首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 690 毫秒
1.
The influence of incubation temperature, and of acetic, lactic and citric acids on the minimum pH for the initiation of growth of six strains of Yersinia enterocolitica was determined. The strains included two of serotype O : 9, two of serotype O : 3, and one each of serotypes O : 8 and O : 5, 27. In a culture medium acidified with HC1 to pH values between 4.0 and 6.0 at intervals of approximately 0.1 unit the minimum pH at which growth was detected after incubation at 20°, 10°, 7° and 4°C for 21 d was in the ranges 4.18–4.36, 4.26–4.50, 4.36–4.83 and 4.42–4.80, respectively. The minimum pH for growth was also determined in media that contained 17, 33 and 50 mmol/1 acetic acid adjusted to pH values between 5.1 and 5.9 at intervals of approximately 0.2 unit, 24, 48 and 95 mmol/1 citric acid adjusted to pH values between 41 and 4.9 at intervals of approximately 0.2 unit, and 22, 44, and 111 mmol/1 lactic acid adjusted to pH values between 4.3 and 5.7 at intervals of approximately 0.4 or 0.5 unit. The effect of these concentrations of organic acids was, in most cases, to increase the minimum pH that allowed growth. The order of effectiveness of the organic acids in raising the minimum pH for growth was acetic > lactic > citric and the minimum inhibitory concentrations were greater at higher temperatures.  相似文献   

2.
Growth of two pathogenic and one environmental serotype of Yersinia enterocolitica under acidic conditions and at 4 and 25 degrees C was investigated. At both temperatures the maximum growth inhibitory pH depended on the acidulant used and was in the order acetic greater than lactic greater than citric greater than sulphuric. At the lower temperature the maximum growth inhibitory pH was 0.3-0.5 pH units higher than at 25 degrees C. No difference was observed between the behaviour of pathogenic and environmental serotypes in this respect. Measurement of growth at a number of sub-optimal temperatures and pH values showed that the variation of growth rate with temperature could be represented by a square root plot. The effect of different pH values could be incorporated into the model by replacing the regression coefficient b by its relationship with pH. Values of maximum growth inhibitory pH derived from the model were in good agreement with experimental values with the exception of acetic acid.  相似文献   

3.
A study was undertaken to determine the fate of Escherichia coli O157:H7 in ground, roasted beef as influenced by the combined effects of pH, acidulants, temperature, and time. There was essentially no change in the viable population of E. coli O157:H7 when beef salads (pH 5.40 to 6.07) containing up to 40% mayonnaise were incubated at 5 degrees C for up to 72 h. At 21 and 30 degrees C, significant (P < or = 0.05) increases in populations of the organism occurred in salads containing 16 to 32% mayonnaise (pH 5.94 to 5.55) between 10 and 24 h of incubation. Death was more rapid as the pH of acidified beef slurries incubated at 5 degrees C was decreased from 5.98 to 4.70. E. coli O157:H7 grew in control slurries (pH 5.98) and in slurries containing citric and lactic acids (pHs 5.00 and 5.40) incubated at 21 degrees C for 24 h; decreases occurred in slurries acidified to pHs 4.70, 5.00, and 5.40 with acetic acid or pH 4.70 with citric or lactic acid. At 30 degrees C, populations decreased in slurries acidified to pHs 4.70 and 5.00 with acetic acid. Citric and lactic acids failed to prevent significant increases in populations in slurries at pH 4.70 to 5.40 between 10 and 24 h of incubation. The order of effectiveness of acidulants in inhibiting growth was acetic acid > lactic acid > or = citric acid. The same order was observed for inactivation of E. coli O157:H7 in acidified (pH 5.00) beef slurry heated at 54 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The effect of various acidulants on the growth of Listeria monocytogenes   总被引:4,自引:3,他引:1  
The ability of four Listeria monocytogenes strains to initiate growth in brain heart infusion broth adjusted to various pH values with either acetic, lactic, citric or hydrochloric acid was investigated. Acetic acid was the most effective inhibitor tested, since in broth adjusted with this acid a higher minimum pH was required for growth of the various strains at both 4 and 30°C, as compared with broth adjusted with the other acidulants. The minimum pH value required for the initiation of growth of L. monocytogenes ranged from 5·0 to 5·7 at 4°C, and from 4·3 to 5·2 at 30°C, depending upon the acidulant used.  相似文献   

