首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Application of the functional-form model to the culture of seaweeds   总被引:1,自引:1,他引:0  
Selecting the most appropriate species or strains is an important first step in the development of most algal cultivation systems and is usually a tedious, time-consuming, and expensive step. The functional-form model, first developed to synthesize the adaptive significance of easily assessed thallus-form attributes relative to the productivity and survival of benthic macroalgae, is applicable to the culture of seaweeds and can expedite species or strain selection. The production ecology aspects of the model are useful particularly for applications where the desired product is not species-specific, e.g., systems in which the emphasis is on algal production, such as algal biomass farms and wastewater treatment. A thallus-form with a high surface area: volume ratio is more suited for rapid production and nutrient uptake. The utility of this model to strain selection is demonstrated with the red alga Gracilaria tikvahiae, a species that has been considered a maricultural candidate for a number of utilizations. A continuum of surface area: volume ratios for eight clones of G. tikvahiae showed that this ratio decreased as morphological complexity increased and was a good predictor of both short-term photosynthesis and long-term growth rate. Clones near opposite ends of the surface area: volume ratio spectrum had significant differences for both photosynthesis and growth. Each clone of G. tikvahiae possesses concomitant combinations of benefits as well as costs, which should be carefully evaluated for the cultivation application of interest. Knowledge of functional-form relationships in seaweeds can significantly expedite their successful cultivation.  相似文献   

2.
Recently, algae have received significant interest as a potential feedstock for renewable diesel (such as biodiesel), and many researchers have attempted to quantify this potential. Some of these attempts are less useful because they have not incorporated specific values of algal lipid content, have not included processing inefficiencies, or omitted processing steps required for renewable diesel production. Furthermore, the associated energy, materials, and costs requirements are sometimes omitted. The accuracy and applicability of these estimates can be improved by using data that are more specific, including all relevant information for renewable diesel production, and by presenting information with more relevant metrics. To determine whether algae are a viable source for renewable diesel, three questions that must be answered are (1) how much renewable diesel can be produced from algae, (2) what is the financial cost of production, and (3) what is the energy ratio of production? To help accurately answer these questions, we propose an analytical framework and associated nomenclature system for characterizing renewable diesel production from algae. The three production pathways discussed in this study are the transesterification of extracted algal lipids, thermochemical conversion of algal biomass, and conversion of secreted algal oils. The nomenclature system is initially presented from a top-level perspective that is applicable to all production pathways for renewable diesel from algae. Then, the nomenclature is expanded to characterize the production of renewable diesel (specifically, biodiesel) from extracted algal lipids in detail (cf. Appendix 2). The analytical framework uses the presented nomenclature system and includes three main principles: using appropriate reporting metrics, using symbolic notation to represent unknown values, and presenting results that are specific to algal species, growth conditions, and product composition.  相似文献   

3.
Optimization of compatible solutes (ectoine) extraction and purification from Halomonas elongata cell fermentation had been investigated in the laboratory tests of a large scale commercial production project. After culturing H. elongata cells in developed medium at 28?°C for 23–30 h, we obtained an average yield and biomass of ectoine for 15.9 g/L and 92.9 (OD600), respectively. Cell lysis was performed with acid treatment at moderate high temperature (60–70?°C). The downstream processing operations were designed to be as follows: filtration, desalination, cation exchange, extraction of crude product and three times of refining. Among which the cation exchange and extraction of crude product acquired a high average recovery rate of 95 and 96%; whereas a great loss rate of 19 and 15% was observed during the filtration and desalination, respectively. Combined with the recovering of ectoine from the mother liquor of the three times refining, the average of overall yield (referring to the amount of ectoine synthesized in cells) and purity of final product obtained were 43% and over 98%, respectively. However, key factors that affected the production efficiency were not yields but the time used in the extraction of crude product, involving the crystallization step from water, which spended 24–72 h according to the production scale. Although regarding to the productivity and simplicity on laboratory scale, the method described here can not compete with other investigations, in this study we acquired higher purity of ectoine and provided downstream processes that are capable of operating on industrial scale.  相似文献   

4.
Lipid recovery and purification from microalgal cells continues to be a significant bottleneck in biodiesel production due to high costs involved and a high energy demand. Therefore, there is a considerable necessity to develop an extraction method which meets the essential requirements of being safe, cost‐effective, robust, efficient, selective, environmentally friendly, feasible for large‐scale production and free of product contamination. The use of wet concentrated algal biomass as a feedstock for oil extraction is especially desirable as it would avoid the requirement for further concentration and/or drying. This would save considerable costs and circumvent at least two lengthy processes during algae‐based oil production. This article provides an overview on recent progress that has been made on the extraction of lipids from wet algal biomass. The biggest contributing factors appear to be the composition of algal cell walls, pre‐treatments of biomass and the use of solvents (e.g. a solvent mixture or solvent‐free lipid extraction). We compare recently developed wet extraction processes for oleaginous microalgae and make recommendations towards future research to improve lipid extraction from wet algal biomass.  相似文献   

