共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Identification of a translation inhibitory element (TIE) in the 3' untranslated region of the human interferon-beta mRNA 总被引:10,自引:0,他引:10
We have previously reported that the 3' untranslated region (UTR) of the human interferon-beta mRNA has an inhibitory effect on the mRNA translation both in vitro, in a rabbit reticulocyte lysate, and in vivo, in the Xenopus oocyte. In the present study, we identify the sequence in the 3' UTR which is responsible for this translation inhibition. We show that this sequence is located between the 100th and 161st nucleotides downstream from the translation stop codon. It contains several repeats of the A + U-rich consensus octanucleotide UUAUUUAU, which is also present in the 3' UTR of several mRNAs involved in the inflammatory response. We also demonstrate here that the inhibitory effect of the sequence on the mRNA translation does not depend on its position in relation to the termination codon. However, no inhibition of translation is observed when this sequence is inserted in the 5' UTR of the mRNA. The removal of the translation inhibitory sequence not only improves the mRNA translation in Xenopus oocytes but it also strongly decreases the IFN-beta mRNA stability in those cells. This suggests that, in this system at least, the mRNA degradation is linked to its translational efficiency. 相似文献
3.
The normal expression of human beta globin is critically dependent upon the constitutively high stability of its encoding mRNA. Unlike with alpha-globin mRNA, the specific cis-acting determinants and trans-acting factors that participate in stabilizing beta-globin mRNA are poorly described. The current work uses a linker-scanning strategy to identify a previously unknown determinant of mRNA stability within the beta-globin 3' untranslated region (3'UTR). The new determinant is positioned on an mRNA half-stem opposite a pyrimidine-rich sequence targeted by alphaCP/hnRNP-E, a factor that plays a critical role in stabilizing human alpha-globin mRNA. Mutations within the new determinant destabilize beta-globin mRNA in intact cells while also ablating its 3'UTR-specific interaction with the polyfunctional RNA-binding factor nucleolin. We speculate that 3'UTR-bound nucleolin enhances mRNA stability by optimizing alphaCP access to its functional binding site. This model is favored by in vitro evidence that alphaCP binding is enhanced both by cis-acting stem-destabilizing mutations and by the trans-acting effects of supplemental nucleolin. These studies suggest a mechanism for beta-globin mRNA stability that is related to, but distinct from, the mechanism that stabilizes human alpha-globin mRNA. 相似文献
4.
5.
6.
Differentiation-dependent expression of the Na(+)/glucose cotransporter (SGLT1) is accompanied by a large, cAMP-dependent increase in stability of its mRNA. Stabilization is mediated by protein binding to a critical uridine-rich element (URE) in its 3' untranslated region. In the present study, we demonstrate that HuR, an RNA binding protein of the embryonic lethal abnormal vision family, binds the SGLT1 URE. HuR binding was increased after elevation of intracellular cAMP levels and was dependent on protein phosphorylation. This interaction was prevented by a substitution mutation previously shown to block cAMP-dependent reporter message stabilization. These results implicate HuR as a key mediator of cAMP-dependent SGLT1 mRNA stabilization. 相似文献
7.
8.
Thakurta AG Gopal G Yoon JH Saha T Dhar R 《The Journal of biological chemistry》2004,279(17):17434-17442
Mex67, the homolog of human TAP, is not an essential mRNA export factor in Schizosaccharomyces pombe. Here we show that S. pombe encodes a homolog of the TAP cofactor that we have also named p15, whose function in mRNA export is not essential. We have identified and characterized two distinct nuclear export activities, nuclear export signal (NES) I and NES II, within the region of amino acids 434-509 of Mex67. These residues map within the known NTF2-like fold of TAP (amino acids 371-551). We show that the homologs of these two NESs are present and are functionally conserved in TAP. The NES I, NES II, and NES I + II of TAP and Mex67 directly bind with -phenylalanine-glycine (-FG)-containing sequences of S. pombe Nup159 and Nup98 but not with human p62. Mutants of NES I or NES II of Mex67/TAP that do not bind -FG Nup159 and Nup98 in vitro are unable to mediate nuclear export of a heterologous protein in S. pombe and in HeLa cells. Fused with the RNA recognition motifs (RRMs) of Crp79 and green fluorescent protein (GFP) (RRM-NES-GFP), the NES I and NES II of Mex67 or TAP can suppress the mRNA export defect of the Deltap15 rae1-167 synthetic lethal S. pombe strain, suggesting that the NESs can function in the absence of p15. These novel nuclear export sequences may provide additional routes for delivering Mex67/TAP to the nuclear pore complex. 相似文献
9.
