首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dengue virus (DENV) is the causative agent of dengue fever and dengue hemorrhagic fever. The virus is endemic in over 120 countries, causing over 350 million infections per year. Dengue vaccine development is challenging because of the need to induce simultaneous protection against four antigenically distinct DENV serotypes and evidence that, under some conditions, vaccination can enhance disease due to specific immunity to the virus. While several live-attenuated tetravalent dengue virus vaccines display partial efficacy, it has been challenging to induce balanced protective immunity to all 4 serotypes. Instead of using whole-virus formulations, we are exploring the potentials for a particulate subunit vaccine, based on DENV E-protein displayed on nanoparticles that have been precisely molded using Particle Replication in Non-wetting Template (PRINT) technology. Here we describe immunization studies with a DENV2-nanoparticle vaccine candidate. The ectodomain of DENV2-E protein was expressed as a secreted recombinant protein (sRecE), purified and adsorbed to poly (lactic-co-glycolic acid) (PLGA) nanoparticles of different sizes and shape. We show that PRINT nanoparticle adsorbed sRecE without any adjuvant induces higher IgG titers and a more potent DENV2-specific neutralizing antibody response compared to the soluble sRecE protein alone. Antigen trafficking indicate that PRINT nanoparticle display of sRecE prolongs the bio-availability of the antigen in the draining lymph nodes by creating an antigen depot. Our results demonstrate that PRINT nanoparticles are a promising platform for delivering subunit vaccines against flaviviruses such as dengue and Zika.  相似文献   

2.
登革病毒感染引起的登革热和登革出血热是重要的蚊媒病毒病。近20年来,在全球范围内登革出血热的发病率和病死率急剧上升,但目前仍缺乏安全有效的疫苗。着重介绍目前已经或正在进入临床研究阶段的四价登革减毒活疫苗,以及灭活疫苗、亚单位疫苗、病毒载体疫苗和DNA疫苗的研究进展。  相似文献   

3.
Dengue virus(DENV) has four distinct serotypes. DENV infection can result in classic dengue fever and life-threatening dengue hemorrhagic fever/dengue shock syndrome. In recent decades, DENV infection has become an important public health concern in epidemic-prone areas. Vaccination is the most effective measure to prevent and control viral infections. However, several challenges impede the development of effective DENV vaccines, such as the lack of suitable animal models and the antibody-dependent enhancement phenomenon. Although no licensed DENV vaccine is available, significant progress has been made. This review summarizes candidate DENV vaccines from recent investigations.  相似文献   

4.
Dengue is a mosquito-borne viral disease of expanding geographical range and incidence. The existence of four viral serotypes and the association of prior dengue virus infection with an increased risk for more severe disease have presented significant obstacles to vaccine development. An increased understanding of the adaptive immune response to natural dengue virus infection and candidate dengue vaccines has helped to define the specific antibody and T cell responses that are associated with either protective or pathological immunity during dengue infection. Further characterization of immunological correlates of disease outcome and the validation of these findings in vaccine trials will be invaluable for developing effective dengue vaccines.  相似文献   

5.
Dengue virus (DENV) infection is an emerging global health threat. DENV consists of four distinct serotypes, necessitating a tetravalent vaccine. In this study, expression of consensus envelope protein domain III (cEDIII) fused to cholera toxin B subunit (CTB) in transgenic rice calli was improved using the luminal binding protein BiP at the N-terminus and the SEKDEL signal sequences at the C-terminus, targeting the recombinant protein to endoplasmic reticulum (ER). We found that the fusion protein showed higher levels of expression when compared to the fusion proteins using rice amylase 3D (RAmy3D) or CTB native signal sequence only. The CTB-cEDIII fusion protein was evaluated as an oral dengue vaccine candidate in mice. Serotype specific systemic IgG antibodies and specific IgA response in feces were detected and furthermore, T cell proliferation and high frequency antibody-secreting B cells were detected in the spleen. These results suggest the possible use of plant-based dengue tetravalent vaccine targeted to the mucosal immune system for induction of systemic and mucosal immune responses to DENV infection.  相似文献   

