首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One of the chitinases secreted in the culture filtrate of a gram-negative bacteria, Burkholderia cepacia strain KH2, which was isolated from the bed log of Lentinus edodes, Shiitake mushrooms, was purified by DEAE Sepharose CL-6B chromatography, followed by Sephacryl S-100 HR gel filtration. The purified enzyme was homogenous, determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), with an estimated molecular weight of 34,000 and an isoelectric point (pI) of 5.9. The enzyme was stable at pH values of 4.0-6.0, and at temperatures up to 50 degrees C; the optimum pH and temperature were 4.5 and 50 degrees C, respectively. The enzyme exhibited higher activities toward chitosan 7B, a 62% deacetylated chitosan, than toward the highly deacetylated chitosan substrates. The enzyme was observed to drastically hydrolyze partially deacetylated chitin substrates, with the subsequent formation of N-acetylchitooligosaccharides [(GlcNAc) (n), n=2-7]. Separation and quantification of the hydrolysis products of (GlcNAc) (n), n52-6, by HPLC showed the splitting into (GlcNAc)(n), n=3-6. Activity toward N-acetylchitobiose was not detected. Oligomers with a higher number of units than the starting substrate were also detected, which indicate transglycosylation activity.  相似文献   

2.
This work is focused on the characterization of a commercial cellulase in terms of optimum pH and temperature, stability to pH and temperature and affinity of this enzyme to several substrates, determining the Michaelis-Menten parameters. Maximum activity of cellulase was obtained for the temperature range from 40 to 50 °C and pH from 5.2 to 5.5. Enzyme activity decreased only 15% after 150 h of reaction at temperatures between 30 and 50 °C. No loss of activity was observed at pH 5.0 and 5.5. The cellulase showed satisfactory results in the hydrolysis of agroindustrial substrates, since similar activity was verified on filter paper and other agroindustrial substrates.  相似文献   

3.
75-kDa chitinase, which showed potential as a biocontrol agent against Japanese pine sawyer, was characterized after purification from the integument of the fifth instar larvae of Bombyx mori by chromatography on diethylaminoethyl (DEAE)-Toyoperal 650 (M), hydroxylapatite, and Fractogel EMD DEAE 650 (M) columns. The optimum pH was 6.0 toward N-acetylchitopentaose (GlcNAc5) and 10 toward glycolchitin. The optimum temperature was 60 degrees C toward GlcNAc5 and 25 degrees C toward glycolchitn. The enzyme was stable at pH 7-10 and below 40 degrees C. Kinetic analysis and reaction-pattern analysis using glycolchitin and N-acetylchitooligosacchraides as substrates indicated that 75-kDa chitinase is an endo- or random-type hydrolytic enzyme to produce the beta anomeric product and that it prefers the longer N-acetylchitooligosaccharides, suggesting, together with the N-terminal amino acid sequence, that the 75-kDa chitinase belongs to family 18 of glycosyl hydrolases.  相似文献   

4.
Substrate binding of a family GH19 chitinase from a moss species, Bryum coronatum (BcChi-A, 22 kDa), which is smaller than the 26 kDa family GH19 barley chitinase due to the lack of several loop regions ('loopless'), was investigated by oligosaccharide digestion, thermal unfolding experiments and isothermal titration calorimetry (ITC). Chitin oligosaccharides [β-1,4-linked oligosaccharides of N-acetylglucosamine with a polymerization degree of n, (GlcNAc)(n), n = 3-6] were hydrolyzed by BcChi-A at rates in the order (GlcNAc)(6) > (GlcNAc)(5) > (GlcNAc)(4) > (GlcNAc)(3). From thermal unfolding experiments using the inactive BcChi-A mutant (BcChi-A-E61A), in which the catalytic residue Glu61 is mutated to Ala, we found that the transition temperature (T(m) ) was elevated upon addition of (GlcNAc)(n) (n = 2-6) and that the elevation (ΔT(m)) was almost proportional to the degree of polymerization of (GlcNAc)(n). ITC experiments provided the thermodynamic parameters for binding of (GlcNAc)(n) (n = 3-6) to BcChi-A-E61A, and revealed that the binding was driven by favorable enthalpy changes with unfavorable entropy changes. The change in heat capacity (ΔC(p)°) for (GlcNAc)(6) binding was found to be relatively small (-105 ± 8 cal·K(-1) ·mol(-1)). The binding free energy changes for (GlcNAc)(6), (GlcNAc)(5), (GlcNAc)(4) and (GlcNAc)(3) were determined to be -8.5, -7.9, -6.6 and -5.0 kcal·mol(-1), respectively. Taken together, the substrate binding cleft of BcChi-A consists of at least six subsites, in contrast to the four-subsites binding cleft of the 'loopless' family 19 chitinase from Streptomyces coelicolor. DATABASE: Chitinase, EC 3.2.1.14.  相似文献   