5.
The survival of Yersinia enterocolitica at sub-optimal temperatures (0–23°C) and growth inhibitory pH values, achieved using a range of acidulants, was investigated. At a given pH, survival was greater the lower the temperature. Sulphuric and citric acids had lower bactericidal activity than acetic and lactic acids and in nearly all cases where the four acids could be compared at the same pH the order of bactericidal activity was acetic > lactic > citric > sulphuric. Attempts to model this behaviour by a negative square root relationship gave good correlation coefficients for plots of the square root of death rate against temperature at different combinations of pH and acidulant but so too did several other functions of death rate. The high coefficient of variation for T 0 determined from square root plots prevented construction of a combined temperature/pH model similar to that already described for growth.  相似文献   

6.
Acetic and lactic acids and BioAdd, a commercial preparation of formic and propionic acid, were tested at a concentration of 0.1% (w/w) at 20, 30, 40 and 50 degrees C and in the presence of organic material for bactericidal activity against Salmonella serotype Kedougou. BioAdd was the most active of the solutions at all temperatures, followed by lactic acid and acetic acid. The presence of horse blood at all four temperatures, and milk and serum at 50 degrees C, did not greatly affect the antibacterial activity of the acids although yeast extract (50 degrees C) provided some protection for the salmonella. Acid activity was related to low pH values although the bactericidal activity of acetic acid with blood and milk was greater than the unadulterated acid even though the pH was 0.4 units higher.  相似文献   

7.
The efficacy of different organic acids in decreasing the heat resistance of Paenibacillus polymyxa spores was assessed. The relationship between concentration of the undissociated form of different organic acids and decrease in heat resistance was also investigated. The heat resistance of P. polymyxa spores was tested in distilled water at 85, 90 and 95 degrees C, at pH4 and in the presence of 50, 100 and 200 mmol l(-1) of the undissociated form of lactic, citric or acetic acid and sodium citrate or acetate. The undissociated form of organic acids was responsible for increasing the heat sensitivity of spores. The most effective acid was lactic acid. The D values of the spores decreased rapidly (between 74 and 43%) in the presence of 50 mmol l(-1) of the undissociated form of organic acid, and increasing concentrations of these forms affected the heat resistance of spores less than proportionally. The heat resistance of the spores in milk was approximately threefold lower than in distilled water. This work has shown that the undissociated fraction of organic acids increases, albeit non-linearly, the sensitivity of spores to heat, even in complex substrates such as milk. By knowing the amount of organic acids added to a given substrate, their dissociation constants and the final pH, it could be possible to estimate the concentration of undissociated forms and the corresponding increase in lethality of heat treatments. This would help the food industry to maximize the lethality achieved by heat processes and/or safely reduce the heat treatments already in use.  相似文献   

8.
In strictly anaerobic conditions in a culture medium adjusted to pH 5.2 with HCl and incubated at 30 degrees C, inocula containing less than 10 vegetative bacteria of Clostridium botulinum ZK3 (type A) multiplied to give greater than 10(8) bacteria per ml in 3 d. Growth from an inoculum of between 10 and 100 spores occurred after a delay of 10-20 weeks. Citric acid concentrations of 10-50 mmol/l at pH 5.2 inhibited growth from both vegetative bacteria and spore inocula, a concentration of 50 mmol/l increasing the number of vegetative bacteria or of spores required to produce growth by a factor of approximately 10(6). The citric acid also reduced the concentration of free Ca2+ in the medium. The inhibitory effect of citric acid on vegetative bacteria at pH 5.2 could be prevented by the addition of Ca2+ or Mg2+ and greatly reduced by Fe2+ and Mn2+. The addition of Ca2+, but not of the remaining divalent metal ions, restored the concentration of free Ca2+ in the medium to that in the citrate-free medium. The inhibitory effect of citric acid on growth from a spore inoculum was only partially prevented by Ca2+. Citric acid (50 mmol/l) did not inhibit growth of strain ZK3 at pH 6 despite the greater chelating activity of citrate at pH 6 than at pH 5.2. The effect of citric acid and Ca2+ at pH 5.2 on vegetative bacteria of strains VL1 (type A) and 2346 and B6 (proteolytic type B) was similar to that on strain ZK3.  相似文献   