5.
Technical aspects of the separation of aqueous two-phase systems in a commercial separator were studied in detail. For the Gyrotester B, the smallest available separator, a flow rate of 200 ml/min and a length of the regulating screw in the outlet port of 13.5 mm were found as optimal operation parameters for the separation of a poly(ethylene glycol) (PEG)/dextran two-phase system. In the presence of cells and cell debris the characteristics of the carrier two-phase systems are changed, most notably the phase ratio. Nevertheless good separation and high throughput can be maintained up to 30% wet cell material in the complete system. Using this method the enzyme pullulanase was extracted from 6.65 kg Klebsiella pneumoniae in 88% yield in a single step in less than 2 hr. A yield of 90% was predicted for this step based upon laboratory data, indicating that the performance of the extraction and separation can be calculated with the necessary accuracy and the further scale-up of the process should be accomplished quite easily. The hydrophilic polymers Constituting the phase system will often stabilize the enzymes, So that the separation can be carried out at room temperature without extensive cooling. The method of enzyme solubilization or cell disruption is not decisive for the successful extraction of the enzymes, the only limitation being the necessity to find a suitable two-phase system where the desired product and the cells or cell debris will partition in opposite phases. This is shown for α-glucosidase from Saccharomyces carlsbergensis and three aminoacyl-tRNA-synthetases from Escherichia coli. The results obtained demonstrate that aqueous two-phase systems can be separated in commercially available separators with high capacity and efficiency. It can be expected that the advanced separation technology available from chemical engineering studies can also be used for the development of large-scale isolation processes for enzymes involving liquid–liquid partitions.  相似文献   

6.
In situ recovery of fermentation products can increase the rate of product inhibited fermentations, reduce costs of waste-water treatment and minimize product degradation. Some methods of in situ recovery show more potential than others for the production of chemicals and pharmaceuticals by fermentation.  相似文献   

7.
Milking of microalgae   总被引:6,自引:0,他引:6  
The low productivity of algal cultures in the production of high-value compounds is the most significant bottleneck for commercialization of this technology. Cultures in which cell mass is reused for continuous production are proposed as a solution to overcome this problem. Recently, a method was developed in which beta-carotene was harvested from the microalga Dunaliella salina grown in a two-phase bioreactor. This raises the question of whether this technique could also be used in the mass production of secondary metabolites. Understanding the mechanism of the milking process and its relationship to the product formation pathway should reveal whether other products can be milked from various species of microalgae.  相似文献   

8.
Algal lipid of Botryococcus braunii could be produced continuously and in situ extracted in an aqueous-organic bioreactor. In this study, the cell ultra-structure and cell membrane permeability of B. braunii FACHB 357 were investigated to understand the mechanism of lipid extraction within the biphasic system. The results showed that biocompatible solvent of tetradecane could induce algal lipid accumulation, enable the cell membrane more active and the cell wall much looser. The exocytosis process was observed to be one of the mechanisms for lipid cross-membrane extraction in the presence of organic solvent.  相似文献   

9.
Cloud point system, consisting of nonionic surfactant in an aqueous solution, has been developed as a novel medium for whole cell microbial transformation. The basic properties of cloud point system including phase separation and solubilization are introduced. The application of cloud point system for extractive microbial transformation is different from that of water-organic solvent two-phase partitioning system or aqueous two-phase system are discussed, which mainly focus on the biocompatibility of microorganism in a cloud point system and a downstream process of microbial transformation in cloud point system with oil-water-surfactant microemulsion liquid-liquid extraction for surfactant recovery and product separation. Finally, examples of whole cell microbial transformation in cloud point systems, especially in situ extraction of moderate polar substrate/product, are also presented.  相似文献   

