首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several sources of information suggest that human beings evolved on a diet with a ratio of omega-6 to omega-3 essential fatty acids (EFA) of approximately 1 whereas in Western diets the ratio is 15/1-16.7/1. Western diets are deficient in omega-3 fatty acids, and have excessive amounts of omega-6 fatty acids compared with the diet on which human beings evolved and their genetic patterns were established. Excessive amounts of omega-6 polyunsaturated fatty acids (PUFA) and a very high omega-6/omega-3 ratio, as is found in today's Western diets, promote the pathogenesis of many diseases, including cardiovascular disease, cancer, and inflammatory and autoimmune diseases, whereas increased levels of omega-3 PUFA (a lower omega-6/omega-3 ratio), exert suppressive effects. In the secondary prevention of cardiovascular disease, a ratio of 4/1 was associated with a 70% decrease in total mortality. A ratio of 2.5/1 reduced rectal cell proliferation in patients with colorectal cancer, whereas a ratio of 4/1 with the same amount of omega-3 PUFA had no effect. The lower omega-6/omega-3 ratio in women with breast cancer was associated with decreased risk. A ratio of 2-3/1 suppressed inflammation in patients with rheumatoid arthritis, and a ratio of 5/1 had a beneficial effect on patients with asthma, whereas a ratio of 10/1 had adverse consequences. These studies indicate that the optimal ratio may vary with the disease under consideration. This is consistent with the fact that chronic diseases are multigenic and multifactorial. Therefore, it is quite possible that the therapeutic dose of omega-3 fatty acids will depend on the degree of severity of disease resulting from the genetic predisposition. A lower ratio of omega-6/omega-3 fatty acids is more desirable in reducing the risk of many of the chronic diseases of high prevalence in Western societies, as well as in the developing countries.  相似文献   

2.
3.
In recent years, foods that contain omega-3 lipids have emerged as important promoters of human health. These lipids are essential for the functional development of the brain and retina, and reduction of the risk of cardiovascular and Alzheimer's diseases. The global market for omega-3 production, particularly docosahexaenoic acid (DHA), saw a large expansion in the last decade due to the increasing use of this lipid as an important component of infant food formulae and supplements. The production of omega-3 lipids from fish and vegetable oil sources has some drawbacks, such as complex purification procedures, unwanted contamination by marine pollutants, reduction or even extinction of several species of fish, and aspects related to sustainability. A promising alternative system for the production of omega-3 lipids is from microbial metabolism of yeast, fungi, or microalgae. The aim of this review is to discuss the various omega-3 sources in the context of the global demand and market potential for these bioactive compounds. To summarize, it is clear that fish and vegetable oil sources will not be sufficient to meet the future needs of the world population. The biotechnological production of single-cell oil comes as a sustainable alternative capable of supplementing the global demand for omega-3, causing less environmental impact.  相似文献   

4.
  1. Functional traits are measurable characteristics of an organism that have an impact on its fitness. Variation in functional traits between and among species has been suggested to represent the basis for competition and selection, thus allowing for evolution in natural populations.
  2. In freshwater ecosystems, the availability of essential polyunsaturated fatty acids (PUFAs), in particular ω3‐ and ω6‐PUFAs, determines the food quality of phytoplankton for the herbivorous zooplankton Daphnia, an unselective filter feeder. The content of such essential PUFAs in the phytoplankton is thus a functional phytoplankton trait affecting the trophic transfer efficiency and dynamics at the pelagic plant–herbivore interface.
  3. In turn, the susceptibility of consumers to become limited by the availability of essential PUFAs is a fitness‐determining trait of Daphnia genotypes, and variability of this herbivore trait may thus affect the daphnids’ intrapopulation competition. To estimate the intrapopulation variation in susceptibility, we isolated clonal lines of Daphnia longispina from a natural population and compared the strength of their limitation by dietary PUFA availability via standardised laboratory growth assays. We used a liposome supplementation technique to enrich a PUFA‐poor green alga with essential ω3‐ and ω6‐PUFAs and determined juvenile somatic growth rate of different D. longispina genotypes as a fitness proxy.
  4. As expected, D. longispina genotypes that coexisted in a natural population differed markedly in their specific patterns of susceptibility to dietary PUFA availability. On average, the D. longispina population was more strongly susceptible to limitations in the availability of the ω6‐PUFA arachidonic acid (20:4ω6) than to limitations in the availability of ω3‐PUFAs α‐linolenic acid (18:3ω3) and eicosapentaenoic acid (20:5ω3).
  5. The ability to cope with PUFA limitation is thus a crucial trait that can probably affect intraspecific competition and Daphnia population structure. Therefore, we suggest that such intrapopulation variation in susceptibility to absence of dietary PUFAs might be one of the driving forces of natural selection and local adaptation among freshwater zooplankton.
  相似文献   