9.
Minimum inhibitory concentrations (MIC) of undissociated lactic, acetic and formic acids were evaluated for 23 strains of enterobacteria and two of Listeria monocytogenes. The evaluation was performed aerobically and anaerobically in a liquid test system at pH intervals of between 4.2 and 5.4. Growth of the enterobacteria was inhibited at 2–11 mmol 1−1, 0.5–14 mmol 1−1 and 0.1–1.5 mmol 1−1 of undissociated lactic, acetic and formic acids, respectively. The MIC value was slightly lower with anaerobic conditions compared with aerobic conditions. The influence of protons on the inhibition was observed for acetic acid at the low pH values. Undissociated lactic acid was 2 to 5 times more efficient in inhibiting L. monocytogenes than enterobacteria. Acetic acid had a similar inhibitory action on L. monocytogenes compared with enterobacteria. Inorganic acid (HCl) inhibited most enterobacteria at pH 4.0; some strains, however, were able to initiate growth to pH 3.8. The results indicate that the values of undissociated acid which occur in a silage of pH 4.1–4.5 are about 10–100 times higher than required in order to protect the forage from the growth of enterobacteria and L. monocytogenes.  相似文献   

10.
The effect of pH reduction with acetic (pH 5.2), citric (pH 4.0), lactic (pH 4.7), malic (pH 4.0), mandelic (pH 5.0), or tartaric (pH 4.1) acid on growth and survival of Escherichia coli O157:H7 in tryptic soy broth with 0.6% yeast extract held at 25, 10, or 4 degrees C for 56 days was determined. Triplicate flasks were prepared for each acid treatment at each temperature. At 25 degrees C, populations increased 2 to 4 log10 CFU/ml in all treatments except that with mandelic acid, whereas no growth occurred at 10 or 4 degrees C in any treatments except the control. However, at all sampling times, higher (P < 0.05) populations were recovered from treatments held at 4 degrees C than from those held at 10 degrees C. At 10 degrees C, E. coli O157:H7 was inactivated at higher rates in citric, malic, and mandelic acid treatments than in the other treatments. At the pH values tested, the presence of the organic acids enhanced survival of the pathogen at 4 degrees C compared with the unacidified control. E. coli O157:H7 has the ability to survive in acidic conditions (pH, > or = 4.0) for up to 56 days, but survival is affected by type of acidulant and temperature.  相似文献   

11.
Growth of two pathogenic and one environmental serotype of Yersinia enterocolitica under acidic conditions and at 4 and 25°C was investigated. At both temperatures the maximum growth inhibitory pH depended on the acidulant used and was in the order acetic > lactic > citric > sulphuric. At the lower temperature the maximum growth inhibitory pH was 0.3-0.5 pH units higher than at 25°C. No difference was observed between the behaviour of pathogenic and environmental serotypes in this respect. Measurement of growth at a number of sub-optimal temperatures and pH values showed that the variation of growth rate with temperature could be represented by a square root plot. The effect of different pH values could be incorporated into the model by replacing the regression coefficient b by its relationship with pH. Values of maximum growth inhibitory pH derived from the model were in good agreement with experimental values with the exception of acetic acid.  相似文献   

12.
The effect of acetic and trans-aconitic acids on citric acid production by A. niger at different pH values was studied. The presence of acetic acid at pH 2 prevented spore germination, while it decreased the fungal growth and citric acid production at other pH values. In the presence of trans-aconitic acid the inhibition was less marked at lower than at higher pH values.  相似文献   

13.
【目的】分析乳杆菌代谢产物对化脓性链球菌的抑制作用。【方法】基于双层平板打孔法,通过测量抑菌圈大小来检测乳杆菌代谢产物对化脓性链球菌的抑菌作用;然后分别采用高效液相色谱法和4-氨酰安替比林法检测乳杆菌代谢产物中的有机酸和H2O2含量;最后,检测乳酸、乙酸和H2O2对化脓性链球菌的最小抑菌浓度(MIC)、最小杀菌浓度(MBC)。【结果】对化脓性链球菌的抑菌效果以植物乳杆菌KLDS1.0667最好,副干酪乳杆菌KLDS1.0342-1次之,瑞士乳杆菌KLDS1.0203抑菌效果最差;乳酸和乙酸产量KLDS1.0667>KLDS1.0342-1>KLDS1.0203;H2O2产量KLDS1.0203>KLDS1.0667>KLDS1.0342-1。在抑菌试验中,乳杆菌的发酵上清液经去除H2O2处理后抑菌圈直径都减小;将发酵上清液的p H调至7.0后均检测不到抑菌圈。结果表明,乳杆菌代谢产物中对化脓性链球菌起抑制作用的主要物质为有机酸和H2O2,其中乳酸是产生抑菌作用的最主要物质。乳酸、乙酸和H2O2对化脓性链球菌的最小抑菌浓度(MIC)分别为1.28、0.64和0.008 g/L,对化脓性链球菌的最小杀菌浓度(MBC)分别为5.12、2.56和0.032 g/L。【结论】乳杆菌可利用其代谢产物对化脓性链球菌产生抑制作用,主要抑菌物质为有机酸和H2O2。  相似文献   

