首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The initial plasma acceptor of unesterified cholesterol and phospholipids from peripheral cells has been identified as pre-beta migrating, lipid-free, or lipid-poor apolipoprotein (apo) A-I (pre-beta apoA-I). Pre-beta apoA-I is formed when plasma factors, such as cholesteryl ester transfer protein (CETP), remodel high-density lipoproteins (HDL). The aim of this study is to determine how phospholipids influence pre-beta apoA-I formation during the CETP-mediated remodeling of HDL. Reconstituted HDL (rHDL) containing either 1-palmitoyl-2-oleoyl phosphatidylcholine (POPC), 1-palmitoyl-2-linoleoyl phosphatidylcholine (PLPC), 1-palmitoyl-2-arachidonyl phosphatidylcholine (PAPC), or 1-palmitoyl-2-docosahexanoyl phosphatidylcholine (PDPC) as the only phospholipid were prepared. The rHDL were comparable in size and core lipid/protein molar ratio and contained only cholesteryl esters in their core and apoA-I as the sole apolipoprotein. The (POPC)rHDL, (PLPC)rHDL, (PAPC)rHDL, and (PDPC)rHDL were respectively incubated for 0-24 h with CETP and microemulsions containing triolein and either POPC, PLPC, PAPC, or PDPC. The rate at which the rHDL were depleted of core lipids and remodeled to small particles varied widely with (POPC)rHDL < (PLPC)rHDL < (PDPC)rHDL approximately (PAPC)rHDL. Pre-beta apoA-I was not formed in the (POPC)rHDL incubations. Pre-beta apoA-I was apparent by 24 h in the (PLPC)rHDL incubations and by 12 h in the (PAPC)rHDL and (PDPC)rHDL incubations. The enhanced formation of pre-beta apoA-I in the (PAPC)rHDL and (PDPC)rHDL incubations reflected the increased core lipid depletion of the particles combined with the destabilization and progressive exclusion of apoA-I from the particle surface. In conclusion, these results show that phospholipids play a key role in the CETP-mediated remodeling of rHDL and pre-beta apoA-I formation.  相似文献   

2.
Cavigiolio G  Shao B  Geier EG  Ren G  Heinecke JW  Oda MN 《Biochemistry》2008,47(16):4770-4779
High-density lipoprotein (HDL) mediates reverse cholesterol transport (RCT), wherein excess cholesterol is conveyed from peripheral tissues to the liver and steroidogenic organs. During this process HDL continually transitions between subclass sizes, each with unique biological activities. For instance, RCT is initiated by the interaction of lipid-free/lipid-poor apolipoprotein A-I (apoA-I) with ABCA1, a membrane-associated lipid transporter, to form nascent HDL. Because nearly all circulating apoA-I is lipid-bound, the source of lipid-free/lipid-poor apoA-I is unclear. Lecithin:cholesterol acyltransferase (LCAT) then drives the conversion of nascent HDL to spherical HDL by catalyzing cholesterol esterification, an essential step in RCT. To investigate the relationship between HDL particle size and events critical to RCT such as LCAT activation and lipid-free apoA-I production for ABCA1 interaction, we reconstituted five subclasses of HDL particles (rHDL of 7.8, 8.4, 9.6, 12.2, and 17.0 nm in diameter, respectively) using various molar ratios of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, free cholesterol, and apoA-I. Kinetic analyses of this comprehensive array of rHDL particles suggest that apoA-I stoichiometry in rHDL is a critical factor governing LCAT activation. Electron microscopy revealed specific morphological differences in the HDL subclasses that may affect functionality. Furthermore, stability measurements demonstrated that the previously uncharacterized 8.4 nm rHDL particles rapidly convert to 7.8 nm particles, concomitant with the dissociation of lipid-free/lipid-poor apoA-I. Thus, lipid-free/lipid-poor apoA-I generated by the remodeling of HDL may be an essential intermediate in RCT and HDL's in vivo maturation.  相似文献   

