首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
R. -A. Walk  B. Hock 《Planta》1977,134(3):277-285
The development of glyoxysomal malate dehydrogenase (gMDH, EC 1.1.1.37) during early germination of watermelon seedlings (Citrullus vulgaris Schrad.) was determined in the cotyledons by means of radial immunodiffusion. The active isoenzyme was found to be absent in dry seeds. By density labelling with deuterium oxide and incorporation of [14C] amino acids it was shown that the marked increase of gMDH activity in the cotyledons during the first 4 days of germination was due to de novo synthesis of the isoenzyme. The effects of protein synthesis inhibitors (cycloheximide and chloramphenicol) on the synthesis of gMDH indicated that the glyoxysomal isoenzyme was synthesized on cytoplasmic ribosomes. Possible mechanisms by which the glyoxysomal malate dehydrogenase isoenzyme reaches its final location in the cell are discussed.Abbreviations mMDH mitochondrial malate dehydrogenase - gMDH glyoxysomal malate dehydrogenase - D2O deuterium oxide - EDTA ethylenediaminetetraacetic acid, disodium salt  相似文献   

2.
C. Gietl  B. Hock 《Planta》1986,167(1):87-93
A heterologous in-vitro system is described for the import of the precursor to glyoxysomal malate dehydrogenase from watermelon (Citrullus vulgaris Schrad., cv. Kleckey's Sweet No. 6) cotyledons into glyoxysomes from castor-bean (Ricinus communis L.) endosperm. The 41-kDa precursor is posttranslationally sequestered and correctly processed to the mature 33-kDa subunit by a crude glyoxysomal fraction or by glyoxysomes purified on a sucrose gradient. The import and the cleavage of the extrasequence is not inhibited by metal chelators such as 1,10-phenanthroline and ethylenediaminetetraacetic acid. Uncouplers (carbonylcyanide m-chlorophenylhydrazone), ionophores (valinomycin), or inhibitors of oxidative phosphorylation (oligomycin) and ATP-ADP translocation (carboxyatractyloside) do not interfere, thus indicating the independence of the process of import by the organelle from the energization of the glyoxysomal membrane.Abbreviations CCCP carbonylcyanide m-chlorophenylhydrazone - EDTA ethylenediaminetetraacctic acid - gMDH glyoxysomal malate dehydrogenase - PMSF phenylmethylsulfonyl fluoride  相似文献   

3.
R. -A. Walk  B. Hock 《Planta》1977,136(3):211-220
Molecular properties of the glyoxysomal and mitochondrial isoenzyme of malate dehydrogenase (EC 1.1.1.37; L-malate: NAD+ oxidoreductase) from watermelon cotyledons (Citrullus vulgaris Schrad.) were investigated, using completely purified enzyme preparations. The apparent molecular weights of the glyoxysomal and mitochondrial isoenzymes were found to be 67,000 and 74,000 respectively. Aggregation at high enzyme concentrations was observed with the glyoxysomal but not with the mitochondrial isoenzyme. Using sodium dodecyl sulfate electrophoresis each isoenzyme was found to be composed of two polypeptide chains of identical size (33,500 and 37,000, respectively). The isoenzymes differed in their isoelectric points (gMDH: 8,92, mMDH: 5.39), rate of heat inactivation (gMDH: 1/2 at 40°C=3.0 min; mMDH: stable at 40°C; 1/2 at 60°C=4.5 min), adsorption to dextran gels at low ionic strenght, stability against alkaline conditions and their pH optima for oxaloacetate reduction (gMDH: pH 6.6, mMDH: pH 7.5). Very similar pH optima, however, were observed for L-malate oxidation (pH 9.3–9.5). The results indicate that the glyoxysomal and mitochondrial MDH of watermelon cotyledons are distinct proteins of different structural composition.Abbreviations EDTA ethylene diamine tetraacetic acid - gMDH and mMDH glyoxysomal and mitochondrial malate dehydrogenase, respectively  相似文献   