6.
Despite many years of research, a dengue vaccine is not available, and the more advanced live attenuated vaccine candidate in clinical trials requires multiple immunizations with long interdose periods and provides low protective efficacy. Here, we report important contributions to the development of a second-generation dengue vaccine. First, we demonstrate that a nonpropagating vaccine vector based on Venezuelan equine encephalitis virus replicon particles (VRP) expressing two configurations of dengue virus E antigen (subviral particles [prME] and soluble E dimers [E85]) successfully immunized and protected macaques against dengue virus, while antivector antibodies did not interfere with a booster immunization. Second, compared to prME-VRP, E85-VRP induced neutralizing antibodies faster, to higher titers, and with improved protective efficacy. Third, this study is the first to map antigenic domains and specificities targeted by vaccination versus natural infection, revealing that, unlike prME-VRP and live virus, E85-VRP induced only serotype-specific antibodies, which predominantly targeted EDIII, suggesting a protective mechanism different from that induced by live virus and possibly live attenuated vaccines. Fourth, a tetravalent E85-VRP dengue vaccine induced a simultaneous and protective response to all 4 serotypes after 2 doses given 6 weeks apart. Balanced responses and protection in macaques provided further support for exploring the immunogenicity and safety of this vaccine candidate in humans.  相似文献   

7.
Dengue and dengue hemorrhagic fever have spread to all tropical areas of the developing world, but still remain largely neglected diseases. Several promising vaccine candidates in the form of live attenuated and chimeric vaccines have been developed and are currently in human clinical trials. However, significant practical, logistic, and scientific challenges remain before these vaccines can widely and safely be applied to vulnerable populations. Vector control, community education and public health measures must be pursued in parallel with vaccine development.  相似文献   

8.

Background  

Dengue is a public health problem of global significance for which there is neither an effective antiviral therapy nor a preventive vaccine. It is a mosquito-borne viral disease, caused by dengue (DEN) viruses, which are members of the Flaviviridae family. There are four closely related serotypes, DEN-1, DEN-2, DEN-3 and DEN-4, each of which is capable of causing disease. As immunity to any one serotype can potentially sensitize an individual to severe disease during exposure to a heterologous serotype, the general consensus is that an effective vaccine should be tetravalent, that is, it must be capable of affording protection against all four serotypes. The current strategy of creating tetravalent vaccine formulations by mixing together four monovalent live attenuated vaccine viruses has revealed the phenomenon of viral interference leading to the manifestation of immune responses biased towards a single serotype.  相似文献   

9.
登革病毒属黄病毒属,可通过蚊虫传播,感染人体后可引发一系列临床症状,从轻微发热到严重的并发症,称为登革热、登革出血热以及登革休克综合征。过去50年,全球登革热感染病例增加了约30倍。目前,全球热带、亚热带地区约占世界2/5的人口存在感染风险。由于缺乏有效的治疗药物,疫苗研究已成为登革热疾病防控的重心。然而,由于缺乏对病毒致病机理及病毒感染免疫应答深入的了解,候选疫苗的研发受到阻碍。但经过几十年的努力,疫苗研究取得了明显进展。目前正在研究的登革病毒疫苗依托各种技术平台,种类多样,对正处于临床前研究及临床试验阶段的不同类型疫苗进行阐述。  相似文献   

10.

Background

Dengue virus is a mosquito-transmitted virus that can cause self-limiting dengue fever, severe life-threatening dengue hemorrhagic fever and dengue shock syndrome. The existence of four serotypes of dengue virus has complicated the development of an effective and safe dengue vaccine. Recently, a clinical phase 2b trial of Sanofi Pasteur''s CYD tetravalent dengue vaccine revealed that the vaccine did not confer full protection against dengue-2 virus. New approaches to dengue vaccine development are urgently needed. Our approach represents a promising method of dengue vaccine development and may even complement the deficiencies of the CYD tetravalent dengue vaccine.