3.
The details of how high density lipoprotein (HDL) microstructure affects the conformation and net charge of apolipoprotein (apo) A-I in various classes of HDL particles have been investigated in homogeneous recombinant HDL (rHDL) particles containing apoA-I, palmitoyl-oleoyl phosphatidylcholine (POPC) and cholesteryl oleate. Isothermal denaturation with guanidine HCl was used to monitor alpha-helix structural stability, whereas electrokinetic analyses and circular dichroism were used to determine particle charge and apoA-I secondary structure, respectively. Electrokinetic analyses show that at pH 8.6 apoA-I has a net negative charge on discoidal (POPC.apoA-I) particles (-5.2 electronic units/mol of apoA-I) which is significantly greater than that of apoA-I either free in solution or on spherical (POPC.cholesteryl oleate.apoA-I) rHDL (approximately -3.5 electronic units). Raising the POPC content (32-128 mol/ml of apoA-I) of discoidal particles 1) increases the particle major diameter from 9.3 to 12.1 nm, 2) increases the alpha-helix content from 62 to 77%, and 3) stabilizes the helical segments by increasing the free energy of unfolding (delta GD degree) from 1.4 to 3.0 kcal/mol of apoA-I. Raising the POPC content (28-58 mol/mol of apoA-I) of spherical particles 1) increases the particle diameter from 7.4 to 12.6 nm, 2) increases the percent alpha-helix from 62 to 69%, and 3) has no significant effect on delta GD degree (2.2 kcal/mol of apoA-I). This study shows that different HDL subspecies maintain particular apoA-I conformations that confer unique charge and structural characteristics on the particles. It is likely that the charge and conformation of apoA-I are critical molecular properties that modulate the metabolism of HDL particles and influence their role in cholesterol transport.  相似文献   

4.
Duong M  Psaltis M  Rader DJ  Marchadier D  Barter PJ  Rye KA 《Biochemistry》2003,42(46):13778-13785
Hepatic lipase (HL) and endothelial lipase (EL) are both members of the triglyceride lipase gene family. HL hydrolyzes phospholipids and triglycerides in triglyceride-rich lipoproteins and high-density lipoproteins (HDL). EL hydrolyzes HDL phospholipids and has low triglyceride lipase activity. The aim of this study was to determine if HL and EL hydrolyze different HDL phospholipids and whether HDL phospholipid composition regulates the interaction of EL and HL with the particle surface. Spherical, reconstituted HDL (rHDL) containing either 1-palmitoyl-2-oleoylphosphatidylcholine (POPC), 1-palmitoyl-2-linoleoylphosphatidylcholine (PLPC), 1-palmitoyl-2-arachidonylphosphatidylcholine (PAPC), or 1-palmitoyl-2-docosahexanoylphosphatidylcholine (PDPC) as the only phospholipid, apolipoprotein A-I as the only apolipoprotein, and either cholesteryl esters (CE) only or mixtures of CE and triolein (TO) in their core were prepared. The rHDL were similar in size and had comparable core lipid/apoA-I molar ratios. The CE-containing rHDL were used to determine the kinetics of HL- and EL-mediated phospholipid hydrolysis. For HL the V(max) of phospholipid hydrolysis for (POPC)rHDL > (PLPC)rHDL approximately (PDPC)rHDL > (PAPC)rHDL, while the K(m)(app) for (POPC)rHDL > (PDPC)rHDL > (PLPC)rHDL > (PAPC)rHDL. For EL the V(max) for (PDPC)rHDL > (PAPC)rHDL > (PLPC)rHDL approximately (POPC)rHDL, while the K(m)(app) for (PAPC)rHDL approximately (PLPC)rHDL > (POPC)rHDL > (PDPC)rHDL. The kinetics of EL- and HL-mediated TO hydrolysis was determined using rHDL that contained TO in their core. For HL the V(max) of TO hydrolysis for (PLPC)rHDL > (POPC)rHDL > (PAPC)rHDL > (PDPC)rHDL, while the K(m)(app) for (PLPC)rHDL > (POPC)rHDL approximately (PAPC)rHDL > (PDPC)rHDL. For EL the V(max) and K(m)(app) for (PAPC)rHDL > (PDPC)rHDL > (PLPC)rHDL > (POPC)rHDL. These results establish that EL and HL have different substrate specificities for rHDL phospholipids and that their interactions with the rHDL surface are regulated by phospholipids.  相似文献   

