首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Due to technical limitations, little knowledge exists on the composition of Ag-specific polyclonal Ab responses. Hence, we here present a molecular analysis of two representative human Ab repertoires isolated by using a novel single-cell cloning approach. The observed genetic diversity among tetanus toxoid-specific plasma cells indicate that human polyclonal repertoires are limited to the order of 100 B cell clones and hypermutated variants thereof. Affinity and kinetic binding constants are log-normally distributed, and median values are close to the proposed affinity ceilings for positive selection. Abs varied a million-fold in affinity but were restricted in their off-rates with an upper limit of 2 x 10(-3) s(-1). Identification of Abs of high affinity without hypermutations in combination with a modest effect of hypermutations on observed affinity increases indicate that Abs selected from the naive repertoire are not only of low affinity but cover a relatively large span in affinity, reaching into the subnanomolar range.  相似文献   

2.
The shift in Ab repertoire, from Abs dominating certain primary B cell responses to genetically unrelated Abs dominating subsequent "memory" responses, challenges the accepted paradigm of affinity maturation. We used mathematical modeling and computer simulations of the dynamics of B cell responses, hypermutation, selection, and memory cell formation to test hypotheses attempting to explain repertoire shift. We show that repertoire shift can be explained within the framework of the affinity maturation paradigm, only when we recognize the destructive nature of hypermutation: B cells with a high initial affinity for the Ag are less likely to improve through random mutations.  相似文献   

3.
Preclinical animal studies have shown that Ab12.6, an agonistic human Ab targeting the erythropoietin receptor (EPOR), exhibits several potential dosing and safety features that make it an attractive clinical candidate for the treatment of anemia. Ab12.6 was derived by yeast display affinity maturation of parental Ab12, a strategy initially intended to improve off-rate and affinity for EPOR, thereby enhancing erythropoietic activity. Analysis of full-length IgGs derived from yeast clones identified sequences within Ab12 CDRH2 that independently influenced both affinity and potency. The Ab12.6 derivative displayed improved in vitro potency and in vivo efficacy, although its binding affinity to the EPOR was lower than that of the parent Ab12. Additional Ab12 derivatives also exhibited an inverse correlation between affinity and potency. These results suggest that for this class of agonistic Abs, faster off-rates may permit continuous receptor stimulation and more efficient erythropoiesis.  相似文献   

4.
Protective immunity requires a diverse, polyclonal B cell repertoire. We demonstrate that affinity maturation of the humoral response to a hapten is impaired when preexisting clonally restricted cells recognizing the hapten are dominant in the B cell repertoire. B1-8i(+/-) mice, which feature a high frequency of B cells with nitrophenyl (NP)-binding specificity, respond to NP-haptenated proteins with the production of NP-specific Abs, but affinity maturation is impaired due to insufficient generation of high-affinity Ab-producing cells. We manipulated the frequency of NP-specific B cells by adoptive transfer of B1-8 B cells into naive, wild-type recipients. Remarkably, when 10(4) B1-8 B cells were transferred, these cells supported efficient affinity maturation and plasma cell differentiation. In contrast, when 10(6) B1-8 cells were transferred, affinity maturation did not occur. These data indicate that restricting the frequency of clonally related B cells is required to support affinity maturation.  相似文献   

5.
Unconjugated mAbs have emerged as useful cancer therapeutics. Ab-dependent cellular cytotoxicity (ADCC) is believed to be a major antitumor mechanism of some anticancer Abs. However, the factors that regulate the magnitude of ADCC are incompletely understood. In this study, we described the relationship between Ab affinity and ADCC. A series of human IgG1 isotype Abs was created from the anti-HER2/neu (also named c-erbB2) C6.5 single-chain Fv (scFv) and its affinity mutants. The scFv affinities range from 10(-7) to 10(-11) M, and the IgG Abs retain the affinities of the scFv from which they were derived. The apparent affinity of the Abs ranged from nearly 10(-10) M (the lowest affinity variant) to almost 10(-11) M (the other variants). The IgG molecules were tested for their ability to elicit ADCC in vitro against three tumor cell lines with differing levels of HER2/neu expression using unactivated human PBMC from healthy donors as the effector cells. The results demonstrated that both the apparent affinity and intrinsic affinity of the Abs studied regulate ADCC. High-affinity tumor Ag binding by the IgGs led to the most efficient and powerful ADCC. Tumor cells expressing high levels of HER2/neu are more susceptible to the ADCC triggered by Abs than the cells expressing lower amounts of HER2/neu. These findings justify the examination of high affinity Abs for ADCC promotion. Because high affinity may impair in vivo tumor targeting, a careful examination of Ab structure to function relationships is required to develop optimized therapeutic unconjugated Abs.  相似文献   

