they are recognized by surface exposed translocation complexes. In the last years, the signals that ensure proper targeting of these proteins have been investigated as essential base for an understanding of the regulation of cellular protein distribution. However, the organellar β-barrel proteins are unique as most of them do not contain a typical targeting information in form of an N-terminal cleavable targeting signal. Recently, it was discovered that targeting and surface recognition of mitochondrial β-barrel proteins in yeast, humans and plants depends on the hydrophobicity of the last β-hairpin of the β-barrel. However, we demonstrate that the hydrophobicity is not sufficient for the discrimination of targeting to chloroplasts or mitochondria. By domain swapping between mitochondrial and chloroplast targeted β-barrel proteins atVDAC1 and psOEP24 we demonstrate that the presence of a hydrophilic amino acid at the C-terminus of the penultimate β-strand is required for mitochondrial targeting. A mutation of the chloroplast β-barrel protein psOEP24 which mimics such profile is efficiently targeted to mitochondria. Thus, we present the properties of the signal for mitochondrial targeting of β-barrel proteins in plants.  相似文献   

9.
Recent studies from our laboratory showed that the beta-naphthoflavone-inducible cytochrome P4501A1 is targeted to both the endoplasmic reticulum (ER) and mitochondria. In the present study, we have further investigated the ability of the N-terminal signal sequence (residues 1-44) of P4501A1 to target heterologous proteins, dihydrofolate reductase, and the mature portion of the rat P450c27 to the two subcellular compartments. In vitro transport and in vivo expression experiments show that N-terminally fused 1-44 signal sequence of P4501A1 targets heterologous proteins to both the ER and mitochondria, whereas the 33-44 sequence strictly functions as a mitochondrial targeting signal. Site-specific mutations show that positively charged residues at the 34th and 39th positions are critical for mitochondrial targeting. Cholesterol 27-hydroxylase activity of the ER-associated 1-44/1A1-CYP27 fusion protein can be reconstituted with cytochrome P450 reductase, but the mitochondrial associated fusion protein is functional with adrenodoxin + adrenodoxin reductase. Consistent with these differences, the fusion protein in the two organelle compartments exhibited distinctly different membrane topology. The results on the chimeric nature of the N-terminal signal of P4501A1 coupled with interaction with different electron transport proteins suggest a co-evolutionary nature of some of the xenobiotic inducible microsomal and mitochondrial P450s.  相似文献   

10.
We have cloned PEX15 which is required for peroxisome biogenesis in Saccharomyces cerevisiae. pex15Delta cells are characterized by the cytosolic accumulation of peroxisomal matrix proteins containing a PTS1 or PTS2 import signal, whereas peroxisomal membrane proteins are present in peroxisomal remnants. PEX15 encodes a phosphorylated, integral peroxisomal membrane protein (Pex15p). Using multiple in vivo methods to determine the topology, Pex15p was found to be a tail-anchored type II (Ncyt-Clumen) peroxisomal membrane protein with a single transmembrane domain near its carboxy-terminus. Overexpression of Pex15p resulted in impaired peroxisome assembly, and caused profound proliferation of the endoplasmic reticulum (ER) membrane. The lumenal carboxy-terminal tail of Pex15p protrudes into the lumen of these ER membranes, as demonstrated by its O-glycosylation. Accumulation in the ER was also observed at an endogenous expression level when Pex15p was fused to the N-terminus of mature invertase. This resulted in core N-glycosylation of the hybrid protein. The lumenal C-terminal tail of Pex15p is essential for targeting to the peroxisomal membrane. Furthermore, the peroxisomal membrane targeting signal of Pex15p overlaps with an ER targeting signal on this protein. These results indicate that Pex15p may be targeted to peroxisomes via the ER, or to both organelles.  相似文献   