5.
Six apolipoprotein A-I (apoA-I) variants containing the following amino acid changes: Pro3----Arg, Pro4----Arg, Lys107----0 (Lys deletion) Lys107----Met, Pro165----Arg, and Glu198----Lys, and the corresponding normal allele products, were isolated by preparative isoelectric focusing from heterozygous individuals. The apoA-I samples were reconstituted with palmitoyloleoyl phosphatidylcholine (POPC) or dipalmitoyl phosphatidylcholine (DPPC), and small amounts of cholesterol, into discoidal high density lipoprotein (HDL) complexes in order to examine their lipid binding and structural properties as well as their ability to activate lecithin:cholesterol acyltransferase (LCAT). Starting with initial molar ratios around 100:5:1 for phosphatidylcholine-cholesterol-apolipoprotein, all the normal and variant apoA-Is were completely incorporated into reconstituted HDL (rHDL). The rHDL particle sizes and their distributions were examined by nondenaturing gradient gel electrophoresis, before and after incubation with LDL, to assess the folding of apoA-I in the complexes. Intrinsic Trp fluorescence properties of the rHDL were measured, as a function of temperature and guanidine hydrochloride concentration, to detect conformational differences in the apoA-I variants. In addition, the LCAT reaction kinetics were measured with all the rHDL, and the apparent kinetic constants were compared. In terms of the structure of the rHDL particles, all the normal variant apoA-Is had similar sizes (94, 96 A) and size distributions, and indistinguishable fluorescence properties, with the exception of the Lys107----0 mutant. This variant formed slightly larger particles that were resistant to rearrangements in the presence of LDL, and had an altered apoA-I conformation in the vicinity of the Trp residues. The kinetic experiments with LCAT indicated that the apoA-I variants, Lys107----0 and Pro165----Arg, in rHDL particles had statistically different (30 to 90%) kinetic constants from the corresponding normal allele products; however, the variability in the kinetic constants among the normal apoA-I products was even greater (40 to 430%). Therefore, we conclude that the effects of these six mutations in apoA-I on the activation of LCAT are minor, and that the structural effects on rHDL, and possibly native HDL, are insignificant with the exception of the Lys107----0 mutation.  相似文献   

6.
High density lipoproteins (HDL) and their main protein constituent, apolipoprotein A-I (apoA-I), exert potentially anti-atherogenic properties within the arterial wall. However, it is unknown how they are transported from the blood stream into the vascular wall. Here we investigated the interaction of apoA-I with endothelial cells. At 4 degrees C endothelial cells bound 125I-apoA-I with high affinity, Kd = 2.1 microg/ml and in a saturable manner (Bmax of 35 ng/mg cell protein). At 37 degrees C, the cell association of apoA-I revealed similar affinity as at 4 degrees C (Kd = 2.2 microg/ml) but the maximum specific cell association was much enhanced (Bmax = 360 ng/mg cell protein). Binding and cell association was competed by excess unlabeled apoA-I and HDL but not by albumin. Biotinylation experiments and electron microscopy studies showed that endothelial cells internalize labeled apoA-I. Only minor amounts of the internalized apoA-I were degraded. Cultivated in a Transwell system, the cells transported a fraction of 125I-apoA-I from the apical to the basolateral compartment in a competable and temperature-sensitive manner. Furthermore, after specific transport the originally prebeta-mobile and lipid-free apoA-I was recovered as particles which have electrophoretic alpha-mobility. We conclude that endothelial cells transcytose and lipidate lipid-free apoA-I.  相似文献   

7.
Recombinant Cys mutants of apolipoprotein A-I (apoA-I) (A124C and A232C) have been prepared in disulfide-linked forms in order to assess the effects of unnatural covalent constraints on the folding of apoA-I in solution, its ability to bind lipids, form HDL-like particles, activate LCAT, and undergo structural adaptations to changing lipid contents. Both mutants, in dimer form, were shown to fold similarly to plasma apoA-I in solution, but had a slightly decreased alpha-helix content and no evidence of intermonomer interactions. All forms of the mutants bound to and disrupted dimyristoylphosphatidylcholine (DMPC) liposomes with similar kinetics and efficiency to plasma apoA-I, and formed reconstituted HDL (rHDL) particles with palmitoyloleoylphosphatidylcholine (POPC) in high yields at three different ratios of lipid/protein. While the monomeric mutants produced identical rHDL to plasma apoA-I, the disulfide-linked dimers had distinct particle distributions from each other and from native apoA-I. The A124C-dimer formed rHDL with diameters of 86 and 78 A, while the A232C-dimer predominantly formed 96 A rHDL. These particles, and particles containing plasma apoA-I (96 and 78 A), were purified prior to structural and functional analyses. The structural properties of particles with similar diameters were comparable, as were their reactivities with LCAT; however, their ability to undergo structural rearrangements differed. The larger rHDL particles (96 and 86 A) containing native apoA-I or A124C-dimer, rearranged into smaller 78 A particles, while the 96 A particles containing A232C-dimer were resistant to rearrangement and did not form 78 A particles. From the results, it is concluded that synthetic, random disulfide-linked dimers of apoA-I have many properties analogous to those of the naturally occurring Cys mutants, apoA-I-Milano and apoA-I-Paris, which are thought to have antiatherogenic effects in vivo. Also, the results have implications for current models of rHDL structure.  相似文献   