4.
Sautter C  Hock B 《Plant physiology》1982,70(4):1162-1168
Monospecific antibodies to glyoxysomal, mitochondrial, and cytosolic I malate dehydrogenase were used for the fluorescence immunohistochemical localization of these isoenzymes in dark-grown watermelon (Citrullus vulgaris Schrad.) cotyledons. It was demonstrated that, with cell organelles isolated by sucrose density gradient centrifugation, antibodies to glyoxysomal malate dehydrogenase were specific markers for glyoxysomes, and similarly, antibodies to mitochondrial malate dehydrogenase were markers for mitochondria. The time course of the glyoxysomal malate dehydrogenase appearance and decline was not synchronous for the individual tissues and differed completely from that of the mitochondria. The cytosolic malate dehydrogenase I was confined to restricted regions of the lower epidermis. The activity which was definitively localized outside the cell organelles decreased during the first days of germination.  相似文献   

5.
Gietl C  Hock B 《Plant physiology》1982,70(2):483-487
Biosynthesis of malate dehydrogenase isoenzymes was studied in cotyledons of watermelons (Citrullus vulgaris Schrad., var. Stone Mountain). The glyoxysomal and mitochondrial isoenzymes are synthesized as higher molecular weight precursors which can be immunoprecipitated by mono-specific antibodies from the products of in vitro translation in reticulocyte lysates programed with cotyledonary mRNA and with the same size from enzyme extracts of pulse-labeled cotyledons. During translocation from the cytosol into the organelles, processing takes place. An 8 kilodalton extra sequence is cleaved from the glyoxysomal precursor and a 3.3 kilodalton extra sequence from the mitochondrial precursor producing the native subunits of 33 and 38 kilodaltons, respectively. The data support a post-translational translocation of the organelle-destined malate dehydrogenase isoenzymes. The in vitro translation of the cytosolic malate dehydrogenase I yields a product which has the same molecular weight as the subunit of the native isoenzyme (39.5 kilodaltons).  相似文献   

6.
Glyoxysomal citrate synthase (gCS) was purified from crude extracts of watermelon (Citrullus vulgaris Schrad.) cotyledons, yielding a homogenous protein with a subunit MW of 48 kDa. The enzyme was selectively inhibited by 5,5-dithiobis-(2-nitrobenzoic acid), allowing quantification in the presence of the mitochondrial isoenzyme (mCS). Differences were also observed with respect to inhibition by ATP (k i=2.6 mmol · l-1 for gCS, k i=0.33 mmol · l-1 for mCS). The antibodies prepared against gCS did not cross-react with mCS. The immunocytochemical localization of gCS by the indirect protein A-gold procedure was restricted to the glyoxysomal membrane or the peripheral matrix of glyoxysomes. Other compartments, e.g. the endoplasmic reticulum, were not labeled. Xenopus oocytes were used for the translation of watermelon polyadenylated RNA (poly(A)+RNA). A translation product with a MW of 51 kDa was immunoprecipitated by the anti-gCS antibodies. It was absent in controls without poly(A)+RNA or with preimmune serum. A similar translation product was also immunoprecipitated after cell-free synthesis of watermelon poly(A)+RNA in a reticulocyte system, in contrast to the in-vivo labeled gCS (48 kDa). It was concluded that gCS is synthesized as a higher-molecular-weight precursor.Abbreviations DTNB 5,5-dithiobis-(2-nitrobenzoic acid) - gCS glyoxysomal citrate synthase - gMDH glyoxysomal malate dehydrogenase - k i inhibitor constant - mCS mitochondrial citrate synthase - OAA oxaloacetate - poly(A)+RNA polyadenylated RNA - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

7.
Christine Gietl  Bertold Hock 《Planta》1984,162(3):261-267
Glyoxysomal malate dehydrogenase (gMDH; EC 1.1.1.37) is synthesized by a reticulocyte system in the presence of watermelon mRNA (Citrullus vulgaris Schrad., var. Kleckey's Sweet No 6) as a cytosolic, higher-molecular-weight precursor (41 kdalton). We now show that this precursor is posttranslationally sequestered by a crude glyoxysomal fraction or by glyoxysomes purified on a PercollR gradient to a proteolytically protected form (60 min proteinase-K treatment at 4° C) with the size of the gMDH subunit (33 kdalton). In the presence of buffer instead of organelles a complete degradation of the precursor is obtained. The in-vitro organelle import, however, depends upon the presence of proteases such as proteinase K or trypsin. After short proteolytic treatments (e.g. 10 min proteinase K at 4° C), the correct processing of the MDH precursor is obtained even in the absence of organelles. This product, however, is not sequestered in vitro to a protease-resistant form by glyoxysomes. The possibility is discussed that under in-vivo conditions pre-gMDH is processed on the outside of the glyoxysomal membrane and transferred immediately after processing into the organelle presumably as a gMDH monomer followed by refolding and dimerization.Abbreviations gMDH glyoxysomal malate dehydrogenase - PMSF phenylmethylsulfonyl fluoride - SDS sodium dodecyl sulfate - TPCK-trypsin trypsin treated with l-1-tosylamide-2-phenylethyl chloromethyl ketone Dedicated to Professor Dr. Hubert Ziegler on the occasion of his 60th birthday  相似文献   