11.
The ethanol-inducible cytochrome P450 2E1 (CYP2E1) is also induced under different pathological and physiological conditions. Studies including ours have shown that CYP2E1 is bimodally targeted to both the endoplasmic reticulum (microsomes) (mc CYP2E1) and mitochondria (mt CYP2E1). In this study we investigated the role of mtCYP2E1 in ethanol-mediated oxidative stress in stable cell lines expressing predominantly mt CYP2E1 or mc CYP2E1. The ER+ mutation (A2L, A9L), which increases the affinity of the nascent protein for binding to the signal recognition particle, preferentially targets CYP2E1 to the endoplasmic reticulum. The Mt+ (L17G) and Mt++ (I8R, L11R, L17R) mutant proteins, showing progressively lower affinity for signal recognition particle binding, were targeted to mitochondria at correspondingly higher levels. The rate of GSH depletion, used as a measure of oxidative stress, was higher in cells expressing Mt++ and Mt+ proteins as compared with cells expressing ER+ protein. In addition, the cellular level of F2-isoprostanes, a direct indicator of oxidative stress, was increased markedly in Mt++ cells after ethanol treatment. Notably, expression of Mt++ CYP2E1 protein in yeast cells caused more severe mitochondrial DNA damage and respiratory deficiency than the wild type or ER+ proteins as tested by the inability of cells to grow on glycerol or ethanol. Additionally, liver mitochondria from ethanol-fed rats containing high mt CYP2E1 showed higher levels of F2-isoprostane production. These results strongly suggest that mt CYP2E1 induces oxidative stress and augments alcohol-mediated cell/tissue injury.  相似文献   

12.
Induction of CYP2E1 by ethanol is one mechanism by which ethanol causes oxidative stress and alcohol liver disease. Although CYP2E1 is predominantly found in the endoplasmic reticulum, it is also located in rat hepatic mitochondria. In the current study, chronic alcohol consumption induced rat hepatic mitochondrial CYP2E1. To study the role of mitochondrial targeted CYP2E1 in generating oxidative stress and causing damage to mitochondria, HepG2 lines overexpressing CYP2E1 in mitochondria (mE10 and mE27 cells) were established by transfecting a plasmid containing human CYP2E1 cDNA lacking the hydrophobic endoplasmic reticulum targeting signal sequence into HepG2 cells followed by G418 selection. A 40-kDa catalytically active NH2-terminally truncated form of CYP2E1 (mtCYP2E1) was detected in the mitochondrial compartment in these cells by Western blot analysis. Cell death caused by depletion of GSH by buthionine sulfoximine (BSO) was increased in mE10 and mE27 cells as compared with cells transfected with empty vector (pCI-neo). Antioxidants were able to abolish the loss of cell viability. Increased levels of reactive oxygen species and mitochondrial 3-nitrotyrosine and 4-hydroxynonenal protein adducts and decreased mitochondrial aconitase activity and mitochondrial membrane potential were observed in mE10 and mE27 cells treated with BSO. The mitochondrial membrane stabilizer, cyclosporine A, was also able to protect these cells from BSO toxicity. These results revealed that CYP2E1 in the mitochondrial compartment could induce oxidative stress in the mitochondria, damage mitochondria membrane potential, and cause a loss of cell viability. The accumulation of CYP2E1 in hepatic mitochondria induced by ethanol consumption might play an important role in alcohol liver disease.  相似文献   

13.
Recognition of mitochondrial targeting signals (MTS) by receptor translocases of outer and inner membranes of mitochondria is one of the prerequisites for import of nucleus-encoded proteins into this organelle. The MTS for a majority of trypanosomatid mitochondrial proteins have not been well defined. Here we analyzed the targeting signal for trypanosome alternative oxidase (TAO), which functions as the sole terminal oxidase in the infective form of Trypanosoma brucei. Deleting the first 10 of 24 amino acids predicted to be the classical N-terminal MTS of TAO did not affect its import into mitochondria in vitro. Furthermore, ectopically expressed TAO was targeted to mitochondria in both forms of the parasite even after deletion of first 40 amino acid residues. However, deletion of more than 20 amino acid residues from the N terminus reduced the efficiency of import. These data suggest that besides an N-terminal MTS, TAO possesses an internal mitochondrial targeting signal. In addition, both the N-terminal MTS and the mature TAO protein were able to target a cytosolic protein, dihydrofolate reductase (DHFR), to a T. brucei mitochondrion. Further analysis identified a cryptic internal MTS of TAO, located within amino acid residues 115 to 146, which was fully capable of targeting DHFR to mitochondria. The internal signal was more efficient than the N-terminal MTS for import of this heterologous protein. Together, these results show that TAO possesses a cleavable N-terminal MTS as well as an internal MTS and that these signals act together for efficient import of TAO into mitochondria.  相似文献   