8.
ATP binding cassette transporter G1 (ABCG1) mediates the cholesterol transport from cells to high-density lipoprotein (HDL), but the role of apolipoprotein A-I (apoA-I), the main protein constituent of HDL, in this process is not clear. To address this, we measured cholesterol efflux from HEK293 cells or J774 mouse macrophages overexpressing ABCG1 using as acceptors reconstituted HDL (rHDL) containing wild-type or various mutant apoA-I forms. It was found that ABCG1-mediated cholesterol efflux was severely reduced (by 89%) when using rHDL containing the carboxyl-terminal deletion mutant apoA-I[Δ(185–243)]. ABCG1-mediated cholesterol efflux was not affected or moderately decreased by rHDL containing amino-terminal deletion mutants and several mid-region deletion or point apoA-I mutants, and was restored to 69–99% of control by double deletion mutants apoA-I[Δ(1–41)Δ(185–243)] and apoA-I[Δ(1–59)Δ(185–243)]. These findings suggest that the central helices alone of apoA-I associated to rHDL can promote ABCG1-mediated cholesterol efflux. Further analysis showed that rHDL containing the carboxyl-terminal deletion mutant apoA-I[Δ(185–243)] only slightly reduced (by 22%) the ABCG1-mediated efflux of 7-ketocholesterol, indicating that depending on the sterol type, structural changes in rHDL-associated apoA-I affect differently the ABCG1-mediated efflux of cholesterol and 7-ketocholesterol. Overall, our findings demonstrate that rHDL-associated apoA-I structural changes affect the capacity of rHDL to accept cellular cholesterol by an ABCG1-mediated process. The structure-function relationship seen here between rHDL-associated apoA-I mutants and ABCG1-mediated cholesterol efflux closely resembles that seen before in lipid-free apoA-I mutants and ABCA1-dependent cholesterol efflux, suggesting that both processes depend on the same structural determinants of apoA-I.  相似文献   

9.
Previous studies have provided detailed information on the formation of spherical high density lipoproteins (HDL) containing apolipoprotein (apo) A-I but no apoA-II (A-I HDL) by an lecithin:cholesterol acyltransferase (LCAT)-mediated process. In this study we have investigated the formation of spherical HDL containing both apoA-I and apoA-II (A-I/A-II HDL). Incubations were carried out containing discoidal A-I reconstituted HDL (rHDL), discoidal A-II rHDL, and low density lipoproteins in the absence or presence of LCAT. After the incubation, the rHDL were reisolated and subjected to immunoaffinity chromatography to determine whether A-I/A-II rHDL were formed. In the absence of LCAT, the majority of the rHDL remained as either A-I rHDL or A-II rHDL, with only a small amount of A-I/A-II rHDL present. By contrast, when LCAT was present, a substantial proportion of the reisolated rHDL were A-I/A-II rHDL. The identity of the particles was confirmed using apoA-I rocket electrophoresis. The formation of the A-I/A-II rHDL was influenced by the relative concentrations of the precursor discoidal A-I and A-II rHDL. The A-I/A-II rHDL included several populations of HDL-sized particles; the predominant population having a Stokes' diameter of 9.9 nm. The particles were spherical in shape and had an electrophoretic mobility slightly slower than that of the alpha-migrating HDL in human plasma. The apoA-I:apoA-II molar ratio of the A-I/A-II rHDL was 0.7:1. Their major lipid constituents were phospholipids, unesterified cholesterol, and cholesteryl esters. The results presented are consistent with LCAT promoting fusion of the A-I rHDL and A-II rHDL to form spherical A-I/A-II rHDL. We suggest that this process may be an important source of A-I/A-II HDL in human plasma.  相似文献   