6.
It has been proposed that autoreactivity of modest affinity contributes to positive selection of a preimmunization B cell repertoire, whereas high-affinity autoreactivity leads to negative selection. This hypothesis predicts that a B cell producing a physiologically selected unmutated ssDNA-binding Ab should be a precursor of cells that respond to diverse exogenous Ags. To test this prediction, we prepared transgenic mice bearing the rearranged V(H) domain of an IgM Ab from a nonautoimmune mouse immunized with a DNA-protein complex, poly(dC)-methylated BSA. The Ab, dC1, binds both poly(dC) and ssDNA. It is encoded by V(H) and V(L) gene segments with no mutations, suggesting that the producing cell may have been selected before and activated during immunization. The dC1V(H) transgene was targeted to the IgH locus. In heterozygous mice, on a nonautoimmune C57BL/6 background, the transgene allotype was expressed on B cell surfaces and in serum Ig, but about one-third of B cells expressed the endogenous allele instead. Total serum Ig concentrations were normal and included both transgene- and endogenous gene-coded IgM and IgG. The transgene V(H) D(H)J(H) was expressed in splenic IgM cDNA with few or no mutations, and in IgG cDNA with multiple mutations. The transgene allotype was also expressed in Abs formed on immunization with thyroglobulin, pneumococcal polysaccharide, and ssDNA-methylated BSA. Consistent with the hypothesis, cells with a rearranged autoreactive V(H) domain selected for reactivity with a form of ssDNA did serve as precursors for cells producing IgM and IgG Abs to diverse Ags.  相似文献   

7.
Phosphonate ester probes for proteolytic antibodies   总被引:2,自引:0,他引:2  
The reactivity of phosphonate ester probes with several available proteolytic antibody (Ab) fragments was characterized. Irreversible, active site-directed inhibition of the peptidase activity was evident. Stable phosphonate diester-Ab adducts were resolved by column chromatography and denaturing electrophoresis. Biotinylated phosphonate esters were applied for chemical capture of phage particles displaying Fv and light chain repertoires. Selected Ab fragments displayed enriched catalytic activity inhibitable by the selection reagent. Somewhat unexpectedly, a phosphonate monoester also formed stable adducts with the Abs. Improved catalytic activity of phage Abs selected by monoester binding was evident. Turnover values (kcat) for a selected Fv construct and a light chain against their preferred model peptide substrates were 0.5 and 0.2 min(-1), respectively, and the corresponding Michaelis-Menten constants (Km) were 10 and 8 microm. The covalent reactivity of Abs with phosphonate esters suggests their ability to recapitulate the catalytic mechanism utilized by classical serine proteases.  相似文献   

8.
Ab repertoires exhibit marked restrictions during fetal life characterized by biases of variable gene usage and lack of junctional diversity. We tested the hypothesis that Ab repertoire restriction contributes to the observed poor quality of specific Ab responses made by infants to viral infections. We analyzed the molecular determinants of B cell responses in humans to two Ags of rotavirus (RV), a common and clinically important infection of human infants. We sequenced Ab H and L chain V region genes (V(H) and V(L)) of clones expanded from single B cells responding to RV virus protein 6 or virus protein 7. We found that adults exhibited a distinct bias in use of gene segments in the V(H)1 and V(H)4 families, for example, V(H)1-46, V(H)4-31, and V(H)4-61. This gene segment bias differed markedly from the V(H)3 dominant bias seen in randomly selected adult B cells. Recombinant Abs incorporating any of those three immunodominant V(H) segments bound to RV-infected cells and also to purified RV particles. The RV-specific B cell repertoires of infants aged 2-11 mo and those of adults were highly related when compared by V(H), D, J(H), V(L), and J(L) segment selection, extent of junctional diversity, and mean H chain complementarity determining region 3 length. These data suggest that residual fetal bias of the B cell repertoire is not a limiting determinant of the quality of Ab responses to viruses of infants beyond the neonatal period.  相似文献   