5.
Dietary supplementation with polyunsaturated fatty acids (PUFAs) has immunosuppressive effects; however, the molecular targets of PUFAs and their mode of action remain unclear. One possible target is antigen presentation to T cells through the human leukocyte antigen (HLA) class I pathway. Here we show that incorporation of PUFAs lowers target cell susceptibility to lysis by effector T cells. Treatment of B lymphoblast targets with the omega-6 PUFA arachidonic acid (AA) or omega-3 docosahexaenoic acid lowered their susceptibility to lysis by alloreactive CD8+ T cells by approximately 20-25%. HLA class I surface levels and their rate of endoplasmic reticulum (ER)-Golgi traffic were also reduced by PUFA treatment. Calibration experiments showed that the approximately 15% reduction in surface HLA I was not sufficient to completely account for the decreased lysis. However, PUFAs significantly lowered antigen-presenting cell-T cell conjugate formation, by approximately 30-40%. Taken together, our data show for the first time that an omega-6 and an omega-3 PUFA affect the HLA class I pathway of B lymphoblasts. Our findings suggest that elimination of self- and pathogen-derived peptides by effectors may be compromised by dietary PUFA supplementation. In addition, PUFA-mediated changes in ER-Golgi trafficking point to a new area of PUFA modulation of immune responses.  相似文献   

6.
ω-3多不饱和脂肪酸(ω-3PUFAs)是一类被广泛研究和关注的脂肪酸,对人类及其他哺乳动物的正常发育和保持良好的健康状况极其重要,并且对于人类的多种疾病的预防和治疗亦有着明显的作用。在人和哺乳动物体内,ω-3PUFAs的含量与ω-6PUFAs(其代谢方式和功能与前者不同,通常其作用也相反)相比很低。而对于人体,无论ω-3PUFAs的过低还是ω-6PUFAs的过高都会带来极为不利的影响。所以人们一直在努力寻求提高人体中ω-3PUFAs含量的途径或者大量生产ω-3PUFAs的方法。本研究经过密码子优化后,用化学合成的方法获得了C.briggsae的ω-3脂肪酸去饱和酶基因sFat-1,并构建了哺乳动物细胞表达载体pcDNA3.1-sFat1-EGFP,通过脂质体转染了CHO细胞系并对其进行抗性筛选获得稳定转染细胞株。对稳定转染sFat-1细胞株的RT-PCR分析及脂肪酸组成的GC-MS分析表明,sFat1基因完全能够在CHO细胞中表达和发挥其ω-3去饱和酶的作用,即促使ω-6系列不饱和脂肪酸转变为相应的ω-3系列不饱和脂肪酸(从十八碳到二十二碳)。ω-6不饱和脂肪酸总量从48.97%下降到35.29%,而ω-3不饱和脂肪酸总量则相应地从7.86%上升到24.02%。ω-6多不饱和脂肪酸和ω-3多不饱和脂肪酸的比值从正常细胞中的6.23下降到转染细胞中的1.47。这说明C.briggsae的ω-3脂肪酸去饱和酶基因sFat-1的合成是成功的,试验所获得的结果为今后的进一步的研究或应用其大量生产ω-3PUFAs奠定了基础。  相似文献   