10.
Formation of discoidal high density lipoproteins (rHDL) by apolipoprotein A-I (apoA-I) mediated solubilization of dimyristoyl phosphatidylcholine (DMPC) multilamellar vesicles (MLV) was dramatically affected by bilayer cholesterol concentration. At a low ratio of DMPC/apoA-I (2 mg DMPC/mg apoA-I, 84/1 mol/mol), sterols (cholesterol, lathosterol, and beta-sitosterol) that form ordered lipid phases increase the rate of solubilization similarly, yielding rHDL with similar structures. By changing the temperature and sterol concentration, the rates of solubilization varied almost 3 orders of magnitude; however, the sizes of the rHDL were independent of the rate of their formation and dependent upon the bilayer sterol concentration. At a high ratio of DMPC/apoA-I (10/1 mg DMPC/mg apoA-I, 420/1 mol/mol), changing the temperature and cholesterol concentration yielded rHDL that varied greatly in size, phospholipid/protein ratio, mol% cholesterol, and number of apoA-I molecules per particle. rHDL were isolated that had 2, 4, 6, and 8 molecules of apoA-I per particle, mean diameters of 117, 200, 303, and 396 A, and a mol% cholesterol that was similar to the original MLV. Kinetic studies demonstrated that the different sized rHDL are formed independently and concurrently. The rate of formation, lipid composition, and three-dimensional structures of cholesterol-rich rHDL is dictated primarily by the original membrane phase properties and cholesterol content. The size speciation of rHDL and probably nascent HDL formed via the activity of the ABCA1 lipid transporter is mechanistically linked to the cholesterol content of the membranes from which they were formed.  相似文献   

11.
High density lipoprotein (HDL)-associated paraoxonase-1 (PON1) anti-atherogenic properties in macrophages, i.e. inhibition of cell-mediated oxidation of low density lipoprotein (LDL) and stimulation of cholesterol efflux, were studied using recombinant variants of PON1 and apoA-I expressed in Escherichia coli and reconstituted HDL (rHDL) particles composed of phosphatidylcholine/free cholesterol (PC/FC) and apoA-I. PON1 lactonase activity is stimulated by apoA-I by approximately 7-fold relative to PC/FC particles. Wild-type (WT) PON1 bound to rHDL inhibited macrophage-mediated LDL oxidation and stimulated cholesterol efflux from the cells to 2.3- and 3.2-fold greater extents, respectively, compared with WT PON1 bound to PC/FC particles without apoA-I. We also tested PON1 catalytic histidine dyad mutants (H115Q and H134Q) that are properly folded and that bind HDL in a similar mode compared with WT PON1, but that exhibit almost no lactonase activity. These could not inhibit macrophage-mediated LDL oxidation or stimulate rHDL-mediated cholesterol efflux from the cells. Furthermore, whereas HDL-bound WT PON1 induced the formation of lysophosphatidylcholine (LPC) in macrophages, the His dyad mutants did not, suggesting that the above anti-atherogenic properties of HDL-associated PON1 involve LPC release. Indeed, enrichment of macrophages with increasing concentrations of LPC resulted in inhibition of the cells' capability to oxidize LDL and in stimulation of HDL-mediated cholesterol efflux from the macrophages in an LPC dose-dependent manner. Thus, we provide the first direct indication that the anti-atherogenic properties of PON1 are related to its lipolactonase activity and propose a model in which PON1 acts as a lipolactonase to break down oxidized lipids and to generate LPC.  相似文献   

12.
The high density lipoproteins (HDL) in human plasma are classified on the basis of apolipoprotein composition into those containing apolipoprotein (apo) A-I but not apoA-II, (A-I)HDL, and those containing both apoA-I and apoA-II, (A-I/A-II)HDL. Cholesteryl ester transfer protein (CETP) transfers core lipids between HDL and other lipoproteins. It also remodels (A-I)HDL into large and small particles in a process that generates lipid-poor, pre-beta-migrating apoA-I. Lipid-poor apoA-I is the initial acceptor of cellular cholesterol and phospholipids in reverse cholesterol transport. The aim of this study is to determine whether lipid-poor apoA-I is also formed when (A-I/A-II)rHDL are remodeled by CETP. Spherical reconstituted HDL that were identical in size had comparable lipid/apolipoprotein ratios and either contained apoA-I only, (A-I)rHDL, or (A-I/A-II)rHDL were incubated for 0-24 h with CETP and Intralipid(R). At 6 h, the apoA-I content of the (A-I)rHDL had decreased by 25% and there was a concomitant formation of lipid-poor apoA-I. By 24 h, all of the (A-I)rHDL were remodeled into large and small particles. CETP remodeled approximately 32% (A-I/A-II)rHDL into small but not large particles. Lipid-poor apoA-I did not dissociate from the (A-I/A-II)rHDL. The reasons for these differences were investigated. The binding of monoclonal antibodies to three epitopes in the C-terminal domain of apoA-I was decreased in (A-I/A-II)rHDL compared with (A-I)rHDL. When the (A-I/A-II)rHDL were incubated with Gdn-HCl at pH 8.0, the apoA-I unfolded by 15% compared with 100% for the apoA-I in (A-I)rHDL. When these incubations were repeated at pH 4.0 and 2.0, the apoA-I in the (A-I)rHDL and the (A-I/A-II)rHDL unfolded completely. These results are consistent with salt bridges between apoA-II and the C-terminal domain of apoA-I, enhancing the stability of apoA-I in (A-I/A-II)rHDL and possibly contributing to the reduced remodeling and absence of lipid poor apoA-I in the (A-I/A-II)rHDL incubations.  相似文献   