Methodology/Principal Findings

Two important components of a vaccine, the immunogen and immunopotentiator, were combined into a single construct to generate a new generation of vaccines. We selected dengue-2 envelope protein domain III (D2ED III) as the immunogen and expressed this protein in lipidated form in Escherichia coli, yielding an immunogen with intrinsic immunopotentiation activity. The formulation containing lipidated D2ED III (LD2ED III) in the absence of exogenous adjuvant elicited higher D2ED III-specific antibody responses than those obtained from its nonlipidated counterpart, D2ED III, and dengue-2 virus. In addition, the avidity and neutralizing capacity of the antibodies induced by LD2ED III were higher than those elicited by D2ED III and dengue-2 virus. Importantly, we showed that after lipidation, the subunit candidate LD2ED III exhibited increased immunogenicity while reducing the potential risk of antibody-dependent enhancement of infection in mice.

Conclusions/Significance

Our study suggests that the lipidated subunit vaccine approach could be applied to other serotypes of dengue virus and other pathogens.  相似文献   

11.
Dengue is one of the most important emerging vector-borne viral diseases. There are four serotypes of dengue viruses (DENV), each of which is capable of causing self-limited dengue fever (DF) or even life-threatening dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). The major clinical manifestations of severe DENV disease are vascular leakage, thrombocytopenia, and hemorrhage, yet the detailed mechanisms are not fully resolved. Besides the direct effects of the virus, immunopathological aspects are also involved in the development of dengue symptoms. Although no licensed dengue vaccine is yet available, several vaccine candidates are under development, including live attenuated virus vaccines, live chimeric virus vaccines, inactivated virus vaccines, and live recombinant, DNA and subunit vaccines. The live attenuated virus vaccines and live chimeric virus vaccines are undergoing clinical evaluation. The other vaccine candidates have been evaluated in preclinical animal models or are being prepared for clinical trials. For the safety and efficacy of dengue vaccines, the immunopathogenic complications such as antibody-mediated enhancement and autoimmunity of dengue disease need to be considered.  相似文献   

12.
The envelope protein of dengue virus is involved in host cell attachment for entry and induction of protective immunity. Current efforts are focused on producing a tetravalent vaccine by mixing four monovalent vaccine components. In this work, we developed a genetic vaccine based on a novel adeno-associated viral (AAV) vector expressing the carboxy-terminal truncated envelope protein (79E) of dengue virus. The expression of the recombinant 79E protein in HEK 293 cells was confirmed by Western blot. Vectors packaged with novel AAV capsids (AAV2/8 or AAV2/rh32.33) were injected into C57BL/6 mice intramuscularly. Dengue virus antigen was produced in the mice and induced long-lasting antibody responses against the dengue virus still detectable 20 weeks after immunization. AAV2/8 vaccine induced higher anti-dengue virus antibody levels than AAV2/rh32.33 vaccine or AAV plasmid. Furthermore, the anti-dengue antibodies could neutralize homogeneous dengue virus. These results demonstrated that the AAV vaccines possessed appropriate immunogenicity and could be used for the development of an effective dengue vaccine.  相似文献   

13.
Dengue infection is a major cause of morbidity in tropical and subtropical regions, bringing nearly 40% of the world population at risk and causing more than 20,000 deaths per year. But there is neither a vaccine for dengue disease nor antivirai drugs to treat the infection. In recent years, dengue infection has been particularly prevalent in India, Southeast Asia, Brazil, and Guangdong Province, China. In this article, we present a brief summary of the biological characteristics of dengue virus and associated flaviviruses, and outline the prowess on studies of vaccines and drugs based on potential targets of the dengue virus.  相似文献   

14.
The worldwide expansion of four serotypes of dengue virus (DENV) poses great risk to global public health. Several vaccine candidates are under development. However, none is yet available for humans. In the present study, a novel strategy to produce tetravalent DENV vaccine based on envelope protein domain III (EDIII) was proposed. Tandem EDIIIs of two serotypes (type 1–2 and type 3–4) of DENV connected by a Gly-Ser linker ((Gly4Ser)3) were expressed in E. coli, respectively. Then, the two bivalent recombinant EDIIIs were equally mixed to form the tetravalent vaccine candidate MixBiEDIII, and used to immunize BALB/c mice. The results showed that specific IgG and neutralizing antibodies against all four serotypes of DENV were successfully induced in the MixBiEDIII employing Freund adjuvant immunized mice. Furthermore, in the suckling mouse model, sera from mice immunized with MixBiEDIII provided significant protection against four serotypes of DENV challenge. Our data demonstrated that MixBiEDIII, as a novel form of subunit vaccine candidates, might have the potential to be further developed as a tetravalent dengue vaccine in the near future.  相似文献   