5.
BcChi-A, a GH19 chitinase from the moss Bryum coronatum, is an endo-acting enzyme that hydrolyses the glycosidic bonds of chitin, (GlcNAc)(n) [a β-1,4-linked polysaccharide of GlcNAc (N-acetylglucosamine) with a polymerization degree of n], through an inverting mechanism. When the wild-type enzyme was incubated with α-(GlcNAc)2-F [α-(GlcNAc)(2) fluoride] in the absence or presence of (GlcNAc)(2), (GlcNAc)(2) and hydrogen fluoride were found to be produced through the Hehre resynthesis-hydrolysis mechanism. To convert BcChi-A into a glycosynthase, we employed the strategy reported by Honda et al. [(2006) J. Biol. Chem. 281, 1426-1431; (2008) Glycobiology 18, 325-330] of mutating Ser(102), which holds a nucleophilic water molecule, and Glu(70), which acts as a catalytic base, producing S102A, S102C, S102D, S102G, S102H, S102T, E70G and E70Q. In all of the mutated enzymes, except S102T, hydrolytic activity towards (GlcNAc)(6) was not detected under the conditions we used. Among the inactive BcChi-A mutants, S102A, S102C, S102G and E70G were found to successfully synthesize (GlcNAc)(4) as a major product from α-(GlcNAc)(2)-F in the presence of (GlcNAc)(2). The S102A mutant showed the greatest glycosynthase activity owing to its enhanced F(-) releasing activity and its suppressed hydrolytic activity. This is the first report on a glycosynthase that employs amino sugar fluoride as a donor substrate.  相似文献   

6.
Mosquito larvae are believed to be capable of digesting chitin, an insoluble polysaccharide of N-acetylglucosamine, for their nutritional benefit. Studies based on physiological and biochemical assays were conducted in order to detect the presence of chitinase activities in the gut of the detritus-feeding Aedes aegypti larvae. Larvae placed for 24 h in suspensions of chitin azure were able to digest the ingested chitin. Semi-denaturing PAGE using glycol chitin and two fluorogenic substrate analogues showed the presence of two distinct chitinase activities: an endochitinase that catalyzed the hydrolysis of chitin and an endochitinase that cleaved the short substrates [4MU(GlcNAc)(3)] and [4MU(GlcNAc)(2)] that hydrolyzed the chitobioside [4MU(GlcNAc)(2)]. The endochitinase had an extremely broad pH-activity against glycol chitin and chitin azure, pH ranging from 4.0 to 10.0. When the substrate [4MU(GlcNAc)(3)] was used, two activities were observed at pH ranges 4.0-6.0 and 8.0-10.0. Chitinase activity against [4MU(GlcNAc)(3)] was detected throughout the gut with the highest specific activity in the hindgut. The pH of the gut contents was determined by observing color changes in gut after feeding the larvae with color indicator dyes. It was observed a correlation between the pH observed in the gut of feeding larvae (pH 10-6.0) and the optimum pH for gut chitinase activities. In this work, we report that gut chitinases may be involved in the digestion of chitin-containing structures and also in the partial degradation of the chitinous peritrophic matrix in the hindgut.  相似文献   