R D Prokipcak A Raouf C Lee 《Biochemical and biophysical research communications》1999,261(3):627-634
The human multidrug resistance gene MDR1 encodes a membrane-bound protein, referred to as P-glycoprotein, that acts as a pump to extrude toxins from cells. The 3' untranslated region (3'UTR) of the human MDR1 mRNA is very AU-rich (70%) and contains AU-rich sequences similar to those shown to confer rapid decay on c-myc, c-fos, and lymphokine mRNAs. We tested the ability of the MDR1 3'UTR to act as an mRNA destabilizing element in the human hepatoma cell line HepG2. The MDR1 mRNA has an intermediate half-life of 8 h in HepG2 cells compared to a half-life of 30 min for c-myc mRNA. The MDR1 mRNA half-life was prolonged to >20 h upon treatment with the protein synthesis inhibitor cycloheximide. We constructed expression vectors containing the human beta-globin coding region with the 3'UTR from either MDR1 or c-myc. The c-myc 3'UTR increased the decay of the chimeric mRNA, but the MDR1 3'UTR had no effect. We tested the ability of MDR1 3'UTR sequences to compete for interaction with AU-binding proteins in cell extracts; MDR1 RNA probes had a fivefold lower affinity for AU-binding proteins that interact with the c-myc AU-rich 3'UTR. Overall, our data suggest that the MDR1 3'UTR does not behave as an active destabilizing element in HepG2 cells. 相似文献
10.
In human cells, the mRNA export factor NXF1 resides in the nucleoplasm and at nuclear pore complexes. Karyopherin β2 or transportin recognizes a proline-tyrosine nuclear localization signal (PY-NLS) in the N-terminal tail of NXF1 and imports it into the nucleus. Here biochemical and cellular studies to understand the energetic organization of the NXF1 PY-NLS reveal unexpected redundancy in the nuclear import pathways used by NXF1. Human NXF1 can be imported via importin β, karyopherin β2, importin 4, importin 11, and importin α. Two NLS epitopes within the N-terminal tail, an N-terminal basic segment and a C-terminal R-X(2-5)-P-Y motif, provide the majority of binding energy for all five karyopherins. Mutation of both NLS epitopes abolishes binding to the karyopherins, mislocalized NXF1 to the cytoplasm, and significantly compromised its mRNA export function. The understanding of how different karyopherins recognize human NXF1, the examination of NXF1 sequences from divergent eukaryotes, and the interactions of NXF1 homologues with various karyopherins reveals the evolutionary development of redundant NLSs in NXF1 of higher eukaryotes. Redundancy of nuclear import pathways for NXF1 increases progressively from fungi to nematodes and insects to chordates, potentially paralleling the increasing complexity in mRNA export regulation and the evolution of new nuclear functions for NXF1. 相似文献
11.
Efficient translation initiation directed by the 900-nucleotide-long and GC-rich 5' untranslated region of the human retrotransposon LINE-1 mRNA is strictly cap dependent rather than internal ribosome entry site mediated 下载免费PDF全文
Dmitriev SE Andreev DE Terenin IM Olovnikov IA Prassolov VS Merrick WC Shatsky IN 《Molecular and cellular biology》2007,27(13):4685-4697
Retrotransposon L1 is a mobile genetic element of the LINE family that is extremely widespread in the mammalian genome. It encodes a dicistronic mRNA, which is exceptionally rare among eukaryotic cellular mRNAs. The extremely long and GC-rich L1 5' untranslated region (5'UTR) directs synthesis of numerous copies of RNA-binding protein ORF1p per mRNA. One could suggest that the 5'UTR of L1 mRNA contained a powerful internal ribosome entry site (IRES) element. Using transfection of cultured cells with the polyadenylated monocistronic (L1 5'UTR-Fluc) or bicistronic (Rluc-L1 5'UTR-Fluc) RNA constructs, capped or uncapped, it has been firmly established that the 5'UTR of L1 does not contain an IRES. Uncapping reduces the initiation activity of the L1 5'UTR to that of background. Moreover, the translation is inhibited by upstream AUG codons in the 5'UTR. Nevertheless, this cap-dependent initiation activity of the L1 5'UTR was unexpectedly high and resembles that of the beta-actin 5'UTR (84 nucleotides long). Strikingly, the deletion of up to 80% of the nucleotide sequence of the L1 5'UTR, with most of its stem loops, does not significantly change its translation initiation efficiency. These data can modify current ideas on mechanisms used by 40S ribosomal subunits to cope with complex 5'UTRs and call into question the conception that every long GC-rich 5'UTR working with a high efficiency has to contain an IRES. Our data also demonstrate that the ORF2 translation initiation is not directed by internal initiation, either. It is very inefficient and presumably based on a reinitiation event. 相似文献
12.