14.
CHRISTINA A. CHERRINGTON, VIVIEN ALLEN AND M. HINTON. 1992. Acetic and lactic acids and BioAdd, a commercial preparation of formic and propionic acid, were tested at a concentration of 0.1% (w/w) at 20, 30, 40 and 50°C and in the presence of organic material for bactericidal activity against Salmonella serotype Kedougou. BioAdd was the most active of the solutions at all temperatures, followed by lactic acid and acetic acid. The presence of horse blood at all four temperatures, and milk and serum at 50°C, did not greatly affect the antibacterial activity of the acids although yeast extract (50°C) provided some protection for the salmonella. Acid activity was related to low pH values although the bactericidal activity of acetic acid with blood and milk was greater than the unadulterated acid even though the pH was 0.4 units higher.  相似文献   

15.
The antibacterial activity of p -aminobenzoic acid against Listeria monocytogenes, Salmonella enteritidis and Escherichia coli was compared with the activity of commonly used acidulants: formic, propionic, acetic, lactic and citric acids. Viable count evaluations and MIC determinations indicated that p -aminobenzoic acid caused greater inhibitory effects than the other organic acids. The activity of p -aminobenzoic acid on the growth of the test organisms at selected pH values indicated that p -aminobenzoic acid was more active at low pH than at high pH. Uptake studies showed that the uptake of p -aminobenzoic acid by E. coli was markedly decreased as the pH values increased. Electron micrographs of E. coli cells grown in the presence of p -aminobenzoic acid indicate that p -aminobenzoic acid caused marked damage to the cell envelope. It is suggested that p -aminobenzoic acid has at least two mechanisms of action: one mechanism in common with other organic acids and the other mechanism by interfering with the synthesis of the peptidoglycan layer by an action on the dihydrofolate reductase enzyme.  相似文献   

16.
Factors affecting Lactobacillus fermentation of shrimp waste for chitin and protein liquor production were determined. The objective of the fermentation is medium conditioning by Lactobacillus through production of proteases and lowering of the pH. The efficiency was tested by conducting fermentation of biowaste in 1-l beakers with or without pH adjustment using different acids. Addition of 5% glucose to the biowaste supported the growth of lactic acid bacteria and led to better fermentation. Among four acids tested to control pH at the start and during fermentation, acetic acid and citric acid proved to be the most effective. In biowaste fermented with 6.7% L. plantarum inoculum, 5% glucose, and pH 6.0 adjusted with acetic acid, 75% deproteination and 86% demineralization was achieved. Replacement of acetic acid by citric acid gave 88% deproteination and 90% demineralization. The fermentation carried out in the presence of acetic acid resulted in a protein fraction that smelled good and a clean chitin fraction. Received: 4 April 2000 / Received revision: 9 June 2000 / Accepted: 9 June 2000  相似文献   

17.
In strictly anaerobic conditions in a culture medium adjusted to pH 5·2 with HCl and incubated at 30°C, inocula containing < 10 vegetative bacteria of Clostridium botulinum ZK3 (type A) multiplied to give > 108 bacteria per ml in 3 d. Growth from an inoculum of between 10 and 100 spores occurred after a delay of 10–20 weeks. Citric acid concentrations of 10–50 mmol/l at pH 5·2 inhibited growth from both vegetative bacteria and spore inocula, a concentration of 50 mmol/l increasing the number of vegetative bacteria or of spores required to produce growth by a factor of approximately 106. The citric acid also reduced the concentration of free Ca2+ in the medium. The inhibitory effect of citric acid on vegetative bacteria at pH 5·2 could be prevented by the addition of Ca2+ or Mg2+ and greatly reduced by Fe2+ and Mn2+. The addition of Ca2+, but not of the remaining divalent metal ions, restored the concentration of free Ca2+ in the medium to that in the citrate-free medium. The inhibitory effect of citric acid on growth from a spore inoculum was only partially prevented by Ca2+. Citric acid (50 mmol/l) did not inhibit growth of strain ZK3 at pH 6 despite the greater chelating activity of citrate at pH 6 than at pH 5·2. The effect of citric acid and Ca2+ at pH 5·2 on vegetative bacteria of strains VL1 (type A) and 2346 and B6 (proteolytic type B) was similar to that on strain ZK3.  相似文献   