10.
Several microalgae, such as species ofChlorella, Spirulina andDunaliella, are grown commercially and algal products such as -carotene and phycocyanin are available. The main focus of algal biotechnology continues to be on high value fine chemicals and on algae for use as aquaculture feeds. This paper provides the outline for a rational approach in evaluating which algae and which algal products are the most likely to be commercially viable. This approach involves some simple market analysis followed by economic modelling of the whole production process. It also permits an evaluation of which steps in the production process have the greatest effect on the final production cost of the alga or algal product, thus providing a guide as to what area the research and development effort should be directed to. An example of this approach is presented and compared with other models. The base model used here gives a production cost of microalgal biomass at about AS 14 to 15 kg–1, excluding the costs of further processing, packaging and marketing. The model also shows that some of the key factors in microalgal production are productivity, labor costs and harvesting costs. Given the existing technology, high value products such as carotenoids and algal biomass for aquaculture feeds have the greatest commercial potential in the short term.This paper was presented at the Symposium on Applied Phycology at the Fourth International Phycological Congress, Duke University.  相似文献   

11.
The biotech industry is, nowadays, facing unparalleled challenges due to the enhanced demand for biotechnology-based human therapeutic products, such as monoclonal antibodies (mAbs). This has led companies to improve substantially their upstream processes, with the yield of monoclonals increasing to titers never seen before. The downstream processes have, however, been overlooked, leading to a production bottleneck. Although chromatography remains the workhorse of most purification processes, several limitations, such as low capacity, scale-related packing problems, low chemical and proteolytic stability and resins' high cost, have arisen. Aqueous two-phase extraction (ATPE) has been successfully revisited as a valuable alternative for the capture of antibodies. One of the important remaining questions for this technology to be adopted by the biotech industries is, now, how it compares to the currently established platforms in terms of costs and environmental impact. In this report, the economical and environmental sustainability of the aqueous two-phase extraction process is evaluated and compared to the currently established protein A affinity chromatography. Accordingly, the ATPE process was shown to be considerably advantageous in terms of process economics, especially when processing high titer cell culture supernatants. This alternative process is able to purify continuously the same amount of mAbs reducing the annual operating costs from 14.4 to 8.5 million (US$/kg) when cell culture supernatants with mAb titers higher than 2.5 g/L are processed.  相似文献   

12.
The antisense therapeutic strategy makes the assumption that sequence-specific hybridization of an oligonucleotide to its target can take place in living cells. The present work provides a new method for the detection of intracellular RNA molecules using in situ hybridization on living cells. The first step consisted in designing nonperturbant conditions for cell permeabilization using streptolysin O. In a second step, intracellular hybridization specificity was evaluated by incorporating various types of fluorescently labeled nucleic acid probes (plasmids, oligonucleotides). Due to its high expression level, the 28S ribosomal RNA was retained as a model. Results showed that: (1) no significant cell death was observed after permeabilization; (2) on living cells, 28S RNA specific probes provided bright nucleoli and low cytoplasmic signal; (3) control probes did not lead to significant fluorescent staining; and (4) comparison of signals obtained on living and fixed cells showed a colocalization of observed fluorescence. These results indicate the feasibility of specific hybridization of labeled nucleic acid probes under living conditions, after a simple and efficient permeabilization step. This new detection method is of interest for investigating the dynamics of distribution of various gene products in living cells, under normal or pathological conditions.Abbreviations PI propidium iodide - SLO streptolysin O  相似文献   

13.
1,3-Propanediol and 2,3-butanediol are two promising chemicals which have a wide range of applications and can be biologically produced. The separation of these diols from fermentation broth makes more than 50% of the total costs in their microbial production. This review summarizes the present state of methods studied for the recovery and purification of biologically produced diols, with particular emphasis on 1,3-propoanediol. Previous studies on the separation of 1,3-propanediol primarily include evaporation, distillation, membrane filtration, pervaporation, ion exchange chromatography, liquid–liquid extraction, and reactive extraction. Main methods for the recovery of 2,3-butanediol include steam stripping, pervaporation, and solvent extraction. No single method has proved to be simple and efficient, and improvements are especially needed with regard to yield, purity, and energy consumption. Perspectives for an improved downstream processing of biologically produced diols, especially 1,3-propanediol are discussed based on our own experience and recent work. It is argued that separation technologies such as aqueous two-phase extraction with short chain alcohols, pervaporation, reverse osmosis, and in situ extractive or pervaporative fermentations deserve more attention in the future.  相似文献   