8.
Summary Plasma membranes were isolated and purified from 14-day-old maize roots (Zea mays L.) by two-phase partitioning at a 6.5% polymer concentration, and compared to isolated mitochondria, microsomes, and soluble fraction. Marker enzyme analysis demonstrated that the plasma membranes were devoid of cytoplasmic, mitochondrial, tonoplast, and endoplasmic-reticulum contaminations. Isolated plasma membranes exhibited malate dehydrogenase activity, catalyzing NADH-dependent reduction of oxaloacetate as well as NAD+-dependent malate oxidation. Malate dehydrogenase activity was resistant to osmotic shock, freeze-thaw treatment, and salt washing and stimulated by solubilization with Triton X-100, indicating that the enzyme is tightly bound to the plasma membrane. Malate dehydrogenase activity was highly specific to NAD+ and NADH. The enzyme exhibited a high degree of latency in both right-side-out (80%) and inside-out (70%) vesicle preparations. Kinetic and regulatory properties with ATP and Pi, as well as pH dependence of plasma-membrane-bound malate dehydrogenase were different from mitochondrial and soluble malate dehydrogenases. Starch gel electrophoresis revealed a characteristic isozyme form present in the plasma membrane isolate, but not present in the soluble, mitochondrial, and microsomal fractions. The results presented show that purified plasma membranes isolated from maize roots contain a tightly associated malate dehydrogenase, having properties different from mitochondrial and soluble malate dehydrogenases.Abbreviations FCR ferricyanide reductase - MDH malate dehydrogenase  相似文献   

9.
Glyoxysomes isolated from castor-bean (Ricinus communis L.) endosperm were treated with water, 0.2 M KCl, 1 M KCl, or 0.1 M Na2CO3. Glyoxysomal sacs, i.e. membranes which retained some visible matrix, resulted from the treatments with water and KCl. Glyoxysomal ghosts, i.e. intact membranes free of matrix, were only obtained following treatment with carbonate. The ghosts were free of activities of matrix enzymes, particularly palmitoyl-CoA oxidation, isocitrate dehydrogenase (EC 1.1.1.42) and isocitrate lyase (EC 4.1.3.1), and contained only negligible amounts of malate synthase (EC 4.1.3.2), malate dehydrogenase (EC 1.1.1.37), -hydroxyacyl-CoA dehydrogenase (EC 1.1.1.98) and catalase (EC 1.11.1.6). Distribution and appearance of membrane-associated particles in the protoplasmic and ectoplasmic faces of freeze-fracture replicas of the glyoxysomal membrane were the same in intact tissue, isolated glyoxysomes, and ghosts. Membranes purified by treatment with 0.2 M KCl or 0.1 M carbonate catalyzed the reduction of cytochrome-c when NADH or NADPH was provided as the electron donor. -Oxidation, localized in the matrix, could be linked to reduction of cytochrome-c or ferricyanide when purified membranes were combined with the matrix supernatant. Cytochrome-c could also be reduced by coupling enzyme activities in the matrix, NADP-isocitrate dehydrogenase or malate dehydrogenase, with those of the membrane. These results indicate that electrons from -oxidation, malate oxidation or isocitrate oxidation can be transferred directly to the redox components of the glyoxysomal membrane. We, therefore, conclude that any NADH and NADPH formed by enzymes in the matrix can be recycled continuously within the organelle.Abbreviations EF ectoplasmic face - ER endoplasmic reticulum - PF protoplasmic face  相似文献   