14.
We have investigated mechanisms of mitochondrial targeting of the phenobarbital-inducible hepatic mitochondrial P450MT4, which cross-reacts with antibody to microsomal P4502B1. Results show that P4502B1 and P450MT4 have identical primary sequence but different levels of phosphorylation and secondary structure. We demonstrate that P4502B1 contains a chimeric mitochondrial and endoplasmic reticulum (ER) targeting signal at its N-terminus. Inducers of cAMP and protein kinase A-mediated phosphorylation of P4502B1 at Ser128 activate the signal for mitochondrial targeting and modulate its mitochondrial or ER destination. S128A mutation inhibits in vitro mitochondrial transport and also in vivo mitochondrial targeting in COS cells. A fragment of P4502B1 containing the N-terminal signal and the phosphorylation site could drive the transport of dihydrofolate reductase (DHFR) into mitochondria. Ser128 phosphorylation reduced the affinity of 2B1 protein for binding to SRP, but increased the affinity of the 2B1-DHFR fusion protein for binding to yeast mitochondrial translocase proteins, TOM40 and TIM44, and matrix Hsp70. We describe a novel regulatory mechanism by which cAMP modulates the targeting of a protein to two distinct organelles.  相似文献   

15.
For the biogenesis of mitochondria, hundreds of proteins need to be targeted from the cytosol into the various compartments of this organelle. The intramitochondrial targeting routes these proteins take to reach their respective location in the organelle are well understood. However, the early targeting processes, from cytosolic ribosomes to the membrane of the organelle, are still largely unknown. In this study, we present evidence that an integral membrane protein of the endoplasmic reticulum (ER), Ema19, plays a role in this process. Mutants lacking Ema19 show an increased stability of mitochondrial precursor proteins, indicating that Ema19 promotes the proteolytic degradation of nonproductive precursors. The deletion of Ema19 improves the growth of respiration-deficient cells, suggesting that Ema19-mediated degradation can compete with productive protein import into mitochondria. Ema19 is the yeast representative of a conserved protein family. The human Ema19 homologue is known as sigma 2 receptor or TMEM97. Though its molecular function is not known, previous studies suggested a role of the sigma 2 receptor as a quality control factor in the ER, compatible with our observations about Ema19. More globally, our data provide an additional demonstration of the important role of the ER in mitochondrial protein targeting.  相似文献   

16.
In eukaryotic cells consisting of many different types of organelles, targeting of organellar proteins is one of the most fundamental cellular processes. Proteins belonging to the endoplasmic reticulum (ER), chloroplasts and mitochondria are targeted individually from the cytosol to their cognate organelles. As the targeting to these organelles occurs in the cytosol during or after translation, the most crucial aspect is how specific targeting to these three organelles can be achieved without interfering with other targeting pathways. For these organelles, multiple mechanisms are used for targeting proteins, but the exact mechanism used depends on the type of protein and organelle, the location of targeting signals in the protein and the location of the protein in the organelle. In this review, we discuss the various mechanisms involved in protein targeting to the ER, chloroplasts and mitochondria, and how the targeting specificity is determined for these organelles in plant cells .  相似文献   

17.
Mammalian NADH-cytochrome b5 reductase (b5R) is an N-myristoylated protein that is dually targeted to ER and mitochondrial outer membranes. The N-linked myristate is not required for anchorage to membranes because a stretch of hydrophobic amino acids close to the NH2 terminus guarantees a tight interaction of the protein with the phospholipid bilayer. Instead, the fatty acid is required for targeting of b5R to mitochondria because a nonmyristoylated mutant is exclusively localized to the ER. Here, we have investigated the mechanism by which N-linked myristate affects b5R targeting. We find that myristoylation interferes with interaction of the nascent chain with signal recognition particle, so that a portion of the nascent chains escapes from cotranslational integration into the ER and can be post-translationally targeted to the mitochondrial outer membrane. Thus, competition between two cotranslational events, binding of signal recognition particle and modification by N-myristoylation, determines the site of translation and the localization of b5R.  相似文献   