7.
Polyunsaturated fatty acids (PUFAs) are essential dietary components. They are not only used for energy, but also act as signaling molecules. The delta-6 desaturase (D6D) enzyme, encoded by the FADS2 gene, is one of two rate limiting enzymes that convert the PUFA precursors – α-linolenic (n-3) and linoleic acid (n-6) to their respective metabolites. Alterations in the D6D enzyme activity alters fatty acid profiles and are associated with metabolic and inflammatory diseases including cardiovascular disease and type 2 diabetes. Omega-3 PUFAs, specifically its constituent fatty acids DHA and EPA, are known for their anti-inflammatory ability and are also beneficial in the prevention of skeletal muscle wasting, however the mechanism for muscle preservation is not well understood. Moreover, little is known of the effects of altering the n-6/n-3 ratio in the context of a high-fat diet, which is known to downregulate protein synthesis. Twenty C57BL6 male mice were fed a high-fat lard (HFL, 45% fat (mostly lard), 35% carbohydrate and 20% protein, n-6:n-3 PUFA, 13:1) diet for 6 weeks. Mice were then divided into 4 groups (n = 5 per group): HFL– , high-fat oil– (HFO, 45% fat (mostly Menhaden oil), 35% carbohydrate and 20% protein, n-6:n-3 PUFA, 1:3), HFL+ (HFL diet plus an orally administered FADS2 inhibitor, 100 mg/kg/day), and HFO+ (HFO diet plus an orally administered FADS2 inhibitor, 100 mg/kg/day). After 2 weeks on their respective diets and treatments, animals were sacrificed and gastrocnemius muscle harvested. Protein turnover signaling were analyzed via Western Blot. 4-EBP1 and ribosomal protein S6 expression were measured. A two-way ANOVA revealed no significant change in the phosphorylation of both 4EBP-1 and ribosomal protein S6 with diet or inhibitor. There was a significant reduction in STAT3 phosphorylation with the inhibition of FADS2 (p = 0.03). Additionally, we measured markers of protein degradation through levels of FOXO phosphorylation, ubiquitin, and LC3B expression; there was a trend towards increased phosphorylation of FOXO (p = 0.08) and ubiquitinated proteins (p = 0.05) with FADS2 inhibition. LC3B expression, a marker of autophagy, was significantly higher in the HFL plus FADS2 inhibition group from all other comparisons. Lastly, we analyzed activation of mitochondrial biogenesis which is closely linked with protein synthesis through PGC1-α and Cytochrome-C expression, however no significant differences were associated with either marker across all groups. Collectively, these data suggest that the protective effects of muscle mass by omega-3 fatty acids are from inhibition of protein degradation. Our aim was to determine the role of PUFA metabolites, DHA and EPA, in skeletal muscle protein turnover and assess the effects of n-3s independently. We observed that by inhibiting the FADS2 enzyme, the protective effect of n-3s on protein synthesis and proliferation was lost; concomitantly, protein degradation was increased with FADS2 inhibition regardless of diet.  相似文献   

8.
In contrast to substantial studies and established knowledge of aluminum (Al) effects (mainly toxicity) on freshwater organisms and terrestrial plants, and even on human health, only a few studies of Al effects on marine organisms have been reported, and our understanding of the role of Al in marine biogeochemistry is limited. In this paper, we review the results of both field and laboratory experiments on the effects of Al on marine organisms, including Al toxicity to marine phytoplankton and the beneficial effects of Al on marine phytoplankton growth, and we discuss possible links of Al to the biological pump and the global carbon cycle. We propose a revised Iron (Fe) Hypothesis, i.e., the Fe–Al Hypothesis that introduces the idea that Al as well as Fe play an important role in the glacial-interglacial change in atmospheric CO2 concentrations and climate change. We propose that Al could not only facilitate Fe utilization, dissolved organic phosphorus utilization and nitrogen fixation by marine phytoplankton, enhancing phytoplankton biomass and carbon fixation in the upper oceans, but also reduce the decomposition and decay of biogenic matter. As a result, Al allows potentially more carbon to be exported and sequestered in the ocean depths through the biological pump. We also propose that Al binds to superoxide to form an Al-superoxide complex, which could catalyze the reduction of Fe(III) to Fe(II) and thus facilitate Fe utilization by marine phytoplankton and other microbes. Further ocean fertilization experiments with Fe and Al are suggested, to clarify the role of Al in the stimulation of phytoplankton growth and carbon sequestration in the ocean depths.  相似文献   