10.
Mitochondrial and glyoxysomal malate dehydrogenase (mMDH; gMDH; L-malate: NAD+ oxidoreductase; EC 1.1.1.37) of watermelon (Citrullus vulgaris) cotyledons are synthesized with N-terminal cleavable presequences which are shown to specify sorting of the two proteins. The two presequences differ in length (27 or 37 amino acids) and primary structure. Precursor proteins of the two isoenzymes with site-directed mutations in their presequences and hybrid precursor proteins with reciprocally exchanged presequences were analyzed for proper import using two approaches, namely in vitro using isolated watermelon organelles or in vivo after synthesis in the heterologous host, Hansenula polymorpha. The mitochondrial presequence is essential and sufficient to target the mature glyoxysomal isoenzyme into mitochondria (Gietl et al., 1994). As to the function of the mitochondrial presequence a substitution of ?3R (considered important for one step precursor cleavage in yeast and mammals) with ?3L permitted import into mitochondria but cleavage of the transit peptide and conversion into active mature enzyme was impeded. Substitution of ?13R?12S (in a sequence reminiscent of the octapeptide motif serving as a substrate for the mammalian and yeast intermediate peptidase) into ?13L12F permitted mitochondrial import and processing like the wild type transit peptide. Purified rat mitochondrial processing protease, which can effect single step cleavage of mitochondrial protein precursors, cleaves in vitro translated watermelon mMDH precursor into its mature form. The glyoxysomal presequence is essential and sufficient to target the mature mitochondrial isoenzyme into peroxisomes of Hansenula polymorpha, but these peroxisomes lack a processing enzyme to cleave the presequence (Gietl et al., 1994). We here show that isolated watermelon organelles also import the hybrid proteins in vitro and process the glyoxysomal presequence. Site directed mutations within the conserved RI-X5-HL-motif impede efficiency of import and cleavage by watermelon organelles.  相似文献   

11.
Malate dehydrogenase (MDH) catalyzes the readily reversible reaction of oxaloacetate ; malate using either NADH or NADPH as a reductant. In plants, the enzyme is important in providing malate for C 4 metabolism, pH balance, stomatal and pulvinal movement, respiration, β-oxidation of fatty acids, and legume root nodule functioning. Due to its diverse roles the enzyme occurs as numerous isozymes in various organelles. While antibodies have been produced and cDNAs characterized for plant mitochondrial, glyoxysomal, and chloroplast forms of MDH, little is known of other forms. Here we report the cloning and characterization of cDNAs encoding five different forms of alfalfa MDH, including a plant cytosolic MDH (cMDH) and a unique novel nodule-enhanced MDH (neMDH). Phylogenetic analyses show that neMDH is related to mitochondrial and glyoxysomal MDHs, but diverge from these forms early in land plant evolution. Four of the five forms could effectively complement an E. coli Mdh mutant. RNA and protein blots show that neMDH is most highly expressed in effective root nodules. Immunoprecipitation experiments show that antibodies produced to cMDH and neMDH are immunologically distinct and that the neMDH form comprises the major form of total MDH activity and protein in root nodules. Kinetic analysis showed that neMDH has a turnover rate and specificity constant that can account for the extraordinarily high synthesis of malate in nodules.   相似文献   

12.
The interspecies homology of dace supernatant (A2, AB, B2) and mitochondrial (C2) malate dehydrogenase isozymes has been established through cell fractionation and tissue distribution studies. Isolated supernatant malate dehydrogenase (s-MDH) isozymes show significant differences in Michaelis constants for oxaloacetate and in pH optima. Shifts in s-MDH isozyme pH optima with temperature may result in immediate compensation for increase in ectotherm body pH with decrease in temperature, but duplicate s-MDH isozymes are probably maintained through selection for tissue specific regulation of metabolism.This research was supported in part by NSF Grant SM176-83974 and a grant from the Blakeslee Fund.  相似文献   

13.
Escherichia coli malate dehydrogenase has been isolated in homogeneous form by a procedure employing chromatography on DEAE-cellulose, 5'-AMP-Sepharose, and Sephacryl-200. It is composed of two identical polypeptide chains each of Mr = 32 500. Like porcine mitochondrial malate dehydrogenase, it is devoid of tryptophan, but otherwise it is not particularly more similar in composition to one of the eukaryotic isozymes than to the other. However, amino-terminal sequence analysis of the first 36 residues shows remarkable similarity of the bacterial and mitochondrial enzymes (69% identical residues) in contrast to the cytoplasmic form (27%). The two porcine heart enzymes are identical in 24t% of the positions compared. These results clearly establish that all three forms of malate dehydrogenase have evolved from a common precursor and that the prokaryotic and mitochondrial forms have retained sequences that are much closer to the ancestral one than the cytoplasmic enzyme. These findings appear to further substantiate the endosymbiotic hypothesis for the origin of the mitochondrion.  相似文献   