13.
The binding of human high-density lipoprotein (HDL3), apolipoprotein A-I (apoA-I) and recombinants of apoA-I with cholesterol and/or dimyristoylphosphatidylcholine (DMPC) to the HDL receptor on isolated human small intestine epithelial cells was studied. ApoA-I competed for 125I-labelled HDL3 binding sites less effectively than HDL3, and a lower amount of 125I-labelled apoA-I than 125I-HDL3 was bound to cells. The apoA-I/DMPC recombinant competed for 125I-HDL3 binding sites nearly as well as HDL3, and 125I-apoA-I/DMPC recombinant bound to cells with at least the same efficiency as 125I-HDL3. The apoA-I/DMPC/cholesterol recombinant failed to compete for 125I-HDL3 binding sites, and the 125I-apoA-I/DMPC/cholesterol complex binding to cells was several-fold lower than that of other particles. All particles bound to cells with similar dissociation constants. Tetranitromethane-modified HDL3 failed to bind to high-affinity specific binding sites and compete with 125I-HDL3 for binding. The results obtained make it possible to assume that, while apoA-I may be a determinant of the HDL receptor, the lipid composition of the lipoprotein may affect its interaction with the receptor.  相似文献   

14.
Apolipoprotein (apo) C-III is a marker protein of triacylglycerol (TG)-rich lipoproteins and high-density lipoproteins (HDL), and has been proposed as a risk factor of coronary heart disease. To compare the physiologic role of reconstituted HDL (rHDL) with or without apoC-III, we synthesized rHDL with molar ratios of apoA-I:apoC-III of 1:0, 1:0.5, 1:1, and 1:2. Increasing the apoC-III content in rHDL produced smaller rHDL particles with a lower number of apoA-I molecules. Furthermore, increasing the molar ratio of apoC-III in rHDL enhanced the surfactant-like properties and the ability to lyse dimyristoyl phosphatidylcholine. Furthermore, rHDL containing apoC-III was found to be more resistant to particle rearrangement in the presence of low-density lipoprotein (LDL) than rHDL that contained apoA-I alone. In addition, the lecithin:cholesterol acyltransferase (LCAT) activation ability was reduced as the apoC-III content of the rHDL increased; however, the CE transfer ability was not decreased by the increase of apoC-III. Finally, rHDL containing apoC-III aggravated the production of MDA in cell culture media, which led to increased cellular uptake of LDL. Thus, the addition of apoC-III to rHDL induced changes in the structural and functional properties of the rHDL, especially in particle size and rearrangement and LCAT activation. These alterations may lead to beneficial functions of HDL, which is involved in anti-atherogenic properties in the circulation.  相似文献   

15.
The apolipoprotein A-IMilano (apoA-IM) is a molecular variant of apoA-I characterized by the Arg(173)-->Cys substitution, resulting in the formation of homodimers A-IM/A-IM. The introduction of the interchain disulfide bridge in the A-IM dimer limits the apolipoprotein conformational flexibility and restricts HDL particle size heterogeneity, thus possibly affecting HDL function in lipid metabolism and atherosclerosis protection. To investigate whether the structural changes in A-IM/A-IM affect apoA-I capacity for cell cholesterol uptake, we tested the ability of four reconstituted HDL (rHDL), that contained either apoA-I or A-IM/A-IM, to remove cholesterol from Fu5AH hepatoma cells and cholesterol-loaded murine primary macrophages (MPM). As the HDL particle size is known to affect the rHDL capacity for cell cholesterol uptake, the reconstitution conditions were carefully selected to produce two sets of rHDL particles of small and large size (7.8 and 12.5 nm in diameter). The small A-IM/A-IM rHDL were more efficient than the corresponding apoA-I particles as acceptors of membrane cholesterol from Fu5AH cells and MPM, and as inhibitors of cholesterol esterification in MPM. The large rHDL and the lipid-free apolipoproteins displayed instead similar capacities for cell cholesterol efflux. These results suggest that cell cholesterol efflux to rHDL particles of different size occurs through different mechanisms. Large HDL accommodate and retain the cholesterol molecules that have desorbed from the cell membrane into the extracellular fluid, in a process that is less sensitive to protein conformation. Small HDL accelerate the desorption of cholesterol from the cell membrane, in a process that is influenced by the conformation of the proteins on the surface of the acceptor particle. The enhanced efficiency of small A-IM/A-IM rHDL seems related to the peculiar structure of the protein on the rHDL surface, with a hydrophobic C-terminal domain extending out of the rHDL particle, available for anchoring the acceptor to the plasma membrane.  相似文献   

