首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Significant quantitative differences in ethanol yields along with repression in acetic acid production were observed in Clostridium thermocellum strains SS21 and SS22 in the presence of H 2 , acetone and sodium azide. Exogenous H 2 addition (1.0 atm) increased the ethanol yields to 0.40 g/g and ethanol to acetate ratio to 5.75 in strain SS21 but was inhibitory in strain SS22. Addition of acetone reversed the inhibition caused by H 2 and increased the ethanol yields and ethanol to acetate ratio of strain SS22 up to 0.40 g/g and 7.9, respectively. Enhancement in ethanol yields up to 0.40 g/g and 0.41 g/g and ethanol to acetate ratio up to 3.63 and 8.1 were observed in the presence of 0.2 mM and 0.15 mM concentration of sodium azide by strains SS21 and SS22, respectively.  相似文献   

2.
Adherence of Clostridium thermocellum to cellulose   总被引:22,自引:7,他引:15       下载免费PDF全文
The adherence of Clostridium thermocellum, a cellulolytic, thermophilic anaerobe, to its insoluble substrate (cellulose) was studied. The adherence phenomenon was determined to be selective for cellulose. The observed adherence was not significantly affected by various parameters, including salts, pH, temperature, detergents, or soluble sugars. A spontaneous adherence-defective mutant strain (AD2) was isolated from the wild-type strain YS. Antibodies were prepared against the bacterial cell surface and rendered specific to the cellulose-binding factor (CBF) by adsorption to mutant AD2 cells. By using these CBF-specific antibodies, crossed immunoelectrophoresis of cell extracts revealed a single discrete precipitation peak in the parent strain which was absent in the mutant. This difference was accompanied by an alteration in the polypeptide profile whereby sonicates of strain YS contained a 210,000-molecular-weight band which was missing in strain AD2. The CBF antigen could be removed from cell extracts by adsorption to cellulose. A combined gel-overlay--immunoelectrophoretic technique demonstrated that the cellulose-binding properties of the CBF were accompanied by carboxymethylcellulase activity. During the exponential phase of growth, a large part of the CBF antigen and related carboxymethylcellulase activity was associated with the cells of wild-type strain YS. However, the amounts decreased in stationary-phase cells. Cellobiose-grown mutant AD2 cells lacked the cell-associated CBF, but the latter was detected in the extracellular fluid. Increased levels of CBF were observed when cells were grown on cellulose. In addition, mutant AD2 regained cell-associated CBF together with the property of cellulose adherence. The presence of the CBF antigen and related adherence characteristics appeared to be a phenomenon common to other naturally occurring strains of this species.  相似文献   

3.
Clostridium thermocellum, a thermophillic anaerobe, directly converts cellulose to ethanol. To estimate its ethanol production from cellulose, we used a new method based on material balance by which the efficiencies of the enzymes that convert cellulose to ethanol were calculated. Using this method, the maximum efficiency of ethanol production of two strains of C. thermocellum was estimated to be 0.05, with 0.67 as the theoretical maximum.  相似文献   

4.
Clostridium thermocellum ferments cellulose, is a promising candidate for ethanol production from cellulosic biomass, and has been the focus of studies aimed at improving ethanol yield. Thermoanaerobacterium saccharolyticum ferments hemicellulose, but not cellulose, and has been engineered to produce ethanol at high yield and titer. Recent research has led to the identification of four genes in T. saccharolyticum involved in ethanol production: adhE, nfnA, nfnB and adhA. We introduced these genes into C. thermocellum and observed significant improvements to ethanol yield, titer, and productivity. The four genes alone, however, were insufficient to achieve in C. thermocellum the ethanol yields and titers observed in engineered T. saccharolyticum strains, even when combined with gene deletions targeting hydrogen production. This suggests that other parts of T. saccharolyticum metabolism may also be necessary to reproduce the high ethanol yield and titer phenotype in C. thermocellum.  相似文献   