7.
We describe the overexpression and characterization of a new 30 kDa family 18 chitinase (Ech30) from Trichoderma atroviride strain P1. Sequence alignments indicate that the active site architecture of Ech30 resembles that of endochitinases such as hevamine from the rubber tree (Hevea brasiliensis). The ech30 gene was overexpressed in Escherichia coli without its signal peptide and with an N-terminal His-tag. The enzyme was produced as inclusion bodies, from which active chitinase could be recovered using a simple refolding procedure. The enzyme displayed an acidic pH-optimum (pH 4.5-5.0), probably due to the presence of a conserved Asn residue near the catalytic glutamate, which is characteristic for acidic family 18 chitinases. Studies with oligomers of N-acetylglucosamine [(GlcNAc)(n)], 4-methylumbelliferyl (4-MU) labelled GlcNAc oligomers and beta-chitin reveal enzymatic properties typical of an endochitinase: 1) low activity towards short substrates (kinetic parameters for the hydrolysis of 4-MU-(GlcNAc)2 were K(m), 149+/-29 microM and k(cat), 0.0048+/-0.0005 s(-1)), and 2) production of relatively large amounts of trimers and tetramers during degradation of beta-chitin. Detailed studies with GlcNAc oligomers indicated that Ech30 has as many as seven subsites for sugar binding. As expected for a family 18 chitinase, catalysis proceeded with retention of the beta-anomeric configuration.  相似文献   

8.
A 56 kDa chitinase isozyme (PaChiB) was purified from the stomach of the silver croaker Pennahia argentatus. The optimum pH and pH stability of PaChiB were observed in an acidic pH range. When N-acetylchitooligosaccharides ((GlcNAc)n, n=2 -6) were used as substrates, PaChiB degraded (GlcNAc)4 -6 and produced (GlcNAc)2,3. It degraded (GlcNAc)5 to produce (GlcNAc)2 (23.2%) and (GlcNAc)3 (76.8%). The ability to degrade p-nitrophenyl N-acetylchitooligosaccharides (pNp-(GlcNAc)n, n=2 -4) fell in the following order: pNp-(GlcNAc)3? pNp-(GlcNAc)2 pNp-(GlcNAc)4. Based on these results, we concluded that PaChiB is an endo-type chitinolytic enzyme, and that it preferentially hydrolyzes the third glycosidic bond from the non-reducing end of (GlcNAc)n. Activity toward crystalline α- and β-chitin was activated at 124%-185% in the presence of 0.5 M NaCl. PaChiB exhibited markedly high substrate specificity toward crab-shell α-chitin.  相似文献   

9.
Kinetic analysis was done on the 46-kDa chitinase (EC 3.2.1.14) purified from the stomach of red sea bream, Pagrus major, using glycolchitin and N-acetylchitooligosaccharides (GlcNAc(n), n=2-6) as substrates. High activity was observed at two pHs, such as 2.5 and 9.0, toward glycolchitin as seen in other insect chitinases, and also at both pH 2.5 and 5.0 even toward a short substrate, N-acetylchitopentasaccharide. Allosamidin competitively inhibited chitinase with Ki value of 0.0214 microM at pH 2.5 and 0.0024 microM at pH 9.0 in the reaction of glycolchitin. Substrate inhibition was observed in the reaction of N-acetylchitopentasaccharide. The anomeric forms of the products from N-acetylchitooligosaccharides were analyzed to be beta anomer by the high pressure liquid chromatography (HPLC) method. The data for both beta-anomer formation and allosamidin inhibition suggest that red sea bream chitinase belongs to family 18 of glycosyl hydrolases. This suggestion is also supported by the results for the N-terminal amino acid sequence.  相似文献   

10.
Hydrolytic mechanisms of family 18 chitinases from rice (Oryza sativa L.) and Bacillus circulans WL-12 were comparatively studied by a combination of HPLC analysis of the reaction products and theoretical calculation of reaction time-courses. All of the enzymes tested produced beta-anomers from chitin hexasaccharide [(GlcNAc)(6)], indicating that they catalyze the hydrolysis through a retaining mechanism. The rice chitinases hydrolyzed predominantly the fourth and fifth glycosidic linkages from the nonreducing end of (GlcNAc)(6), whereas B. circulans chitinase A1 hydrolyzed the second linkage from the nonreducing end. In addition, the Bacillus enzyme efficiently catalyzed transglycosylation, producing significant amounts of chitin oligomers larger than the initial substrate, but the rice chitinases did not. The time-courses of (GlcNAc)(6) degradation obtained by HPLC were analyzed by theoretical calculation, and the subsite structures of the rice chitinases were identified to be (-4)(-3)(-2)(-1)(+1)(+2). From the HPLC profile of the reaction products previously reported [Terwisscha van Scheltinga et al. (1995) Biochemistry 34, 15619-15623], family 18 chitinase from rubber tree (Hevea brasiliensis) was estimated to have the same type of subsite structure. Theoretical analysis of the reaction time-course for the Bacillus enzyme revealed that the enzyme has (-2)(-1) (+1)(+2)(+3)(+4)-type subsite structure, which is identical to that of fungal chitinase from Coccidioides immitis [Fukamizo et al. (2001) Biochemistry 40, 2448-2454]. The Bacillus enzyme also resembled the fungal chitinase in its transglycosylation activity. Minor structural differences between plant and microbial enzymes appear to result in such functional variations, even though all of these chitinases are classified into the identical family of glycosyl hydrolases.  相似文献   