16.
To elucidate the molecular details of how high density lipoprotein (HDL) microstructure affects the conformation of apolipoprotein (apo) A-I in various classes of HDL particles, apoA-I structure in homogeneous recombinant HDL (rHDL) complexes containing palmitoyl-oleoyl phosphatidylcholine (POPC) and cholesteryl oleate has been investigated by NMR spectroscopy of [13C]lysine-labeled apoA-I. All Lys residues in rHDL apoA-I were labeled with 13C by reductive methylation, and then their ionization behavior was characterized by 13C NMR spectroscopy. Four discoidal particles were prepared to contain from 64 to 256 molecules of POPC and 2 molecules of apoA-I; their major diameters ranged from 9.3 to 12.1 nm. (13CH3)2-Lys resonances from apoA-I in discoidal complexes exhibit six distinct chemical shifts at pH 10. The various Lys have pKa values ranging from 8.3 to 10.5, indicating that they exist in different microenvironments. More than 80% of the Lys residues in small (9.3 nm) discoidal particles titrate at a significantly lower pH than in the large (12.1 nm) discoidal particles. This indicates that apoA-I has a different conformation on the differently size discs. Two spherical particles were prepared with POPC:cholesteryl oleate:apoA-I molar stoichiometries of 56:16:2 and 232:84:4 and diameters of 7.4 and 12.6 nm, respectively. On spherical rHDL, apoA-I (13CH3)2-Lys resonances exhibit five distinct chemical shifts at pH 10. The titration behavior of apoA-I Lys residues is the same in small and large spherical particles, indicating that apoA-I conformation is similar on the two particles. The Lys microenvironments indicate that the conformation of apoA-I in discoidal complexes is dependent on particle size and that these conformations are substantially different from that of apoA-I on spherical complexes. Lys microenvironments in discoidal complexes differ from that of spherical complexes by 4 to 5 ysines which titrate with relatively low pKa values on discs. This reflects apparent differences in conformation in the NH2-terminal one-third of apoA-I on discs and spheres.  相似文献   

17.
The ATP-binding cassette transporters ABCA1 and ABCG1 as well as scavenger receptor BI (SR-BI) mediate the efflux of lipids from macrophages to apolipoprotein A-I (apoA-I) and high density lipoproteins (HDL). We used RNA interference in RAW264.7 macrophages to study the interactions of ABCA1, ABCG1, and SR-BI with lipid-free apoA-I, native and reconstituted HDL with apoA-I:phosphatidylcholine ratios of either 1:40 (rHDL(1:40)) or 1:100 (rHDL(1:100)). Knock-down of ABCA1 inhibits the cellular binding at 4 degrees C of lipid-free apoA-I but not of HDL whereas suppression of ABCG1 or SR-BI reduces the binding of HDL but not lipid-free apoA-I. The degree of lipidation influences the interactions of rHDL with ABCG1 and SR-BI. Knock-down of ABCG1 inhibits more effectively the binding and cholesterol efflux capacities of lipid-poorer rHDL(1:40) whereas knock-down of SR-BI has a more profound effect on the binding and cholesterol efflux capacities of lipid-richer rHDL(1:100). Moreover, knock-down of ABCG1 but not SR-BI interferes with the association of lipid-free apoA-I during prolonged incubation at 37 degrees C. Finally, knock-down of ABCG1 inhibits the binding of initially lipid-free apoA-I which has been preconditioned by cells with high ABCA1 activity. The gained ability of initially lipid-free apoA-I to interact with ABCG1 is accompanied by its shift from electrophoretic pre-beta- to alpha-mobility. Taken together, these data suggest that the interaction of lipid-free apoA-I with ABCA1 generates a particle that immediately interacts with ABCG1 but not with SR-BI. Furthermore, the degree of lipidation influences the interaction of HDL with ABCG1 or SR-BI.  相似文献   

