首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Since the discovery that, despite the active site complexity, only three gene products suffice to obtain active recombinant [FeFe]-hydrogenase, significant light has been shed on this process. Both the source of the CO and CN(-) ligands to iron and the assembly site of the catalytic subcluster are known, and an apo structure of HydF has been published recently. However, the nature of the substrate(s) for the synthesis of the bridging dithiolate ligand to the subcluster remains to be established. From both spectroscopy and model chemistry, it is predicted that an amine function in this ligand plays a central role in catalysis, acting as a base in the heterolytic cleavage of hydrogen.  相似文献   

2.
Formation of the catalytic six-iron complex (H-cluster) of [FeFe]-hydrogenase (HydA) requires its interaction with a specific maturation protein, HydF. Comparison by X-ray absorption spectroscopy at the Fe K-edge of HydF from Clostridium acetobutylicum and HydA1 from Chlamydomonas reinhardtii revealed that the overall structure of the iron site in both proteins is highly similar, comprising a [4Fe4S] cluster (Fe–Fe distances of ∼2.7 Å) and a di-iron unit (Fe–Fe distance of ∼2.5 Å). Thus, a precursor of the whole H-cluster is assembled on HydF. Formation of the core structures of both the 4Fe and 2Fe units may require only the housekeeping [FeS] cluster assembly machinery of the cell. Presumably, only the 2Fe cluster is transferred from HydF to HydA1, thereby forming the active site.  相似文献   

3.
[FeFe]-hydrogenases catalyze the protons/hydrogen interconversion through a unique di-iron active site consisting of three CO and two CN ligands, and a non-protein SCH2XCH2S (X = N or O) dithiolate bridge. Site assembly requires two “Radical-S-adenosylmethionine (SAM or AdoMet)” iron-sulfur enzymes, HydE and HydG, and one GTPase, HydF. The sequence homology between HydG and ThiH, a Radical-SAM enzyme which cleaves tyrosine into p-cresol and dehydroglycine, and the finding of a similar cleavage reaction catalyzed by HydG suggests a mechanism for hydrogenase maturation. Here we propose that HydG is specifically involved in the synthesis of the dithiolate ligand, with two tyrosine-derived dehydroglycines as precursors along with an [FeS] cluster of HydG functioning both as electron shuttle and source of the sulfur atoms.  相似文献   

4.
Studies on diiron dithiolato complexes have proven fruitful for modeling the active site of the [FeFe]-hydrogenases. Here we present a departure from the classical Fe(2)S(2) motif by examining the viability of Fe(2)N(2) butterfly compounds as functional models for the diiron active site of [FeFe]-hydrogenases. Derivatization of Fe(2)(BC)(CO)(6) (1, BC=benzo-[c]-cinnoline) with PMe(3) affords Fe(2)(BC)(CO)(4)(PMe(3))(2), which subsequently undergoes protonation at the Fe-Fe bond. The hydride [(mu-H)Fe(2)(BC)(CO)(4)(PMe(3))(2)]PF(6) was characterized crystallographically as the C(2v) isomer. It represents a rare example of a hydrido diiron complex that exists as observable isomers, depending on the location of the phosphine ligands--diapical and apical-basal. This hydride catalyzes the electrochemical reduction of protons.  相似文献   

5.
[FeFe]-hydrogenases are superior hydrogen conversion catalysts. They bind a cofactor (H-cluster) comprising a four-iron and a diiron unit with three carbon monoxide (CO) and two cyanide (CN?) ligands. Hydrogen (H2) and oxygen (O2) binding at the H-cluster was studied in the C169A variant of [FeFe]-hydrogenase HYDA1, in comparison to the active oxidized (Hox) and CO-inhibited (Hox-CO) species in wildtype enzyme. 57Fe labeling of the diiron site was achieved by in vitro maturation with a synthetic cofactor analogue. Site-selective X-ray absorption, emission, and nuclear inelastic/forward scattering methods and infrared spectroscopy were combined with quantum chemical calculations to determine the molecular and electronic structure and vibrational dynamics of detected cofactor species. Hox reveals an apical vacancy at Fed in a [4Fe4S-2Fe]3 ? complex with the net spin on Fed whereas Hox-CO shows an apical CN? at Fed in a [4Fe4S-2Fe(CO)]3 ? complex with net spin sharing among Fep and Fed (proximal or distal iron ions in [2Fe]). At ambient O2 pressure, a novel H-cluster species (Hox-O2) accumulated in C169A, assigned to a [4Fe4S-2Fe(O2)]3 ? complex with an apical superoxide (O2?) carrying the net spin bound at Fed. H2 exposure populated the two-electron reduced Hhyd species in C169A, assigned as a [(H)4Fe4S-2Fe(H)]3 ? complex with the net spin on the reduced cubane, an apical hydride at Fed, and a proton at a cysteine ligand. Hox-O2 and Hhyd are stabilized by impaired O2 protonation or proton release after H2 cleavage due to interruption of the proton path towards and out of the active site.  相似文献   