9.
Natural Abs represent the indigenous immune repertoire and are thus present at birth and persist throughout life. Previously, human autoantibodies to the alpha domain of the high-affinity IgE receptor (FcepsilonRIalpha) have been isolated from Ab libraries derived from normal donors and patients with chronic urticaria. To investigate whether these anti-FcepsilonRIalpha Abs are present in the germline repertoire, we constructed a phage Fab display library from human cord blood, which represents the naive immune repertoire before exposure to exogenous Ags. All isolated clones specific to the FcepsilonRIalpha had the same sequence. This single IgM Ab, named CBMalpha8, was strictly in germline configuration and had high affinity and functional in vitro anaphylactogenic activity. Inhibition experiments indicated an overlapping epitope on the FcepsilonRIalpha recognized by both CBMalpha8 and the previously isolated anti-FcepsilonRIalpha Abs from autoimmune and healthy donors. This common epitope on FcepsilonRIalpha coincides with the binding site for IgE. Affinity measurements demonstrated the presence of Abs showing CBMalpha8-like specificity, but with a significantly lower affinity in i.v. Ig, a therapeutic multidonor IgG preparation. We propose a hypothesis of escape mutants, whereby the resulting lower affinity IgG anti-FcepsilonRIalpha Abs are rendered less likely to compete with IgE for binding to FcepsilonRIalpha.  相似文献   

10.
Cytosine deaminase (CDA) from Escherichia coli was shown to catalyze the deamination of isoguanine (2-oxoadenine) to xanthine. Isoguanine is an oxidation product of adenine in DNA that is mutagenic to the cell. The isoguanine deaminase activity in E. coli was partially purified by ammonium sulfate fractionation, gel filtration, and anion exchange chromatography. The active protein was identified by peptide mass fingerprint analysis as cytosine deaminase. The kinetic constants for the deamination of isoguanine at pH 7.7 are as follows: k(cat) = 49 s(-1), K(m) = 72 μM, and k(cat)/K(m) = 6.7 × 10(5) M(-1) s(-1). The kinetic constants for the deamination of cytosine are as follows: k(cat) = 45 s(-1), K(m) = 302 μM, and k(cat)/K(m) = 1.5 × 10(5) M(-1) s(-1). Under these reaction conditions, isoguanine is the better substrate for cytosine deaminase. The three-dimensional structure of CDA was determined with isoguanine in the active site.  相似文献   

11.
Affinity maturation of the Ab repertoire in germinal centers leads to the selection of high affinity Abs with selected heavy chain constant regions. Ab maturation involves two modifications of the Ig genes, i.e., somatic hypermutation and class switch recombination. The mechanisms of these two processes are not fully understood. As shown by the somatic hypermutation and class switch recombination-deficient phenotype of activation-induced cytidine deaminase (AID)-deficient patients (hyperIgM type 2 syndrome) and mice, both processes require the AID molecule. Somatic DNA modifications require DNA breaks, which, at least for class switch recombination, lead to dsDNA breaks. By using a ligation-mediated PCR, it was found that class switch recombination-induced dsDNA breaks in S mu switch regions were less frequent in AID-deficient B cells than in AID-proficient B cells, thus indicating that AID acts upstream of DNA break induction.  相似文献   

12.
Pathogens vary in their antigenic complexity. While some pathogens such as measles present a few relatively invariant targets to the immune system, others such as malaria display considerable antigenic diversity. How the immune response copes in the presence of multiple antigens, and whether a trade-off exists between the breadth and efficacy of antibody (Ab)-mediated immune responses, are unsolved problems. We present a theoretical model of affinity maturation of B-cell receptors (BCRs) during a primary infection and examine how variation in the number of accessible antigenic sites alters the Ab repertoire. Naive B cells with randomly generated receptor sequences initiate the germinal centre (GC) reaction. The binding affinity of a BCR to an antigen is quantified via a genotype–phenotype map, based on a random energy landscape, that combines local and distant interactions between residues. In the presence of numerous antigens or epitopes, B-cell clones with different specificities compete for stimulation during rounds of mutation within GCs. We find that the availability of many epitopes reduces the affinity and relative breadth of the Ab repertoire. Despite the stochasticity of somatic hypermutation, patterns of immunodominance are strongly shaped by chance selection of naive B cells with specificities for particular epitopes. Our model provides a mechanistic basis for the diversity of Ab repertoires and the evolutionary advantage of antigenically complex pathogens.  相似文献   