14.
Pseudomonas oleovorans and recombinant strains containing the alkane oxidation genes can produce alkane oxidation products in two‐liquid phase bioreactor systems. In these bioprocesses the cells, which grow in the aqueous phase, oxidize apolar, non‐water soluble substrates. The apolar products typically accumulate in the emulsified apolar phase. We have studied both the bioconversion systems and several downstream processing systems to separate and purify alkanols from these two‐liquid phase media. Based on the information generated in these studies, we have now designed bioconversion and downstream processing systems for the production of 1‐alkanols from n‐alkanes on a 10 kiloton/yr scale, taking the conversion of n‐octane to 1‐octanol as a model system. Here, we describe overall designs of fed‐batch and continuous‐fermentation processes for the oxidation of octane to 1‐octanol by Pseudomonas oleovorans, and we discuss the economics of these processes. In both systems the two‐liquid phase system consists of an apolar phase with hexadecene as the apolar carrier solvent into which n‐octane is dissolved, while the cells are present in the aqueous phase. In one system, multiple‐batch fermentations are followed by continuous processing of the product from the separated apolar phase. The second system is based on alkane oxidation by continuously growing cultures, again followed by continuous processing of the product. Fewer fermentors were required and a higher space‐time‐yield was possible for production of 1‐octanol in a continuous process. The overall performance of each of these two systems has been modeled with Aspen software. Investment and operating costs were estimated with input from equipment manufacturers and bulk‐material suppliers. Based on this study, the production cost of 1‐octanol is about 7 US$kg−1 when produced in the fed‐batch process, and 8 US$kg−1 when produced continuously. The comparison of upstream and downstream capital costs and production costs showed significantly higher upstream costs for the fed‐batch process and slightly higher upstream costs for continuous fermentation. The largest cost contribution was due to variable production costs, mainly resulting from media costs. The organisms used in these systems are P. putida alk+ recombinants which oxidize alkanes, but cannot oxidize the resulting alkanols further. Hence, such cells need a second carbon source, which in these systems is glucose. Although the continuous process is about 10% more expensive than the fed‐batch process, improvements to reduce overall cost can be achieved more easily for continuous than for fed‐batch fermentation by decreasing the dilution rate while maintaining near constant productivity. Improvements relevant to both processes can be achieved by increasing the biocatalyst performance, which results in improved overall efficiency, decreased capital investment, and hence, decreased production cost. © 1999 John Wiley & Sons, Inc. Biotechnol Bioeng 84: 459–477, 1999.  相似文献   

15.
Vaccine manufacturing strategies that lower capital and production costs could improve vaccine access by reducing the cost per dose and encouraging localized manufacturing. Continuous processing is increasingly utilized to drive lower costs in biological manufacturing by requiring fewer capital and operating resources. Aqueous two-phase systems (ATPS) are a liquid–liquid extraction technique that enables continuous processing for viral vectors. To date, no economic comparison between viral vector purifications using traditional methods and ATPS has been published. In this work, economic simulations of traditional chromatography-based virus purification were compared to ATPS-based virus purification for the same product output in both batch and continuous modes. First, the modeling strategy was validated by re-creating a viral subunit manufacturing economic simulation. Then, ATPS capital and operating costs were compared to that of a traditional chromatography purification at multiple scales. At all scales, ATPS purification required less than 10% of the capital expenditure compared to chromatography-based purification. At an 11 kg per year production scale, the ATPS production costs were 50% less than purification with chromatography. Other chromatography configurations were explored, and may provide a production cost benefit to ATPS, but the purity and recovery were not experimentally verified. Batch and continuous ATPS were similar in capital and production costs. However, manual price adjustments suggest that continuous ATPS plant-building costs could be less than half that of batch ATPS at the 11 kg per year production scale. These simulations show the significant reduction in manufacturing costs that ATPS-based purification could deliver to the vaccine industry.  相似文献   

16.
Rapid detection of Bacillus spores is a challenging task in food and defense industries. In situ labeling of spores would be advantageous for detection by automated systems based on single-cell analysis. Determination of antibiotic-resistance genes in bacterial spores using in situ labeling has never been developed. Most of the in situ detection schemes employ techniques such as fluorescence in situ hybridization (FISH) that target the naturally amplified ribosomal RNA (rRNA). However, the majority of antibiotic-resistance genes has a plasmidic or chromosomal origin and is present in low copy numbers in the cell. The main challenge in the development of low-target in situ detection in spores is the permeabilization procedure and the signal amplification required for detection. This study presents permeabilization and in situ signal amplification protocols, using Bacillus cereus spores as a model, in order to detect antibiotic-resistance genes. The permeabilization protocol was designed based on the different layers of the Bacillus spore. Catalyzed reporter deposition (CARD)–FISH and in situ polymerase chain reaction (PCR) were used as signal amplification techniques. B. cereus was transformed with the high copy number pC194 and low copy number pMTL500Eres plasmids in order to induce resistance to chloramphenicol and erythromycin, respectively. In addition, a rifampicin-resistant B. cereus strain, conferred by a single-nucleotide polymorphism (SNP) in the chromosome, was used. Using CARD–FISH, only the high copy number plasmid pC194 was detected. On the other hand, in situ PCR gave positive results in all tested instances. This study demonstrated that it was feasible to detect antibiotic-resistance genes in Bacillus spores using in situ techniques. In addition, in situ PCR has been shown to be more sensitive and more applicable than CARD–FISH in detecting low copy targets.  相似文献   