9.
Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are long-chain polyunsaturated fatty acids (PUFAs) that belong to the omega-3 group. They are essential fatty acids found in phospholipid of cell membranes. There is strong evidence that these nutrients may also favorably modulate many diseases. Primary sources of omega-3 PUFAs in the human diet are fish and fish-derived products. The fishing industry worldwide, however, is becoming unable to satisfy the growing demand for these PUFAs. A promising cost-effective alternative source of PUFAs is bacterial production. We identified 40 Antarctic marine bacterial isolates by 16S rRNA gene sequence analysis. Fifteen genera in three phyla were represented in the collection. Isolates were tested for ability to produce EPA using a method in which their ability to reduce 2,3,5-triphenyltetrazolium chloride (TTC) is determined and by gas chromatography coupled to mass spectrometry (GC–MS). All isolates could reduce TTC, and GC–MS analysis showed that four produced EPA and that six produced DHA. We show for the first time that isolates identified as Cellulophaga, Pibocella and Polaribacter can produce EPA and DHA, only DHA or only EPA, respectively. One isolate, Shewanella sp. (strain 8-5), is indicated to be a good candidate for further study to optimize growth and EPA production. In conclusion, a rapid method was tested for identification of new EPA producing strains from marine environments. New EPA and DHA producing strains were found as well as a potentially useful PUFA production strain.  相似文献   

10.
Recommendations to consume fish for prevention of cardiovascular disease (CVD), along with the U.S. Food and Drug Administration-approved generally recognized as safe (GRAS) status for long chain omega-3 fatty acids, may have had the unanticipated consequence of encouraging long-chain omega-3 (ω-3) fatty acid [(eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)] supplementation and fortification practices. While there is evidence supporting a protective role for EPA/DHA supplementation in reducing sudden cardiac events, the safety and efficacy of supplementation with LCω-3PUFA in the context of other disease outcomes is unclear. Recent studies of bacterial, viral, and fungal infections in animal models of infectious disease demonstrate that LCω-3PUFA intake dampens immunity and alters pathogen clearance and can result in reduced survival. The same physiological properties of EPA/DHA that are responsible for the amelioration of inflammation associated with chronic cardiovascular pathology or autoimmune states, may impair pathogen clearance during acute infections by decreasing host resistance or interfere with tumor surveillance resulting in adverse health outcomes. Recent observations that high serum LCω-3PUFA levels are associated with higher risk of prostate cancer and atrial fibrillation raise concern for adverse outcomes. Given the widespread use of supplements and fortification of common food items with LCω-3PUFA, this review focuses on the immunomodulatory effects of the dietary LCω-3PUFAs, EPA and DHA, the mechanistic basis for potential negative health outcomes, and calls for biomarker development and validation as rational first steps towards setting recommended dietary intake levels.  相似文献   