6.
The oxidation of the hexacarbonyl(1,3-dithiolato-S,S')diiron complexes 4a-4c with varying amounts of dimethyldioxirane (DMD) was systematically studied. The chemoselectivity of the oxidation products depended upon the substituent R (R=H, Me, 1/2 (CH2)(5)). For R=H, four oxidation products, 6a-6d, have been obtained. In the case of R=Me, three products, 7a-7c, were formed, and for R=1/2 (CH2)(5), only complex 8 was observed. These observations are due to steric and electronic effects caused by the substituent R. Additionally, oxidation of the triiron complex 5 with DMD was performed to yield the products 9a and 9b. X-Ray diffraction analyses were performed for 6a-6d, 7a, and 7c, as well as for 9a and 9b. The electronic properties were determined by density-functional theory (DFT) calculations.  相似文献   

7.
Hydrogenases catalyze the reversible oxidation of molecular hydrogen (H(2)), but little is known about the diffusion of H(2) toward the active site. Here we analyze pathways for H(2) permeation using molecular dynamics (MD) simulations in explicit solvent. Various MD simulation replicates were done, to improve the sampling of the system states. H(2) easily permeates hydrogenase in every simulation and it moves preferentially in channels. All H(2) molecules that reach the active site made their approach from the side of the Ni ion. H(2) is able to reach distances of <4 A from the active site, although after 6 A permeation is difficult. In this region we mutated Val-67 into alanine and perform new MD simulations. These simulations show an increase of H(2) inside the protein and at lower distances from the active site. This valine can be a control point in the H(2) access to the active center.  相似文献   

8.
HydF as a scaffold protein in [FeFe] hydrogenase H-cluster biosynthesis   总被引:1,自引:0,他引:1  
In an effort to determine the specific protein component(s) responsible for in vitro activation of the [FeFe] hydrogenase (HydA), the individual maturation proteins HydE, HydF, and HydG from Clostridium acetobutylicum were purified from heterologous expressions in Escherichia coli. Our results demonstrate that HydF isolated from a strain expressing all three maturation proteins is sufficient to confer hydrogenase activity to purified inactive heterologously expressed HydA (expressed in the absence of HydE, HydF, and HydG). These results represent the first in vitro maturation of [FeFe] hydrogenase with purified proteins, and suggest that HydF functions as a scaffold upon which an H-cluster intermediate is synthesized.  相似文献   

9.
[FeFe]-Hydrogenases are complex metalloproteins that catalyze the reversible reduction of protons to molecular hydrogen utilizing a unique diiron subcluster bridged to a [4Fe4S] subcluster. Extensive studies have concentrated on the nature and catalytic activity of the active site, yet relatively little information is available concerning the mechanism of proton transport that is required for this activity. Previously, structural characterization of [FeFe]-hydrogenase from Clostridium pasteurianum indicated a potential proton transport pathway involving four residues (Cys-299, Glu-279, Ser-319, and Glu-282) that connect the active site to the enzyme surface. Here, we demonstrate that substitution of any of these residues resulted in a drastic reduction in hydrogenase activity relative to the native enzyme, supporting the importance of these residues in catalysis. Inhibition studies of native and amino acid-substituted enzymes revealed that Zn(2+) specifically blocked proton transfer by binding to Glu-282, confirming the role of this residue in the identified pathway. In addition, all four of these residues are strictly conserved, suggesting that they may form a proton transport pathway that is common to all [FeFe]-hydrogenases.  相似文献   

10.
Maturation of the [FeFe]-hydrogenase active site depends on at least the expression of three gene products called HydE, HydF, and HydG. We have solved the high resolution structure of recombinant, reconstituted S-adenosine-L-methionine-dependent HydE from Thermotoga maritima. Besides the conserved [Fe(4)S(4)] cluster involved in the radical-based reaction, this HydE was reported to have a second [Fe(4)S(4)] cluster coordinated by three Cys residues. However, in our crystals, depending on the reconstitution and soaking conditions, this second cluster is either a [Fe(2)S(2)] center, with water occupying the fourth ligand site or is absent. We have carried out site-directed mutagenesis studies on the related HydE from Clostridium acetobutylicum, along with in silico docking and crystal soaking experiments, to define the active site region and three anion-binding sites inside a large, positive cavity, one of which binds SCN(-) with high affinity. Although the overall triose-phosphate isomerase-barrel structure of HydE is very similar to that of biotin synthase, the residues that line the internal cavity are significantly different in the two enzymes.  相似文献   