17.
The efficacy of DNA extraction protocols can be highly dependent upon both the type of sample being investigated and the types of downstream analyses performed. Considering that the use of new bacterial community analysis techniques (e.g., microbiomics, metagenomics) is becoming more prevalent in the agricultural and environmental sciences and many environmental samples within these disciplines can be physiochemically and microbiologically unique (e.g., fecal and litter/bedding samples from the poultry production spectrum), appropriate and effective DNA extraction methods need to be carefully chosen. Therefore, a novel semi-automated hybrid DNA extraction method was developed specifically for use with environmental poultry production samples. This method is a combination of the two major types of DNA extraction: mechanical and enzymatic. A two-step intense mechanical homogenization step (using bead-beating specifically formulated for environmental samples) was added to the beginning of the “gold standard” enzymatic DNA extraction method for fecal samples to enhance the removal of bacteria and DNA from the sample matrix and improve the recovery of Gram-positive bacterial community members. Once the enzymatic extraction portion of the hybrid method was initiated, the remaining purification process was automated using a robotic workstation to increase sample throughput and decrease sample processing error. In comparison to the strict mechanical and enzymatic DNA extraction methods, this novel hybrid method provided the best overall combined performance when considering quantitative (using 16S rRNA qPCR) and qualitative (using microbiomics) estimates of the total bacterial communities when processing poultry feces and litter samples.  相似文献   

18.
Developments in process techniques for production and recovery of heterologous proteins with Pichia pastoris are presented. Limitations for the standard techniques are described, and alternative techniques that solve the limitations problems are reviewed together with the methods that resulted in higher productivity of the P. pastoris processes. The main limitations are proteolysis of the secreted products and cell death in the high cell density bioreactor cultures. As a consequence, both low productivity and lower quality of the feedstock for downstream processing are achieved in processes hampered with these problems. Methods for exploring proteolysis and cell death are also presented. Solving the problems makes the conditions for downstream processing superior for the P. pastoris expression systems compared to other systems, which either need complex media or rely on intracellular production. These improved conditions allow for interfacing of cultivation with downstream processing in an integrated fashion.  相似文献   

19.
In industrial scale recombinant protein production it is often of interest to be able to translocate the product to reduce downstream costs, and heterologous proteins may require the oxidative environment outside of the cytoplasm for correct folding. High-level expression combined with translocation to the periplasm is often toxic to the host, and expression systems that can be used to fine-tune the production levels are therefore important. We previously constructed vector pJB658, which harbors the broad-host-range RK2 minireplicon and the inducible Pm/xylS promoter system, and we here explore the potential of this unique system to manipulate the expression and translocation of a host-toxic single-chain antibody variable fragment with affinity for hapten 2-phenyloxazol-5-one (phOx) (scFv-phOx). Fine-tuning of scFv-phOx levels was achieved by varying the concentrations of inducers and the vector copy number and also different signal sequences. Our data show that periplasmic accumulation of scFv-phOx leads to cell lysis, and we demonstrate the importance of controlled and high expression rates to achieve high product yields. By optimizing such parameters we show that soluble scFv-phOx could be produced to a high volumetric yield (1.2 g/liter) in high-cell-density cultures of Escherichia coli.  相似文献   

20.
Many plant-based systems have been developed as bioreactors to produce recombinant proteins. The choice of system for large-scale production depends on its intrinsic expression efficiency and its propensity for scale-up, post-harvest storage and downstream processing. Factors that must be considered include the anticipated production scale, the value and intended use of the product, the geographical production area, the proximity of processing facilities, intellectual property, safety and economics. It is also necessary to consider whether different species and organs affect the subcellular trafficking, structure and qualitative properties of recombinant proteins. In this article we discuss the subcellular localization and N-glycosylation of two commercially-relevant recombinant glycoproteins (Aspergillus niger phytase and anti-HIV antibody 2G12) produced in different plant species and organs. We augment existing data with novel results based on the expression of the same recombinant proteins in Arabidopsis and tobacco seeds, focusing on similarities and subtle differences in N-glycosylation that often reflect the subcellular trafficking route and final destination, as well as differences generated by unique enzyme activities in different species and tissues. We discuss the potential consequences of such modifications on the stability and activity of the recombinant glycoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号