18.
dAKAP1 (AKAP121, S-AKAP84), a dual specificity PKA scaffold protein, exists in several forms designated as a, b, c, and d. Whether dAKAP1 targets to endoplasmic reticulum (ER) or mitochondria depends on the presence of the N-terminal 33 amino acids (N1), and these N-terminal variants are generated by either alternative splicing and/or differential initiation of translation. The mitochondrial targeting motif, which is localized between residues 49 and 63, is comprised of a hydrophobic helix followed by positive charges ( Ma, Y., and Taylor, S. (2002) J. Biol. Chem. 277, 27328-27336 ). dAKAP1 is located on the cytosolic surface of mitochondria outer membrane and both smooth and rough ER membrane. A single residue, Asp(31), within the first 33 residues of dAKAP1b is required for ER targeting. Asp(31), which functions as a separate motif from the mitochondrial targeting signal, converts the mitochondrial-targeting signal into a bipartite ER-targeting signal, without destroying the mitochondria-targeting signal. Therefore dAKAP1 possesses a single targeting element capable of targeting to both mitochondria and ER, with the ER signal overlapping the mitochondria signal. The specificity of ER or mitochondria targeting is determined and switched by the availability of the negatively charged residue, Asp(31).  相似文献   

19.
Protein targeting to specified cellular compartments is essential to maintain cell function and homeostasis. In eukaryotic cells, two major pathways rely on N‐terminal signal peptides to target proteins to either the endoplasmic reticulum (ER) or mitochondria. In this study, we show that the ER signal peptides of the prion protein‐like protein shadoo, the neuropeptide hormone somatostatin and the amyloid precursor protein have the property to mediate alternative targeting to mitochondria. Remarkably, the targeting direction of these signal peptides is determined by structural elements within the nascent chain. Each of the identified signal peptides promotes efficient ER import of nascent chains containing α‐helical domains, but targets unstructured polypeptides to mitochondria. Moreover, we observed that mitochondrial targeting by the ER signal peptides correlates inversely with ER import efficiency. When ER import is compromised, targeting to mitochondria is enhanced, whereas improving ER import efficiency decreases mitochondrial targeting. In conclusion, our study reveals a novel mechanism of dual targeting to either the ER or mitochondria that is mediated by structural features within the nascent chain.  相似文献   

20.
Previously we showed that intact rat cytochrome P450 2E1, cytochrome P450 2B1 and truncated cytochrome P450 1A1 are targeted to mitochondria in rat tissues and COS cells. However, some reports suggest that truncated cytochrome P450 2E1 is targeted to mitochondria. In this study, we used a heterologous yeast system to ascertain the conservation of targeting mechanisms and the nature of mitochondria-targeted proteins. Mitochondrial integrity and purity were established using electron microscopy, and treatment with digitonin and protease. Full-length cytochrome P450 2E1 and cytochrome P450 2B1 were targeted both to microsomes and mitochondria, whereas truncated cytochrome P450 1A1 (+ 5 and + 33/cytochrome P450 1A1) were targeted to mitochondria. Inability to target intact cytochrome P450 1A1 was probably due to lack of cytosolic endoprotease activity in yeast cells. Mitochondrial targeting of cytochrome P450 2E1 was severely impaired in protein kinase A-deficient cells. Similarly, a phosphorylation site mutant cytochrome P450 2E1 (Ser129A) was poorly targeted to the mitochondria, thus confirming the importance of protein kinase A-mediated protein phosphorylation in mitochondrial targeting. Mitochondria-targeted proteins were localized in the matrix compartment peripherally associated with the inner membrane and their ethoxyresorufin O-dealkylation, erythromycin N-demethylase, benzoxyresorufin O-dealkylation and nitrosodimethylamine N-demethylase activities were fully supported by yeast mitochondrial ferredoxin and ferredoxin reductase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号