15.
With increasing geographic spread, frequency, and magnitude of outbreaks, dengue continues to pose a major public health threat worldwide. Dengvaxia, a dengue live-attenuated tetravalent vaccine, was licensed in 2015, but post hoc analyses of long-term data showed serostatus-dependent vaccine performance with an excess risk of hospitalized and severe dengue in seronegative vaccine recipients. The World Health Organization (WHO) recommended that only persons with evidence of past dengue infection should receive the vaccine. A test for pre-vaccination screening for dengue serostatus is needed. To develop the target product profile (TPP) for a dengue pre-vaccination screening test, face-to-face consultative meetings were organized with follow-up regional consultations. A technical working group was formed to develop consensus on a reference test against which candidate pre-vaccination screening tests could be compared. The group also reviewed current diagnostic landscape and the need to accelerate the evaluation, regulatory approval, and policy development of tests that can identify seropositive individuals and maximize public health impact of vaccination while avoiding the risk of hospitalization in dengue-naive individuals. Pre-vaccination screening strategies will benefit from rapid diagnostic tests (RDTs) that are affordable, sensitive, and specific and can be used at the point of care (POC). The TPP described the minimum and ideal characteristics of a dengue pre-vaccination screening RDT with an emphasis on high specificity. The group also made suggestions for accelerating access to these RDTs through streamlining regulatory approval and policy development. Risk and benefit based on what can be achieved with RDTs meeting minimal and optimal characteristics in the TPP across a range of seroprevalences were defined. The final choice of RDTs in each country will depend on the performance of the RDT, dengue seroprevalence in the target population, tolerance of risk, and cost-effectiveness.  相似文献   

16.
Nearly a third of the human population is at risk of infection with the four serotypes of dengue viruses, and it is estimated that more than 100 million infections occur each year. A licensed vaccine for dengue viruses has become a global health priority. A major challenge to developing a dengue vaccine is the necessity to produce fairly uniform protective immune responses to all four dengue virus serotypes. We have developed two bivalent dengue virus vaccines, using a complex adenovirus vector, by incorporating the genes expressing premembrane (prM) and envelope (E) proteins of dengue virus types 1 and 2 (dengue-1 and -2, respectively) (CAdVax-Den12) or dengue-3 and -4 (CAdVax-Den34). Rhesus macaques were vaccinated by intramuscular inoculation of a tetravalent dengue vaccine formulated by combining the two bivalent vaccine constructs. Vaccinated animals produced high-titer antibodies that neutralized all four serotypes of dengue viruses in vitro. The ability of the vaccine to induce rapid, as well as sustained, protective immune responses was examined with two separate live-virus challenges administered at 4 and 24 weeks after the final vaccination. For both of these virus challenge studies, significant protection from viremia was demonstrated for all four dengue virus serotypes in vaccinated animals. Viremia from dengue-1 and dengue-3 challenges was completely blocked, whereas viremia from dengue-2 and dengue-4 was significantly reduced, as well as delayed, compared to that of control-vaccinated animals. These results demonstrate that the tetravalent dengue vaccine formulation provides significant protection in rhesus macaques against challenge with all four dengue virus serotypes.  相似文献   

17.
Dengue is one of the most important mosquito-borne infections accounting for severe morbidity and mortality worldwide. Recently, the tetravalent chimeric live attenuated Dengue vaccine Dengvaxia® was approved for use in several dengue endemic countries. In general, live attenuated vaccines (LAV) are very efficacious and offer long-lasting immunity against virus-induced disease. Rationally designed LAVs can be generated through reverse genetics technology, a method of generating infectious recombinant viruses from full length cDNA contained in bacterial plasmids. In vitro transcribed (IVT) viral RNA from these infectious clones is transfected into susceptible cells to generate recombinant virus. However, the generation of full-length dengue virus cDNA clones can be difficult due to the genetic instability of viral sequences in bacterial plasmids. To circumvent the need for a single plasmid containing a full length cDNA, in vitro ligation of two or three cDNA fragments contained in separate plasmids can be used to generate a full-length dengue viral cDNA template. However, in vitro ligation of multiple fragments often yields low quality template for IVT reactions, resulting in inconsistent low yield RNA. These technical difficulties make recombinant virus recovery less efficient. In this study, we describe a simple, rapid and efficient method of using LONG-PCR to recover recombinant chimeric Yellow fever dengue (CYD) viruses as potential dengue vaccine candidates. Using this method, we were able to efficiently generate several viable recombinant viruses without introducing any artificial mutations into the viral genomes. We believe that the techniques reported here will enable rapid and efficient recovery of recombinant flaviviruses for evaluation as vaccine candidates and, be applicable to the recovery of other RNA viruses.  相似文献   