11.
Chitinases (EC 3.2.1.14), as one kind of glycosyl hydrolase, hydrolyze the β‐(1,4) linkages of chitin. According to the sequence similarity, chitinases can be divided into glycoside hydrolase family 18 and family 19. Here, a chitinase from Nosema bombycis (NbchiA) was cloned and purified by metal affinity chromatography and molecular exclusion chromatography. Sequence analysis indicated that NbchiA belongs to glycoside hydrolase family 19 class IV chitinase. The optimal pH and temperature of NbchiA are 7.0 and 40 °C, respectively. This purified chitinase showed high activity toward soluble substrates such as ethylene glycol chitin and soluble chitosan. The degradation of chitin oligosaccharides (GlcNAc)2–5 detected by high‐performance liquid chromatography showed that NbchiA hydrolyzed mainly the second glycosidic linkage from the reducing end of (GlcNAc)3‐5. On the basis of structure‐based multiple‐sequence alignment, Glu51 and Glu60 are believed to be the key catalytic residues. The site‐directed mutation analysis revealed that the enzymatic activity was decreased upon mutation of Glu60, whereas mutation of Glu51 totally abolished the enzymatic activity. This is the first report of a GH19 chitinase in fungi and in Microsporidia.  相似文献   

12.
Autographa californica multiple nucleopolyhedrovirus (AcMNPV) chitinase is involved in the final liquefaction of infected host larvae. We purified the chitinase rapidly to homogeneity from Sf-9 cells infected with AcMNPV by a simple procedure using a pepstatin-aminohexyl-Sepharose column. In past studies, a recombinant AcMNPV chitinase was found to exhibit both exo- and endo-chitinase activities by analysis using artificial substrates with a fluorescent probe. In this study, however, we obtained more accurate information on the mode of action of the chitinase by HPLC analysis of the enzymatic products using natural oligosaccharide and polysaccharide substrates. The AcMNPV chitinase hydrolyzed the second β-1,4 glycosidic linkage from the non-reducing end of the chitin oligosaccharide substrates [(GlcNAc)(n), n=4, 5, and 6], producing the β-anomer of (GlcNAc)?. The mode of action was similar to that of Serratia marcescens chitinase A (SmChiA), the amino acid sequence of which is 60.5% homologous to that of the AcMNPV enzyme. The enzyme also hydrolyzed solid β-chitin, producing only (GlcNAc)?. The AcMNPV chitinase processively hydrolyzes solid β-chitin in a manner similar to SmChiA. The processive mechanism of the enzyme appears to be advantageous in liquefaction of infected host larvae.  相似文献   

13.
An alkalophilic, environmental micro-organism, Bacillus sp. BG-11, has been isolated and characterized. It produced 76 U ml-1 of chitinase in liquid batch fermentation after 72 h of incubation at 50 degrees C using chitin-enriched medium. The molecular weight of purified chitinase was estimated to be 41 kDa by SDS-PAGE. The pH and temperature optima of chitinase immobilized on chitosan and calcium alginate were 8.5 and 50 degrees C, respectively, which were same as that of free enzyme. The pH and thermostability of immobilized chitinase were enhanced significantly. The chitinase immobilized on chitosan was stable between pH 5.0 and 10.0, and the half-life of chitosan-immobilized enzyme at 70, 80 and 90 degrees C was 90, 70 and 60 min, respectively. The end-products formed during the enzyme-substrate reaction were identified by 13C-NMR, and N-acetyl-D-glucosamine was found to be the major end-product. GlcNAc (GlcNAc)2 and (GlcNAc)3 inhibited the chitinase activity by 32, 25 and 18%, respectively, at a concentration of 10 mmol l-1. The shelf-life of chitinase (retained 100% activity) at 4 degrees C was 8 weeks in the presence of either sodium azide (100 microgram ml-1), sodium metabisulphite (0.1% w/v) or KCl (15% w/v). The enzyme was resistant to the action of proteases and allosamidin.  相似文献   