11.
Polyunsaturated fatty acids (PUFAs) are essential nutrients for animals and necessary for the normal functioning of the nervous system. A lack of PUFAs can result from the consumption of a deficient diet or genetic factors, which impact PUFA uptake and metabolism. Both can cause synaptic dysfunction, which is associated with numerous disorders. However, there is a knowledge gap linking these neuronal dysfunctions and their underlying molecular mechanisms. Because of its genetic manipulability and its easy, fast, and cheap breeding, Drosophila melanogaster has emerged as an excellent model organism for genetic screens, helping to identify the genetic bases of such events. As a first step towards the understanding of PUFA implications in Drosophila synaptic physiology we designed a breeding medium containing only very low amounts of PUFAs. We then used the fly’s visual system, a well-established model for studying signal transmission and neurological disorders, to measure the effects of a PUFA deficiency on synaptic function. Using both visual performance and eye electrophysiology, we found that PUFA deficiency strongly affected synaptic transmission in the fly’s visual system. These defects were rescued by diets containing omega-3 or omega-6 PUFAs alone or in combination. In summary, manipulating PUFA contents in the fly’s diet was powerful to investigate the role of these nutrients on the fly´s visual synaptic function. This study aims at showing how the first visual synapse of Drosophila can serve as a simple model to study the effects of PUFAs on synapse function. A similar approach could be further used to screen for genetic factors underlying the molecular mechanisms of synaptic dysfunctions associated with altered PUFA levels.  相似文献   

12.
Recent investigations indicate that the type and amount of polyunsaturated fatty acids (PUFA) influence bone formation in animal models and osteoblastic cell functions in culture. In growing rats, supplementing the diet with omega-3 PUFA results in greater bone formation rates and moderates ex vivo prostaglandin E(2) production in bone organ cultures. A protective effect of omega-3 PUFA on minimizing bone mineral loss in ovariectomized rats has also been reported. The actions of omega-3 fatty acids on bone formation appear to be linked to altering osteoblast functions. Herein we describe experiments with MC3T3-E1 osteoblast-like cells that support findings in vivo where omega-3 PUFA modulated COX-2 protein expression, reduced prostaglandin E(2) production, and increased alkaline phosphatase activity. Other studies indicate that the dietary source of PUFA may affect protein expression of Cbfa1 and nodule formation in fetal rat calvarial cells.  相似文献   

13.
The Inuit undergo substantial changes in their lifestyle, but few data exist on how these changes occur in biomarkers, such as polyunsaturated fatty acids (PUFAs). Here, we report data from a cross-sectional survey conducted in 2004 among 861 representative Nunavik Inuit adults, in whom FAs were measured in red blood cells (RBCs). FAs were also measured in plasma phospholipids (n=452) to assess temporal trend by comparing plasma PUFAs measured in 1992. Food intakes were estimated using a validated food frequency questionnaire. In 2004, marine food intake was 84±4 g/d (±SEM). Adjusted-mean of RBC omega-3 was significantly higher, and omega-6 lower, in older age groups (Ptrend<0.001). In 2004, plasma omega-3 was 25% lower, while omega-6 was 9% higher, compared to 1992. Our study revealed that Nunavik Inuit adults still have high RBC omega-3, but show signs of nutritional transition – as indicated by lower omega-3 and higher trans-fats in RBCs of young compared to older.  相似文献   

14.
Phytoplankton are the main source of energy and omega‐3 (n‐3) long‐chain essential fatty acids (EFA) in aquatic ecosystems. Their growth and biochemical composition are affected by surrounding environmental conditions, including temperature, which continues to increase as a result of climate warming. Increasing water temperatures may negatively impact the production of EFA by phytoplankton through the process of homeoviscous adaptation. To investigate this, we conducted an exploratory data synthesis with 952 fatty acid (FA) profiles from six major groups of marine and freshwater phytoplankton. Temperature was strongly correlated with a decrease in the proportion of n‐3 long‐chain polyunsaturated FA (LC‐PUFA) and an increase in omega‐6 FA and saturated FA. Based on linear regression models, we predict that global n‐3 LC‐PUFA production will be reduced by 8.2% for eicosapentaenoic acid (EPA) and 27.8% for docosahexaenoic acid (DHA) with an increase in water temperature of 2.5 °C. Using a previously published estimate of the global production of EPA by diatoms, which contribute to most of the world's supply of EPA, we predict a loss of 14.2 Mt of EPA annually as a result of ocean warming. The n‐3 LC‐PUFA are vitally important for an array of key physiological functions in aquatic and terrestrial organisms, and these FA are mainly produced by phytoplankton. Therefore, reduced production of these EFA, as a consequence of climate warming, is predicted to negatively affect species that depend on these compounds for optimum physiological function. Such profound changes in the biochemical composition of phytoplankton cell membranes can lead to cascading effects throughout the world's ecosystems.  相似文献   