18.
Dengue is an emerging infectious disease that has become the most important arboviral infection worldwide. There are four serotypes of dengue virus, DENV-1, DENV-2, DENV-3, and DENV-4, each capable of causing the full spectrum of disease. rDEN1Δ30 is a live attenuated investigational vaccine for the prevention of DENV-1 illness and is also a component of an investigational tetravalent DENV vaccine currently in Phase I evaluation. A single subcutaneous dose of rDEN1Δ30 was previously shown to be safe and immunogenic in healthy adults. In the current randomized placebo-controlled trial, 60 healthy flavivirus-naive adults were randomized to receive 2 doses of rDEN1Δ30 (N = 50) or placebo (N = 10), either on study days 0 and 120 (cohort 1) or 0 and 180 (cohort 2). We sought to evaluate the safety and immunogenicity of this candidate vaccine in 50 additional vaccinees and to test whether the humoral immune response could be boosted by a second dose administered 4 or 6 months after the first dose. The first dose of vaccine was well tolerated, infected 47/50 vaccinees and induced seroconversion in 46/50 vaccinees. Irrespective of dosing interval, the second dose of vaccine was also well tolerated but did not induce any detectable viremia or ≥4-fold rise in serum neutralizing antibody titer.Only five subjects had an anamnestic antibody response detectable by ELISA following a second dose of vaccine, demonstrating that the vaccine induced sterilizing humoral immunity in most vaccinees for at least six months following primary vaccination.The promising safety and immunogenicity profile of this vaccine confirms its suitability for inclusion in a tetravalent dengue vaccine.  相似文献   

19.
登革病毒疫苗研究现状与展望   总被引:1,自引:0,他引:1  
登革病毒是属于黄病毒科的小型包膜病毒,在热带和亚热带地区通过蚊媒传播。其感染可引起临床症状轻微的登革热,甚至危及生命的登革出血热和登革休克综合征。登革病毒包含4种血清型,有效的登革病毒疫苗需对4种血清型的登革病毒均具有抗病毒保护作用。目前,尚未有针对登革病毒的特效药和成熟的疫苗产品。各类登革病毒疫苗均在研发中,其中一些已进入临床试验阶段。本文就登革病毒疫苗研究进展作一综述并对未来发展进行展望。  相似文献   

20.
Dengue viruses (DENVs) are mosquito-borne infectious pathogens that pose a serious global public health threat, and at present, no therapy or effective vaccines are available. Choosing suitable units as candidates is fundamental for the development of a dengue subunit vaccine. Domain III of the DENV-2 E protein (EDIII) was chosen in the present study and expressed in Escherichia coli by N-terminal fusion to a bacterial leader (pelB), and C-terminal fusion with a 6×His tag based on the functions of DENV structure proteins, especially the neutralizing epitopes on the envelope E protein. After two-step purification using Ni-NTA affinity and cation-exchange chromatography, the His-tagged EDIII was purified up to 98% homogenicity. This recombinant EDIII was able to trigger high levels of neutralizing antibodies in both BALB/c and C57BL/6 mice. Both the recombinant EDIII and its murine antibodies protected Vero cells from DENV-2 infection. Interestingly, the recombinant EDIII provides at least partial cross-protection against DENV-1 infection. In addition, the EDIII antibodies were able to protect suckling mice from virus challenge in vivo. These data suggest that a candidate molecule based on the small EDIII protein, which has neutralizing epitopes conserved among all 4 DENV serotypes, has important implications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号