13.
Evaluation of the immunogenicity of panitumumab, a fully human anti-epidermal growth factor receptor mAb approved for use in colorectal cancer patients, led to the development of two separate immunoassays for the detection of anti-panitumumab Abs. The first immunoassay used a bridging ELISA capable of detecting 10 ng/ml positive control anti-panitumumab Ab. The ELISA incorporated an acid dissociation step to reduce drug interference and tolerated the presence of approximately 100-fold molar excess of drug. During eight clinical trials, the ELISA detected developing Ab responses in 2 of 612 (0.3%) subjects. In one of the ELISA positive subjects, neutralizing Abs were detected using an epidermal growth factor receptor phosphorylation bioassay. The second immunoassay used a Biacore biosensor immunoassay format capable of detecting 1 mug/ml positive control Ab while tolerating the presence of equal molar amounts of drug. Although less sensitive and less tolerant to competing drug in the assay, the Biacore assay detected developing Ab responses in 25 of the 604 (4.1%) subjects. Additionally, the Biacore assay identified eight subjects who developed neutralizing Abs. Mouse mAbs with affinities ranging from 1.1 x 10(-6) to 8.4 x 10(-10) M were used to characterize both assay types. The ELISA was more sensitive for the detection of higher affinity mAbs and detected high-affinity mAbs in the presence of higher molar ratio of drug to mAb. The Biacore assay was more sensitive for detection of lower affinity mAbs and detected low affinity Abs in the presence of higher molar ratios of drug to mAb.  相似文献   

14.
15.
Abs to U1 RNA are frequently found in patients suffering from systemic lupus erythematosus overlap syndromes and Ab titers correlate with disease activity. We describe the isolation of the first human anti-U1 RNA autoantibodies from a combinatorial IgG library made from the bone marrow of a systemic lupus erythematosus patient. With the use of phage display technology, two anti-U1 RNA single-chain variable fragment (scFv) Abs were selected. Both high affinity anti-U1 RNA Ab fragments (Kd approximately 1 nM) recognize stem II of U1 RNA and were derived from the same heavy chain gene (VH3-11) and the same lambda (3r) light chain gene although somatic mutations, predominantly present in the complementarity-determining regions, are different. Experiments, in which the heavy chain genes of both anti-U1 RNA scFvs were reshuffled with the original light chain repertoire of the patient resulted, after selection on stem loop II, in a large number of RNA-binding Ab fragments. All these stem loop II-specific RNA binding clones used a similar, but not identical, 3r lambda light chain. When scFvs were selected from the reshuffled libraries by stem loop IV, representing the other autoantigenic site of U1 RNA, most selected Ab clones did react with stem loop IV, but no longer with stem loop II. The stem loop IV-reactive Ab clones contained different, not 3r-related, light chains. These results point to a major role for the light chain in determining the sequence specificity of these disease-related anti-U1 RNA Abs. The possibility that secondary light chain rearrangements are involved in this autoimmune response is discussed.  相似文献   

16.
Antibody fragments of moderate affinity (approximately microM) can be isolated from repertoires of approximately 10(8) immunoglobulin genes by phage display and rounds of selection with antigen, and the affinities improved by further rounds of mutation and selection. Here, as an alternative strategy, we attempted to isolate high affinity human antibodies directly from large repertoires. We first created highly diverse repertoires of heavy and light chains entirely in vitro from a bank of human V gene segments and then, by recombination of the repertoires in bacteria, generated a large (close to 6.5 x 10(10)) synthetic repertoire of Fab fragments displayed on filamentous phage. From this repertoire we isolated Fab fragments which bound to a range of different antigens and haptens, and with affinities comparable with those of antibodies from a secondary immune response in mice (up to 4 nM). Although the VH-26 (DP-47) segment was the most commonly used segment in both artificial and natural repertoires, there were also major differences in the pattern of segment usage. Such comparisons may help dissect the contributions of biological mechanisms and structural features governing V gene usage in vivo.  相似文献   

17.
The immune system is remarkable in its ability to produce antibodies (Abs) with virtually any specificity from a limited repertoire of germ line precursors. Although the contribution of sequence diversity to this molecular recognition has been studied for decades, recent models suggest that protein dynamics may also broaden the range of targets recognized. To characterize the contribution of protein dynamics to immunological molecular recognition, we report the sequence, thermodynamic, and time-resolved spectroscopic characterization of a panel of eight Abs elicited to the chromophoric antigen 8-methoxypyrene-1,3,6-trisulfonate (MPTS). Based on the sequence data, three of the Abs arose from unique germ line Abs, whereas the remaining five comprise two sets of siblings that arose by somatic mutation of a common precursor. The thermodynamic data indicate that the Abs recognize MPTS via a variety of mechanisms. Although the spectroscopic data reveal small differences in protein dynamics, the anti-MPTS Abs generally show similar levels of flexibility and conformational heterogeneity, possibly representing the convergent evolution of the dynamics necessary for function. However, one Ab is significantly more rigid and conformationally homogeneous than the others, including a sibling Ab from which it differs by only five somatic mutations. This example of divergent evolution demonstrates that point mutations are capable of fixing significant differences in protein dynamics. The results provide unique insight into how high affinity Abs may be produced that bind virtually any target and possibly, from a more general perspective, how new protein functions are evolved.  相似文献   