11.
Possible proton transport pathways in Clostridium pasteurianum (CpI) [FeFe]-hydrogenase were investigated with molecular dynamics simulations. This study was undertaken to evaluate the functional pathway and provide insight into the hydrogen bonding features defining an active proton transport pathway. Three pathways were evaluated, two of which consist of water wires and one of predominantly amino acid residues. Our simulations suggest that protons are not transported through water wires. Instead, the five-residue motif (Glu282, Ser319, Glu279, H2O, Cys299) was found to be the likely pathway, consistent with previously made experimental observations. The pathway was found to have a persistent hydrogen bonded core (residues Cys299 to Ser319), with less persistent hydrogen bonds at the ends of the pathway for both H2 release and H2 uptake. Single site mutations of the four residues have been shown experimentally to deactivate the enzyme. The theoretical evaluation of these mutations demonstrates redistribution of the hydrogen bonds in the pathway, resulting in enzyme deactivation. Finally, coupling between the protein dynamics near the proton transport pathway and the redox partner binding regions was also found as a function of H2 uptake and H2 release states, which may be indicative of a correlation between proton and electron movement within the enzyme.  相似文献   

12.
Hydrogenases are metalloenzymes that are key to energy metabolism in a variety of microbial communities. Divided into three classes based on their metal content, the [Fe]-, [FeFe]-, and [NiFe]-hydrogenases are evolutionarily unrelated but share similar nonprotein ligand assemblies at their active site metal centers that are not observed elsewhere in biology. These nonprotein ligands are critical in tuning enzyme reactivity, and their synthesis and incorporation into the active site clusters require a number of specific maturation enzymes. The wealth of structural information on different classes and different states of hydrogenase enzymes, biosynthetic intermediates, and maturation enzymes has contributed significantly to understanding the biochemistry of hydrogen metabolism. This review highlights the unique structural features of hydrogenases and emphasizes the recent biochemical and structural work that has created a clearer picture of the [FeFe]-hydrogenase maturation pathway.  相似文献   

13.
于瑞嵩  宗文明  周志华 《微生物学报》2011,51(11):1468-1475
摘要:【目的】探讨一种构建异源表达【FeFe】氢酶的重组大肠杆菌的新方法。【方法】通过同源重组,依次将来源于丙酮丁醇梭菌中促进【FeFe】氢酶成熟的3 个辅助基因hydE、hydF 和hydG 分别整合到大肠杆菌BW2513-10(缺失氢酶基因) 的丙酮酸甲酸脱氢酶(ybiW)、乳酸脱氢酶(ldh) 和乙醇脱氢酶(adhE) 编码基因位点上。在此基础上进一步将含有来源于丁酸梭菌的氢酶基因的表达载体转化上述重组菌,并对转化子的氢酶活性进行分析。【结果】PCR 和RT-PCR 的检测结果表明,3 个辅助基因都  相似文献   

14.
A gene-shuffling technique was identified, optimized and used to generate diverse libraries of recombinant [FeFe]-hydrogenases. Six native [FeFe]-hydrogenase genes from species of Clostridia were first cloned and separately expressed in Escherichia coli concomitantly with the assembly proteins required for [FeFe]-hydrogenase maturation. All enzymes, with the exception of C. thermocellum HydA, exhibited significant activity when expressed. Single-stranded DNA fragments from genes encoding the two most active [FeFe]-hydrogenases were used to optimize a gene-shuffling protocol and generate recombinant enzyme libraries. Random sampling demonstrates that several shuffled products are active. This represents the first successful application of gene-shuffling using hydrogenases. Moreover, we demonstrate that a single set of [FeFe]-hydrogenase maturation proteins is sufficient for the heterologous assembly of the bioinorganic active site of several native and shuffled [FeFe]-hydrogenases.  相似文献   

15.
16.
A molecular wire is used to connect two proteins through their physiologically relevant redox cofactors to facilitate direct electron transfer. Photosystem I (PS I) and an [FeFe]-hydrogenase (H(2)ase) serve as the test bed for this new technology. By tethering a photosensitizer with a hydrogen-evolving catalyst, attached by Fe-S coordination bonds between the F(B) iron-sulfur cluster of PS I and the distal iron-sulfur cluster of H(2)ase, we assayed electron transfer between the two components via light-induced hydrogen generation. These hydrogen-producing nanoconstructs self-assemble when the PS I variant, the H(2)ase variant, and the molecular wire are combined.  相似文献   

17.