14.
Rhea lysozyme was analyzed for its enzymatic properties both lytic and oligomer activities to reveal the structural and functional relationships of goose type lysozyme. Rhea lysozyme had the highest lytic activity at pH 6, followed by ostrich and goose at pH 5.5-6, whereas the optimum of cassowary was at pH 5. pH profile was correlated to the net charge of each molecule surface. On the other hand, the pH optimum for oligomer substrate was found to be pH 4, indicating the mechanism of rhea catalysis as a general acid. The time-course of the reaction was studied using beta-1,4-linked oligosaccharide of N-acetylglucosamine (GlcNAc) with a polymerization degree of n ((GlcNAc)n) (n=4, 5, and 6) as the substrate. This enzyme hydrolyzed (GlcNAc)6 in an endo-splitting manner, which produced (GlcNAc)3+(GlcNAc)3 predominating over that to (GlcNAc)2+ (GlcNAc)4. This indicates that the lysozyme hydrolyzed preferentially the third glycosidic linkage from the nonreducing end. Theoretical analysis has shown the highest rate constant value at 1.5 s-1 with (GlcNAc)6. This confirmed six substrate binding subsites as goose lysozyme (Honda, Y., and Fukamizo, T., Biochim. Biophys. Acta, 1388, 53-65 (1998)). The different binding free energy values for subsites B, C, F, and G from goose lysozyme might responsible for the amino acid substitutions, Asn122Ser and Phe123Met, located at the subsite B.  相似文献   

15.
Measurement of chitinase activity in extracts from stomach, intestine, and serum of Nile tilapia with the artificial substrates 4-methylumbelliferil beta-D-N,N'-diacetylchitobioside and 4-methylumbelliferil beta-D-N,N'N"-triacetylchitotrioside (4MU[GlcNAc](2,3)) showed that an endochitinase was involved in the liberation of the fluorophore 4-methylumbelliferone (MU). Enzymes were isolated from tilapia serum by a combination of gel filtration, ion exchange, and reverse-phase chromatography. The molecular mass of the enzyme was estimated to be 75 kDa by SDS-PAGE, suggesting that the enzyme occurs as a monomer. The partially purified enzyme showed maximal activity at pH 7.0 when assayed with 4MU[GlcNAc](2) and lost its activity below pH 5.0 and above pH 8.0. The optimal pH of the purified enzyme toward the substrate 4MU[GlcNAc](3) was pH 9.0 and activity was lost below pH 8.0 and above pH 9.0. Our study has revealed the presence of a chitinolytic enzyme in the gastrointestinal tract and serum that may play a role in digestion and/or defense.  相似文献   

16.
A chitinase was purified from the stomach of a fish, the silver croaker Pennahia argentatus, by ammonium sulfate fractionation and column chromatography using Chitopearl Basic BL-03, CM-Toyopearl 650S, and Butyl-Toyopearl 650S. The molecular mass and isoelectric point were estimated at 42 kDa and 6.7, respectively. The N-terminal amino acid sequence showed a high level of homology with family 18 chitinases. The optimum pH of silver croaker chitinase toward p-nitrophenyl N-acetylchitobioside (pNp-(GlcNAc)2) and colloidal chitin were observed to be pH 2.5 and 4.0, respectively, while chitinase activity increased about 1.5- to 3-fold with the presence of NaCl. N-Acetylchitooligosaccharide ((GlcNAc)n, n = 2–6) hydrolysis products and their anomer formation ratios were analyzed by HPLC using a TSK-GEL Amide-80 column. Since the silver croaker chitinase hydrolyzed (GlcNAc)4–6 and produced (GlcNAc)2–4, it was judged to be an endo-type chitinase. Meanwhile, an increase in β-anomers was recognized in the hydrolysis products, the same as with family 18 chitinases. This enzyme hydrolyzed (GlcNAc)5 to produce (GlcNAc)2 (79.2%) and (GlcNAc)3 (20.8%). Chitinase activity towards various substrates in the order pNp-(GlcNAc)n (n = 2–4) was pNp-(GlcNAc)2 >> pNp-(GlcNAc)4 > pNp-(GlcNAc)3. From these results, silver croaker chitinase was judged to be an enzyme that preferentially hydrolyzes the 2nd glycosidic link from the non-reducing end of (GlcNAc)n. The chitinase also showed wide substrate specificity for degrading α-chitin of shrimp and crab shell and β-chitin of squid pen. This coincides well with the feeding habit of the silver croaker, which feeds mainly on these animals.  相似文献   