Barley yellow dwarf virus RNA lacks both a 5' cap and a poly(A) tail, yet it is translated efficiently. It contains a cap-independent translation element (TE), located in the 3' UTR, that confers efficient translation initiation at the AUG closest to the 5' end of the mRNA. We propose that the TE must both recruit ribosomes and facilitate 3'-5' communication. To dissect its function, we determined the secondary structure of the TE and roles of domains within it. Nuclease probing and structure-directed mutagenesis revealed that the 105-nt TE (TE105) forms a cruciform secondary structure containing four helices connected by single-stranded regions. TE105 can function in either UTR in wheat germ translation extracts. A longer viral sequence (at most 869 nt) is required for full cap-independent translation in plant cells. However, substantial translation of uncapped mRNAs can be obtained in plant cells with TE105 combined with a poly(A) tail. All secondary structural elements and most primary sequences that were mutated are required for cap-independent translation in the 3' and 5' UTR contexts. A seven-base loop sequence was needed only in the 3' UTR context. Thus, this loop sequence may be involved only in communication between the UTRs and not directly in recruiting translational machinery. This structural and functional analysis provides a framework for understanding an emerging class of cap-independent translation elements distinguished by their location in the 3' UTR. 相似文献
13.
14.
Andrei S Zolotukhin Wei Tan Jenifer Bear Sergey Smulevitch Barbara K Felber 《The Journal of biological chemistry》2002,277(6):3935-3942
TAP/NXF1 is a conserved mRNA export receptor serving as a link between messenger ribonucleoproteins (mRNPs) and the nuclear pore complex. The mechanism by which TAP recognizes its export substrate is unclear. We show here that TAP is added to spliced mRNP in human cells. We identified a distinct region of TAP that targets it to mRNP. Using yeast two-hybrid screens and in vitro binding studies, we found that this region coincides with a direct binding site for U2AF35, the small subunit of the splicing factor U2AF. This interaction is evolutionarily conserved across metazoa, indicating its significance. We further found in human cells that the exogenously expressed large U2AF subunit, U2AF65, accumulates in spliced mRNP, leading to the recruitment of U2AF35 and TAP. Similarly to TAP, U2AF65 stimulated directly the nuclear export and expression of an mRNA that is otherwise retained in the nucleus. Together with our finding that U2AF is continuously exported from the nucleus, these data suggest that U2AF participates in nuclear export, by facilitating TAP's addition to its mRNA substrates. 相似文献
15.
Do the poly(A) tail and 3' untranslated region control mRNA translation? 总被引:30,自引:0,他引:30
16.
L1 (LINE-1) elements constitute a large family of mammalian retrotransposons that have been replicating and evolving in mammals for more than 100 Myr and now compose 20% or more of the DNA of some mammals. Here, we investigated the evolutionary dynamics of the active human Ta L1 family and found that it arose approximately 4 MYA and subsequently differentiated into two major subfamilies, Ta-0 and Ta-1, each of which contain additional subsets. Ta-1, which has not heretofore been described, is younger than Ta-0 and now accounts for at least 50% of the Ta family. Although Ta-0 contains some active elements, the Ta-1 subfamily has replaced it as the replicatively dominant subfamily in humans; 69% of the loci that contain Ta-1 inserts are polymorphic for the presence or absence of the insert in human populations, as compared with 29% of the loci that contain Ta-0 inserts. This value is 90% for loci that contain Ta-1d inserts, which are the youngest subset of Ta-1 and now account for about two thirds of the Ta-1 subfamily. The successive emergence and amplification of distinct Ta L1 subfamilies shows that L1 evolution has been as active in recent human history as it has been found to be for rodent L1 families. In addition, Ta-1 elements have been accumulating in humans at about the same rate per generation as recently evolved active rodent L1 subfamilies. 相似文献
17.