Background

Recombinant expression and purification of metallo-enzymes, including hydrogenases, at high-yields is challenging due to complex, and enzyme specific, post-translational maturation processes. Low fidelities of maturation result in preparations containing a significant fraction of inactive, apo-protein that are not suitable for biophysical or crystallographic studies.

Principal Findings

We describe the construction, overexpression and high-yield purification of a fusion protein consisting of the algal [2Fe2S]-ferredoxin PetF (Fd) and [FeFe]-hydrogenase HydA1. The maturation of Fd-HydA1 was optimized through improvements in culture conditions and media components used for expression. We also demonstrated that fusion of Fd to the N-terminus of HydA1, in comparison to the C-terminus, led to increased expression levels that were 4-fold higher. Together, these improvements led to enhanced HydA1 activity and improved yield after purification. The strong binding-affinity of Fd for DEAE allowed for two-step purification by ion exchange and StrepTactin affinity chromatography. In addition, the incorporation of a TEV protease site in the Fd-HydA1 linker allowed for the proteolytic removal of Fd after DEAE step, and purification of HydA1 alone by StrepTactin. In combination, this process resulted in HydA1 purification yields of 5 mg L−1 of culture from E. coli with specific activities of 1000 U (U = 1 µmol hydrogen evolved mg−1 min−1).

Significance

The [FeFe]-hydrogenases are highly efficient enzymes and their catalytic sites provide model structures for synthetic efforts to develop robust hydrogen activation catalysts. In order to characterize their structure-function properties in greater detail, and to use hydrogenases for biotechnological applications, reliable methods for rapid, high-yield expression and purification are required.  相似文献   

18.
19.
The hydrogen-activating cluster (H cluster) in [FeFe]-hydrogenases consists of two moieties. The [2Fe]H subcluster is a (L)(CO)(CN)Fe(μ-RS2)(μ-CO)Fe(CysS)(CO)(CN) centre. The Cys-bound Fe is called Fe1, the other iron Fe2. The Cys-thiol forms a bridge to a [4Fe–4S] cluster, the [4Fe–4S]H subcluster. We report that electron paramagnetic resonance (EPR) spectra of the 57Fe-enriched enzyme from Desulfovibrio desulfuricans in the Hox–CO state are consistent with a magnetic hyperfine interaction of the unpaired spin with all six Fe atoms of the H cluster. In contrast to the inactive aerobic enzyme, the active enzyme is easily destroyed by light. The [2Fe]H subcluster in some enzyme molecules loses CO by photolysis, whereupon other molecules firmly bind the released CO to form the Hox–CO state giving rise to the so-called axial 2.06 EPR signal. Though not destroyed by light, the Hox–CO state is affected by it. As demonstrated in the accompanying paper [49] two of the intrinsic COs, both bound to Fe2, can be exchanged by extrinsic 13CO during illumination at 2 °C. We found that only one of the three 13COs, the one at the extrinsic position, gives an EPR-detectable isotropic superhyperfine interaction of 0.6 mT. At 30 K both the inhibiting extrinsic CO bound to Fe2 and one more CO can be photolysed. EPR spectra of the photolysed products are consistent with a 3d 7 system of Fe with the formal oxidation state +1. The damaged enzyme shows a light-sensitive g=5 signal which is ascribed to an S=3/2 form of the [2Fe]H subcluster. The light sensitivity of the enzyme explains the occurrence of the g=5 signal and the axial 2.06 signal in published EPR spectra of nearly all preparations studied thus far.  相似文献   

20.
[FeFe]-hydrogenases catalyze the reversible production of H2 in some bacteria and unicellular eukaryotes. These enzymes require ancillary proteins to assemble the unique active site H-cluster, a complex structure composed of a 2Fe center bridged to a [4Fe-4S] cubane. The first crystal structure of a key factor in the maturation process, HydF, has been determined at 3 Å resolution. The protein monomer present in the asymmetric unit of the crystal comprises three domains: a GTP-binding domain, a dimerization domain, and a metal cluster-binding domain, all characterized by similar folding motifs. Two monomers dimerize, giving rise to a stable dimer, held together mainly by the formation of a continuous β-sheet comprising eight β-strands from two monomers. Moreover, in the structure presented, two dimers aggregate to form a supramolecular organization that represents an inactivated form of the HydF maturase. The crystal structure of the latter furnishes several clues about the events necessary for cluster generation/transfer and provides an excellent model to begin elucidating the structure/function of HydF in [FeFe]-hydrogenase maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号