17.
Maize ChitA chitinase is composed of a small, hevein‐like domain attached to a carboxy‐terminal chitinase domain. During fungal ear rot, the hevein‐like domain is cleaved by secreted fungal proteases to produce truncated forms of ChitA. Here, we report a structural and biochemical characterization of truncated ChitA (ChitA ΔN), which lacks the hevein‐like domain. ChitA ΔN and a mutant form (ChitA ΔN‐EQ) were expressed and purified; enzyme assays showed that ChitA ΔN activity was comparable to the full‐length enzyme. Mutation of Glu62 to Gln (ChitA ΔN‐EQ) abolished chitinase activity without disrupting substrate binding, demonstrating that Glu62 is directly involved in catalysis. A crystal structure of ChitA ΔN‐EQ provided strong support for key roles for Glu62, Arg177, and Glu165 in hydrolysis, and for Ser103 and Tyr106 in substrate binding. These findings demonstrate that the hevein‐like domain is not needed for enzyme activity. Moreover, comparison of the crystal structure of this plant class IV chitinase with structures from larger class I and II enzymes suggest that class IV chitinases have evolved to accommodate shorter substrates.  相似文献   

18.
A chitinase from the hyperthermophilic archaeon Pyrococcus furiosus degrades chitin to produce diacetylchitobiose [(GlcNAc)(2)] as the end product. To further investigate the degradation mechanism of (GlcNAc)(2) in Pyrococcus spp., we cloned the gene of PH0499 from Pyrococcus horikoshii, which encodes a protein homologous to the diacetylchitobiose deacetylase of Thermococcus kodakaraensis. The deacetylase (Ph-Dac) was overexpressed as inclusion bodies in Escherichia coli Rosetta (DE3) pLys. The insoluble inclusion body was solubilized and reactivated through a refolding procedure. After several purification steps, 40 mg of soluble, thermostable (up to 80°C) Ph-Dac was obtained from 1L of culture. The apparent molecular mass of the refolded Ph-Dac was 180 kDa, indicating Ph-Dac to be a homohexamer. The refolded Ph-Dac also exhibited deacetylase activity toward (GlcNAc)(2), and the deacetylation site was revealed to be specific to the nonreducing end residue of (GlcNAc)(2). These expression and purification systems are useful for further characterization of Ph-Dac.  相似文献   

19.
A new chitinase (1,4-beta-D-N-acetyl-glucosaminidase, EC 3.2.1.14) was detected and purified to homogeneity in its native form from the chitinolytic enzyme system of the extremely thermophilic archaeon Thermococcus chitonophagus. This is the first nonrecombinant chitinase purified and characterized from archaea and also constitutes the first case of a membrane-associated chitinase isolated from archaea. The enzyme is a monomer with an apparent molecular weight of 70 kDa [therefore named chitinase 70 (Chi70)] and pI of 5.9; it is hydrophobic and appears to be associated with the outer side of the cell membrane. Chi70 is optimally active at 70 degrees C and pH 7.0 and exhibits remarkable thermostability, maintaining 50% activity even after 1 h at 120 degrees C, and therefore the enzyme is the most thermostable chitinase so far isolated. The enzyme was not inhibited by allosamidin, the natural inhibitor of chitinolytic activity, and was also resistant to denaturation by urea and SDS. On the other hand, guanidine hydrochloride significantly reduced enzymatic activity, indicating that, apart from the hydrophobic interactions, ion pairs located on the surface of the protein could be playing an important role in maintaining the protein's fold and enzyme activity. Chi70 showed broad substrate specificity for several chitinous substrates and derivatives. The lowest K(m) and highest K(cat) values were found for pNP(NAG)(2) as substrate and were determined to be 0.14 mM and 23 min(-1), respectively. The hydrolysis pattern was similar for oligomers and polymers, with N, N'-diacetylchitobiose [(NAG)(2)] being the final, major hydrolysis product. Chi70 was classified as an endochitinase due to its ability to release chitobiose from colloidal chitin. Additionally, the enzyme presented considerable cellulolytic activity. Analysis of the NH(2)-terminal amino acid sequence showed no detectable homology with other known sequences, suggesting that Chi70 is a new protein.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号