15.
Pseudomonas aeruginosa is a gram-negative bacilli frequently encountered in human pathology. This pathogen is involved in a large number of nosocomial infections and chronic diseases. Herein we investigated the effects of polyunsaturated fatty acids (PUFA) in chronic Pseudomonas aeruginosa lung infection. C57BL/6 mice were fed for 5 wk with specifically designed diets with high contents in either omega-3 (omega-3) or omega-6 PUFA and compared to a control diet. P. aeruginosa included in agarose beads was then instilled intratracheally, and the animals were studied for 7 days. On the 4th day, the mice fed with the omega-3 diet had a higher lean body mass gain and a lower omega-6:omega-3 ratio of fatty acids extracted from the lung tissue compared with the other groups (P < 0.05). The omega-3 group had the lowest mortality. Distal alveolar fluid clearance (DAFC) as well as the inflammatory response and the cellular recruitment were higher in the omega-3 group on the 4th day. The effect on DAFC was independent of alpha-epithelial Na(+) channels (alpha-ENaC), beta-ENaC, and alpha(1)-Na-K-ATPase mRNA expressions, which were not altered by the different diets. In conclusion, a diet enriched in omega-3 PUFA can change lung membrane composition and improve survival in chronic pneumonia. This effect on survival is probably multifactorial involving the increased DAFC capacity as well as the optimization of the initial inflammatory response. This work suggests that a better control of the omega-6/omega-3 PUFA balance may represent an interesting target in the prevention and/or control of P. aeruginosa infection in patients.  相似文献   

16.
17.
Epidemiological evidence from Greenland Eskimos and Japanese fishing villages suggests that eating fish oil and marine animals can prevent coronary heart disease. Dietary studies from various laboratories have similarly indicated that regular fish oil intake affects several humoral and cellular factors involved in atherogenesis and may prevent atherosclerosis, arrhythmia, thrombosis, cardiac hypertrophy and sudden cardiac death. The beneficial effects of fish oil are attributed to their n-3 polyunsaturated fatty acid (PUFA; also known as omega-3 fatty acids) content, particularly eicosapentaenoic acid (EPA; 20:5, n-3) and docosahexaenoic acid (DHA; 22:6, n-3). Dietary supplementation of DHA and EPA influences the fatty acid composition of plasma phospholipids that, in turn, may affect cardiac cell functions in vivo. Recent studies have demonstrated that long-chain omega-3 fatty acids may exert beneficial effects by affecting a wide variety of cellular signaling mechanisms. Pathways involved in calcium homeostasis in the heart may be of particular importance. L-type calcium channels, the Na+-Ca2+ exchanger and mobilization of calcium from intracellular stores are the most obvious key signaling pathways affecting the cardiovascular system; however, recent studies now suggest that other signaling pathways involving activation of phospholipases, synthesis of eicosanoids, regulation of receptor-associated enzymes and protein kinases also play very important roles in mediating n-3 PUFA effects on cardiovascular health. This review is therefore focused on the molecular targets and signaling pathways that are regulated by n-3 PUFAs in relation to their cardioprotective effects.  相似文献   