18.
CTLA-4 appears to be a negative regulator of T cell activation and is implicated in T cell-mediated autoimmune diseases. Experimental autoimmune myasthenia gravis (EAMG), induced by immunization of C57BL/6 mice with acetylcholine receptor (AChR) in adjuvant, is an autoantibody-mediated disease model for human myasthenia gravis (MG). The production of anti-AChR Abs in MG and EAMG is T cell dependent. In the present study, we demonstrate that anti-CTLA-4 Ab treatment enhances T cell responses to AChR, increases anti-AChR Ab production, and provokes a rapid onset and severe EAMG. To address possible mechanisms underlying the enhanced autoreactive T cell responses after anti-CTLA-4 Ab treatment, mice were immunized with the immunodominant peptide alpha(146-162) representing an extracellular sequence of the ACHR: Anti-CTLA-4 Ab, but not control Ab, treatment subsequent to peptide immunization results in clinical EAMG with diversification of the autoantibody repertoire as well as enhanced T cell proliferation against not only the immunizing alpha(146-162) peptide, but also against other subdominant epitopes. Thus, treatment with anti-CTLA-4 Ab appears to induce determinant spreading, diversify the autoantibody repertoire, and enhance B cell-mediated autoimmune disease in this murine model of MG.  相似文献   

19.
The affinities (Ka) and association rate constants (kon) of 23 mouse (BALB/c) anti-lysozyme mAbs obtained after short and prolonged immunizations have been measured by plasmon resonance techniques. The affinities for the 23 Abs, measured using their Fab, range from Ka = 1.1 x 10(7) to 1.4 x 10(10) M-1. There is no significant correlation between time or dose of immunization and affinity or association rates, indicating no time- or dose-dependent maturation of the response within the doses and times that were explored. IgMs are produced early and late in the response, with intrinsic affinities <10(5) M-1. Two independently derived mAbs, D44.1 (short term) and F10.6.6 (from a longer term response), result from identical or nearly identical somatic recombination events of germline gene segments. F10.6.6 has more mutations and a higher affinity constant (Ka = 1.4 x 10(10) M-1) than D44.1 (Ka = 1.1 x 10(7) M-1). Although higher affinities may result from an accumulation of mutations, they do not correlate with the length and dose of immunogenic challenge.  相似文献   

20.
Abs to the prion protein (PrP) can protect against experimental prion infections, but efficient Ab responses are difficult to generate because PrP is expressed on many tissues and induces a strong tolerance. We previously showed that immunization of wild-type mice with PrP peptides and CpG oligodeoxynucleic acid overcomes tolerance and induces cellular and humoral responses to PrP. In this study, we compared Ab and T cell repertoires directed to PrP in wild-type and PrP knockout (Prnp o/o) C57BL/6 mice. Animals were immunized with mouse PrP-plasmid DNA or with 30-mer overlapping peptides either emulsified in CFA or CpG/IFA. In Prnp o/o mice, Abs raised by PrP-plasmid DNA immunization recognized only N-terminal PrP peptides; analyses of Ab responses after PrP peptide/CFA immunization allowed us to identify six distinct epitopes, five of which were also recognized by Abs raised by PrP peptides/CpG. By contrast, in wild-type mice, no Ab response was detected after PrP-plasmid DNA or peptide/CFA immunization. However, when using CpG, four C-terminal peptides induced Abs specific for distinct epitopes. Importantly, immune sera from Prnp o/o but not from wild-type mice bound cell surface PrP. Abs of IgG1 and IgG2b subclasses predominated in Prnp o/o mice while the strongest signals were for IgG2b in wild-type mice. Most anti-PrP Th cells were directed to a single epitope in both Prnp o/o and wild-type mice. We conclude that endogenous PrPC expression profoundly affects the Ab repertoire as B cells reactive for epitopes exposed on native PrPC are strongly tolerized. Implications for immunotherapy against prion diseases are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号