14.
P. Rustin  C. Queiroz-Claret 《Planta》1985,164(3):415-422
Kalanchoe blossfeldiana plants grown under long days (16 h light) exhibit a C3-type photosynthetic metabolism. Switching to short days (9 h light) leads to a gradual development of Crassulacean acid metabolism (CAM). Under the latter conditions, dark CO2 fixation produces large amounts of malate. During the first hours of the day, malate is rapidly decarboxylated into pyruvate through the action of a cytosolic NADP+-or a mitochondrial NAD+-dependent malic enzyme. Mitochondria were isolated from leaves of plants grown under long days or after treatment by an increasing number of short days. Tricarboxylic acid cycle intermediates as well as exogenous NADH and NADPH were readily oxidized by mitochondria isolated from the two types of plants. Glycine, known to be oxidized by C3-plant mitochondria, was still oxidized after CAM establishment. The experiments showed a marked parallelism in the increase of CAM level and the increase in substrate-oxidation capacity of the isolated mitochondria, particularly the capacity to oxidize malate in the presence of cyanide. These simultaneous variations in CAM level and in mitochondrial properties indicate that the mitochondrial NAD+-malic enzyme could account at least for a part of the oxidation of malate. The studies of whole-leaf respiration establish that mitochondria are implicated in malate degradation in vivo. Moreover, an increase in cyanide resistance of the leaf respiration has been observed during the first daylight hours, when malate was oxidized to pyruvate by cytosolic and mitochondrial malic enzymes.Abbreviations CAM Crassulacean acid metabolism - MDH malate dehydrogenase - ME malic enzyme  相似文献   

15.
Thiolase is part of the fatty acid oxidation machinery which in plants is located within glyoxysomes or peroxisomes. In cucumber cotyledons, proteolytic modification of thiolase takes place during the transfer of the cytosolic precursor into glyoxysomes prior to the intraorganellar assembly of the mature enzyme. This was shown by size comparison of the in vitro synthesized precursor and the 45 kDa subunit of the homodimeric glyoxysomal form. We isolated a full-length cDNA clone encoding the 48 539 Da precursor of thiolase. This plant protein displayed 40% and 47% identity with the precursor of fungal peroxisomal thiolase and human peroxisomal thiolase, respectively. Compared to bacterial thiolases, the precursor of the plant enzyme was distinguished by an N-terminal extension of 34 amino acid residues. This putative targeting sequence of cucumber thiolase shows similarities with the cleavable presequences of rat peroxisomal thiolase and plant peroxisomal malate dehydrogenase.  相似文献   

16.
U. Winkler  H. Stabenau 《Planta》1995,195(3):403-407
Peroxisomes were isolated by gradient centrifugation from two different diatoms: Nitzschia laevis (subgroup of Pennales) and Thalassiosira fluviatilis (subgroup of Centrales). In neither of these organelles could catalase or any H2O2-forming oxidase be demonstrated. The glycolate-oxidizing enzyme present in the peroxisomes is a dehydrogenase capable of oxidizing l-lactate as well. The peroxisomes also contain the glyoxysomal markers isocitrate lyase and malate synthase. However, enzymes of the fatty-acid -oxidation pathway are located exclusively in the mitochondria. The mitochondria additionally possess glutamate-glyoxylate aminotransferase and a glycolate dehydrogenase which differs from the peroxisomal glycolate dehydrogenase since it preferably utilizes d-lactate as an alternative substrate. Hydroxypyruvate reductase and glyoxylate carboligase were not found in the cells of either diatom. By culturing Nitzschia laevis it could be demonstrated that decreasing the CO2 concentration in the aeration mixture from 2% to 0.03% and increasing the irradiance from 40 to 250 mol quanta · m–2 · s–1 resulted in an increase of all peroxisomal enzyme activities. In addition, enzyme activities of the -oxidation pathway were increased. However, mitochondrial glycolate dehydrogenase and aminotransferase did not alter their activities under these conditions. Summarizing all results, it is postulated that there are two different pathways for the metabolism of glycolate in the diatoms.This work was supported by the Deutsche Forschungsgemeinschaft.  相似文献   