18.
Acetic acid (167 mM) and lactic acid (548 mM) completely inhibited growth of Saccharomyces cerevisiae both in minimal medium and in media which contained supplements, such as yeast extract, corn steep powder, or a mixture of amino acids. However, the yeast grew when the pH of the medium containing acetic acid or lactic acid was adjusted to 4.5, even though the medium still contained the undissociated form of either acid at a concentration of 102 mM. The results indicated that the buffer pair formed when the pH was adjusted to 4.5 stabilized the pH of the medium by sequestering protons and by lessening the negative impact of the pH drop on yeast growth, and it also decreased the difference between the extracellular and intracellular pH values (Delta(pH)), the driving force for the intracellular accumulation of acid. Increasing the undissociated acetic acid concentration at pH 4.5 to 163 mM by raising the concentration of the total acid to 267 mM did not increase inhibition. It is suggested that this may be the direct result of decreased acidification of the cytosol because of the intracellular buffering by the buffer pair formed from the acid already accumulated. At a concentration of 102 mM undissociated acetic acid, the yeast grew to higher cell density at pH 3.0 than at pH 4.5, suggesting that it is the total concentration of acetic acid (104 mM at pH 3.0 and 167 mM at pH 4.5) that determines the extent of growth inhibition, not the concentration of undissociated acid alone.  相似文献   

19.
Acetic acid (167 mM) and lactic acid (548 mM) completely inhibited growth of Saccharomyces cerevisiae both in minimal medium and in media which contained supplements, such as yeast extract, corn steep powder, or a mixture of amino acids. However, the yeast grew when the pH of the medium containing acetic acid or lactic acid was adjusted to 4.5, even though the medium still contained the undissociated form of either acid at a concentration of 102 mM. The results indicated that the buffer pair formed when the pH was adjusted to 4.5 stabilized the pH of the medium by sequestering protons and by lessening the negative impact of the pH drop on yeast growth, and it also decreased the difference between the extracellular and intracellular pH values (ΔpH), the driving force for the intracellular accumulation of acid. Increasing the undissociated acetic acid concentration at pH 4.5 to 163 mM by raising the concentration of the total acid to 267 mM did not increase inhibition. It is suggested that this may be the direct result of decreased acidification of the cytosol because of the intracellular buffering by the buffer pair formed from the acid already accumulated. At a concentration of 102 mM undissociated acetic acid, the yeast grew to higher cell density at pH 3.0 than at pH 4.5, suggesting that it is the total concentration of acetic acid (104 mM at pH 3.0 and 167 mM at pH 4.5) that determines the extent of growth inhibition, not the concentration of undissociated acid alone.  相似文献   

20.
Salmonella typhimurium was adapted to acid by exposure to hydrochloric acid at pH 5.8 for one to two doublings. Acid-adapted cells had increased resistance to inactivation by organic acids commonly present in cheese, including lactic, propionic, and acetic acids. Recovery of cells during the treatment with organic acids was increased 1,000-fold by inclusion of 0.1% sodium pyruvate in the recovery medium. Acid-adapted S. typhimurium cells survived better than nonadapted cells during a milk fermentation by a lactic acid culture. Acid-adapted cells also showed enhanced survival over a period of two months in cheddar, Swiss, and mozzarella cheeses kept at 5 degrees C. Acid adaptation was found in Salmonella spp., including Salmonella enteritidis, Salmonella choleraesuis subsp. choleraesuis serotype heidelberg, and Salmonella choleraesuis subsp. choleraesuis serotype javiana, associated with food poisoning. These observations support the theory that acid adaptation is an important survival mechanism enabling Salmonella spp. to persist in fermented dairy products and possibly other acidic food products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号