18.
TAP (NXF1) belongs to a multigene family of putative RNA export factors with a conserved modular architecture 总被引:3,自引:0,他引:3 下载免费PDF全文
Herold A Suyama M Rodrigues JP Braun IC Kutay U Carmo-Fonseca M Bork P Izaurralde E 《Molecular and cellular biology》2000,20(23):8996-9008
Vertebrate TAP (also called NXF1) and its yeast orthologue, Mex67p, have been implicated in the export of mRNAs from the nucleus. The TAP protein includes a noncanonical RNP-type RNA binding domain, four leucine-rich repeats, an NTF2-like domain that allows heterodimerization with p15 (also called NXT1), and a ubiquitin-associated domain that mediates the interaction with nucleoporins. Here we show that TAP belongs to an evolutionarily conserved family of proteins that has more than one member in higher eukaryotes. Not only the overall domain organization but also residues important for p15 and nucleoporin interaction are conserved in most family members. We characterize two of four human TAP homologues and show that one of them, NXF2, binds RNA, localizes to the nuclear envelope, and exhibits RNA export activity. NXF3, which does not bind RNA or localize to the nuclear rim, has no RNA export activity. Database searches revealed that although only one p15 (nxt) gene is present in the Drosophila melanogaster and Caenorhabditis elegans genomes, there is at least one additional p15 homologue (p15-2 [also called NXT2]) encoded by the human genome. Both human p15 homologues bind TAP, NXF2, and NXF3. Together, our results indicate that the TAP-p15 mRNA export pathway has diversified in higher eukaryotes compared to yeast, perhaps reflecting a greater substrate complexity. 相似文献
19.
Almost 10% of mammalian coding mRNAs contain in their 3' untranslated region a sequence rich in adenine and uridine residues known as AU-rich element (ARE). Many of them encode oncogenes (for instance c-Myc and c-Fos), cell cycle regulators (cyclin D1, A1, B1), cytokines (TNFalpha, IL2) and growth factors (GM-CSF) which are overexpressed in cancer or inflammatory diseases due to increased mRNA stability and/or translation. AREs are recognized by a group of proteins, collectively called AUBPs which display various functions. For instance, HuR/ELAV is mainly known to protect ARE-containing mRNAs from degradation, while AUF1, TTP and KSRP act to destabilize their bound target mRNAs and TIA/TIAR to inhibit their translation. Alterations in ARE sequences or AUBP abundance, cellular localization or activity due to post-translational modifications such as phosphorylation can promote or enhance malignancy or perturb immune homeostasis. Here, c-myc and TNFalpha are chosen as examples to illustrate how altered 3' UTR gene regulation impacts on pathologies. 相似文献
20.
An estrogen-inducible protein binds specifically to a sequence in the 3'' untranslated region of estrogen-stabilized vitellogenin mRNA. 总被引:6,自引:3,他引:6 下载免费PDF全文
The 3' untranslated region (3'-UTR) has been implicated in the estrogen stabilization of hepatic Xenopus laevis vitellogenin mRNA. We used RNA gel mobility shift assays to demonstrate that Xenopus liver contains a factor which binds with very high specificity to a segment of the 3'-UTR of vitellogenin B1 and B2 mRNAs. We detected a single high-affinity binding site in the vitellogenin mRNA 3'-UTR and localized the binding site to a 27-nucleotide region. Since binding was abolished by proteinase K digestion, at least a component of the factor is a protein. Following estrogen administration, binding was induced approximately four- to fivefold in extracts from liver polysomes. The hepatic vitellogenin mRNA-binding protein was found in both polysomes and cytosol. Since the protein was also estrogen inducible in cytosol, this represents a genuine induction, not simply recruitment of the cytosolic protein into polysomes. UV cross-linking studies with the 27-nucleotide recognition sequence revealed bands corresponding to bound proteins with apparent molecular weights of 71,000 and 141,000. This appears to be the first example of steroid hormone-inducible proteins binding to an mRNA 3'-UTR. Its induction by estrogen and its sequence-specific binding to a region of vitellogenin mRNA important in estrogen-mediated stabilization suggest that the protein may play a role in the regulation of mRNA stability. 相似文献