18.
The Arctic bloom consists of two distinct categories of primary producers, ice algae growing within and on the underside of the sea ice, and phytoplankton growing in open waters. Long chain omega‐3 fatty acids, a subgroup of polyunsaturated fatty acids (PUFAs) produced exclusively by these algae, are essential to all marine organisms for successful reproduction, growth, and development. During an extensive field study in the Arctic shelf seas, we followed the seasonal biomass development of ice algae and phytoplankton and their food quality in terms of their relative PUFA content. The first PUFA‐peak occurred in late April during solid ice cover at the onset of the ice algal bloom, and the second PUFA‐peak occurred in early July just after the ice break‐up at the onset of the phytoplankton bloom. The reproduction and growth of the key Arctic grazer Calanus glacialis perfectly coincided with these two bloom events. Females of C. glacialis utilized the high‐quality ice algal bloom to fuel early maturation and reproduction, whereas the resulting offspring had access to ample high‐quality food during the phytoplankton bloom 2 months later. Reduction in sea ice thickness and coverage area will alter the current primary production regime due to earlier ice break‐up and onset of the phytoplankton bloom. A potential mismatch between the two primary production peaks of high‐quality food and the reproductive cycle of key Arctic grazers may have negative consequences for the entire lipid‐driven Arctic marine ecosystem.  相似文献   

19.
A balanced omega-6/omega-3 polyunsaturated fatty acid (PUFA) ratio has been linked to health benefits and the prevention of many chronic diseases. Current dietary intervention studies with different sources of omega-3 fatty acids (omega-3) lack appropriate control diets and carry many other confounding factors derived from genetic and environmental variability. In our study, we used the fat-1 transgenic mouse model as a proxy for long-term omega-3 supplementation to determine, in a well-controlled manner, the molecular phenotype associated with a balanced omega-6/omega-3 ratio. The fat-1 mouse can convert omega-6 to omega-3 PUFAs, which protect against a wide variety of diseases including chronic inflammatory diseases and cancer. Both wild-type (WT) and fat-1 mice were subjected to an identical diet containing 10% corn oil, which has a high omega-6 content similar to that of the Western diet, for a six-month duration. We used a multi-platform lipidomic approach to compare the plasma lipidome between fat-1 and WT mice. In fat-1 mice, an unbiased profiling showed a significant increase in the levels of unesterified eicosapentaenoic acid (EPA), EPA-containing cholesteryl ester, and omega-3 lysophosphospholipids. The increase in omega-3 lipids is accompanied by a significant reduction in omega-6 unesterified docosapentaenoic acid (omega-6 DPA) and DPA-containing cholesteryl ester as well as omega-6 phospholipids and triacylglycerides. Targeted lipidomics profiling highlighted a remarkable increase in EPA-derived diols and epoxides formed via the cytochrome P450 (CYP450) pathway in the plasma of fat-1 mice compared with WT mice. Integration of the results of untargeted and targeted analyses has identified a lipidomic biosignature that may underlie the healthful phenotype associated with a balanced omega-6/omega-3 ratio, and can potentially be used as a circulating biomarker for monitoring the health status and the efficacy of omega-3 intervention in humans.  相似文献   

20.
Cyclooxygenase-2 (COX-2) is important in the progression of epithelial tumors. Evidence indicates that omega-6 PUFAs such as arachidonic acid (AA) promote the growth of tumor cells; however, omega-3 fatty acids [eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)] inhibit tumor cell proliferation. We investigated the effects of omega-3 PUFA on the expression and function of COX-2 in 70W, a human melanoma cell line that metastasizes to the brain in nude mice. We show that 1) tumor necrosis factor-alpha upregulates the expression of both COX-2 mRNA and prostaglandin E2 (PGE2) production, and 2) omega-3 and omega-6 PUFA regulate COX-2 mRNA expression and PGE2 production. AA increased COX-2 mRNA expression and prostaglandin production in omega-6-stimulated 70W cells. Conversely, COX-2 mRNA expression decreased in cells incubated with EPA or DHA. AA increased Matrigel invasion 2.4-fold, whereas EPA or DHA did not. Additionally, PGE2 increased in vitro invasion 2.5-fold, whereas exposure to PGE3 significantly decreased invasion. Our results demonstrate that incubation of 70W cells with either AA or PGE2 increased invasiveness, whereas incubation with EPA or DHA downregulated both COX-2 mRNA and protein expression, with a subsequent decrease in Matrigel invasion. Taken together, these results indicate that omega-3 PUFA regulate COX-2-mediated invasion in brain-metastatic melanoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号