17.
R.-A. Walk  B. Hock 《Planta》1976,129(1):27-32
Summary Specific antibodies were prepared against the purified mitochondrial malate dehydrogenase (EC 1.1.1.37) from cotyledons of watermelon seedlings (Citrullus vulgaris Schrad.). The isoenzyme was assayed by means of quantitative radial immunodiffusion. Cotyledons of ungerminated seeds were found to contain mitochondrial MDH. During the first 4 days of germination the enzyme activity increased threefold finally contributing 16% to the total MDH activity extracted from cotyledon tissue. Isopycnic CsCl density centrifugation was used to investigate the mode of activity increase. After a four-day period of labelling with deuterium oxide and purification of the mitochondrial isoenzyme, a density shift of 0.021kgx1-1, accompanied by considerable band broadening of the enzyme profile was observed. These findings are evidence for the de novo synthesis of mitochondrial MDH and its relatively slow turnover in germinating seeds.Abbreviations mMDH mitochondrial malate dehydrogenase - D2O deuterium oxide  相似文献   

18.
We report herein the complete coding sequence of a Taenia solium cytosolic malate dehydrogenase (TscMDH). The cDNA fragment, identified from the T. solium genome project database, encodes a protein of 332 amino acid residues with an estimated molecular weight of 36517 Da. For recombinant expression, the full length coding sequence was cloned into pET23a. After successful expression and enzyme purification, isoelectrofocusing gel electrophoresis allowed to confirm the calculated pI value at 8.1, as deduced from the amino acid sequence. The recombinant protein (r-TscMDH) showed MDH activity of 409 U/mg in the reduction of oxaloacetate, with neither lactate dehydrogenase activity nor NADPH selectivity. Optimum pH for enzyme activity was 7.6 for oxaloacetate reduction and 9.6 for malate oxidation. Kcat values for oxaloacetate, malate, NAD, and NADH were 665, 47, 385, and 962 s−1, respectively. Additionally, a partial characterization of TsMDH gene structure after analysis of a 1.56 Kb genomic contig assembly is also reported.  相似文献   

19.
4,4-bis Dimethylaminodiphenylcarbinol (BDC-OH) has recently been reported to be a highly sensitive reagent for the quantitative determination of sulfhydryl residues in biological materials (1). In this communication the effectiveness of BDC-OH as a reagent for selective chemical modification of “active center” cysteine residues was investigated. The supernatant and mitochondrial forms of malate dehydrogenase were chosen for investigation by this reagent. Supernatant malate dehydrogenase which has never been found to contain an “active center” cysteine is unaffected by this reagent. Mitochondrial malate dehydrogenase (L malate: NAD+ oxidoreductase, EC 1.1.1.37) from porcine heart can be irreversibly inactivated by a 20 fold M excess of the reagent. Chemical modification of two essential sulfhydryl residues is prevented by the presence of the coenzyme, NAD+, suggesting that the site of interaction is located at or near the coenzyme binding site and hence at or near the enzymatic center of this enzyme.  相似文献   

20.
Gietl C 《Plant physiology》1992,100(2):557-559
Malate dehydrogenase isoenzymes catalyzing the oxidation of malate to oxaloacetate are highly active enzymes in mitochondria, in peroxisomes, in chloroplasts, and in the cytosol. Determination of the primary structure of the isoenzymes has disclosed that they are encoded in different nuclear genes. All three organelle-targeted malate dehydrogenases are synthesized with an amino terminal extension that is cleaved off in connection with the import of the enzyme precursor into the organelle. The sequence of the 27 amino acids of the mitochondrial transit peptide is unrelated to the 37-residue glyoxysomal transit peptide, which in turn is entirely different in sequence from the 57-residue chloroplastic transit peptide. With the exception of malate dehydrogenase and 3-ketoacyl thiolase, peroxisomal enzymes are synthesized without transit peptides and are frequently translocated into the organelle with a peroxisomal targeting signal consisting of a conserved tripeptide at the carboxy terminus of the protein. Based on the observation that this tripeptide (Ala-His-Leu) occurs in the transit peptides of glyoxysomal malate dehydrogenase and peroxisomal 3-ketoacyl thiolase, the possible significance of amino terminal transit peptides for peroxisome import is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号