18.
The conformational constraints for apoA-I bound to recombinant phospholipid complexes (rHDL) were attained from a combination of chemical cross-linking and mass spectrometry. Molecular distances were then used to refine models of lipid-bound apoA-I on both 80 and 96 A diameter rHDL particles. To obtain molecular constraints on the protein bound to phospholipid complexes, three different lysine-selective homo-bifunctional cross-linkers with increasing spacer arm lengths (i.e., 7.7, 12.0, and 16.1 A) were reacted with purified, homogeneous recombinant 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) apoA-I rHDL complexes of each diameter. Cross-linked dimeric apoA-I products were separated from monomeric apoprotein using 12% SDS-PAGE, then subjected to in-gel trypsin digest, and identified by MS/MS sequencing. These studies aid in the refinement of our previously published molecular model of two apoA-I molecules bound to approximately 150 molecules of POPC and suggest that the protein hydrophobic interactions at the N- and C-terminal domains decrease as the number of phospholipid molecules or "lipidation state" of apoA-I increases. Thus, it appears that these incremental changes in the interaction between the N- and C-terminal ends of apoA-I stabilize its tertiary conformation in the lipid-free state as well as allowing it to unfold and sequester discrete amounts of phospholipid molecules.  相似文献   

19.
Apolipoprotein A-I (apoA-I), the major protein in high density lipoprotein (HDL) regulates cholesterol homeostasis and is protective against atherosclerosis. An examination of the amino acid sequence of apoA-I among 21 species shows a high conservation of positively and negatively charged residues within helix 6, a domain responsible for regulating the rate of cholesterol esterification in plasma. These observations prompted an investigation to determine if charged residues in helix 6 maintain a structural conformation for protein-protein interaction with lecithin-cholesterol acyltransferase (LCAT) the enzyme for which apoA-I acts as a cofactor. Three apoA-I mutants were engineered; the first, (3)/(4) no negative apoA-I, eliminated 3 of the 4 negatively charged residues in helix 6, no negative apoA-I (NN apoA-I) eliminated all four negative charges, while all negative (AN apoA-I) doubled the negative charge. Reconstituted phospholipid-containing HDL (rHDL) of two discrete sizes and compositions were prepared and tested. Results showed that LCAT activation was largely influenced by both rHDL particle size and the net negative charge on helix 6. The 80 A diameter rHDL showed a 12-fold lower LCAT catalytic efficiency when compared to 96 A diameter rHDL, apparently resulting from an increased protein-protein interaction, at the expense of lipid-protein association on the 80 A rHDL. When mutant apoproteins were compared bound to the two different sized rHDL, a strong inverse correlation (r = 0.85) was found between LCAT catalytic efficiency and apoA-I helix 6 net negative charge. These results support the concept that highly conserved negatively charged residues in apoA-I helix 6 interact directly and attenuate LCAT activation, independent of the overall particle charge.  相似文献   

20.
Mechanisms to increase plasma high-density lipoprotein (HDL) or to promote egress of cholesterol from cholesterol-loaded cells (e.g., foam cells from atherosclerotic lesions) remain an important target to regress heart disease. Reconstituted HDL (rHDL) serves as a valuable vehicle to promote cellular cholesterol efflux in vitro and in vivo. rHDL were prepared with wild type apolipoprotein (apo) A-I and the rare variant, apoA-I Milano (M), and each apolipoprotein was reconstituted with phosphatidylcholine (PC) or sphingomyelin (SM). The four distinct rHDL generated were incubated with CHO cells, J774 macrophages, and BHK cells in cellular cholesterol efflux assays. In each cell type, apoA-I(M) SM-rHDL promoted the greatest cholesterol efflux. In BHK cells, the cholesterol efflux capacities of all four distinct rHDL were greatly enhanced by increased expression of ABCG1. Efflux to PC-containing rHDL was stimulated by transfection of a nonfunctional ABCA1 mutant (W590S), suggesting that binding to ABCA1 represents a competing interaction. This interpretation was confirmed by binding experiments. The data show that cholesterol efflux activity is dependent upon the apoA-I protein employed, as well as the phospholipid constituent of the rHDL. Future studies designed to optimize the efflux capacity of therapeutic rHDL may improve the value of this emerging intervention strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号