5.
Summary Among twelve strains of Clostridium thermocellum isolated from faecal droppings of various herbivorous animals and birds, three of the strains, SS21, SS22 and SS19, produced 0.37, 0.33 and 0.32 g of ethanol per g of the substrate consumed and had ethanol to acetate ratios of 2.21, 2.45 and 1.72 respectively. These are the highest substrate conversion yields of ethanol amongst the wild strains of C. thermocellum reported so far. The optimum temperature and pH for growth and ethanol production were 60 °C and 7.5, respectively.  相似文献   

6.
Abstract The anaerobic degradation of microcrystalline cellulose by thermostable cellulolytic enzyme complexes from Clostridium thermocellum JW20 (ATCC 31449) was monitored. For quantitative investigations as enzyme-coupled spectrophotometric assay has been developed. The assay allows for the evaluation of the release of cellubiose-/glucose-units from native cellulose. Kinetic studies revealed that the anaerobic breakdown of crystalline cellulose (CC) at 60°C follows Michaelis-Menten kinetics K m CC values have been determined for different aggregation states of the cellulolytic complex. The presented assay seems well suited to screen for CC-degrading enzymes of various sources, and to further explore the mechanism of CC-breakdown.  相似文献   

7.
Summary Two strains of Clostridium thermocellum ATCC 27405 and NRCC 2688 demonstrated similar product yields and cellulase activities when grown on solka floc. A sequential culture of C. thermocellum and Zymomonas anaerobia supplemented with cellobiase could produce 1.8 mg/ml of ethanol when grwon on 1% solka floc. Different media were evaluated for their ability to enhance the product and cellulase yields of C. thermocellum grown on cellulose substrates. Ethanol and reducing sugar values of 1.5 and 3.8 mg/ml respectively and an endoglucanase activity of 3 IU/ml were obtained after growth of Clostridium thermocellum in a modified medium containing 1% solka floc. Three different pretreated wood fractions were assessed as substrates for growth. A steam exploded wood fraction gave comparable values to those obtained after growth on solka floc. Sequential cultures of C. thermocellum and Zymomonas anaerobia grown on a 1% steam exploded wood fraction could produce 1.6 mg/ml ethanol after 3 days growth.  相似文献   

8.
Two Clostridium thermocellum strains were improved for ethanol tolerance, to 5% (v/v), by gradual adaptation and mutation. The best mutant gave an ethanol yield of 0.37 g/g substrate, with a growth yield 1.5 times more than its parent. Accumulation of acids and reducing sugars by the mutant strain with 5% (v/v) ethanol was lower than that of the parent strain with 1.5% (v/v) ethanol.  相似文献   

9.
Clostridium thermocellum strains SS8 and GS1 grew poorly on crude blopolymers but termented them easily after alkall treatment. With 1% alkall-extracted rice straw (AERS) and dellgnified bamboo pulp (DBP), the ethanol-to-substrate (E/S) ratios were almost the same as those obtained when using fillter paper. Increasing the substrate concentrations decreased the percentage substrate degraded and the E/S ratio and concomitantly increased the amount of reducing sugars accumulated. A maximum amount of 8.6 g ethanol/l was produced by strain SS8 out of 37.5 g DBP degraded. Strain GS1 accumulated reducing sugars at substrate concentrations >50 g/l, thereby accounting for about 70% of AERS degraded. This strain produced cellulase on both cellulose and cellobiose. Both the strains grew in the presence of 1.5% (v/v) ethanol. Strain SS8 fermented starch, but the ethanol yield was low compared to that from cellulose. About 75% of starch degraded accumulated as reducing sugars at a substrate concentration of 40 g/l. The Inhibitory effects of ethanol (2 to 4%) were less drastic when growing cultures were challenged than when they were formed in situ. The effect of ethanol depended upon the phase of the culture.The authors are with the Department of Microbiology, Osmania University, Hyderabad-500007, India.  相似文献   

10.

Background

The twin problem of shortage in fossil fuel and increase in environmental pollution can be partly addressed by blending of ethanol with transport fuel. Increasing the ethanol production for this purpose without affecting the food security of the countries would require the use of cellulosic plant materials as substrate. Clostridium thermocellum is an anaerobic thermophilic bacterium with cellulolytic property and the ability to produce ethanol. But its application as biocatalyst for ethanol production is limited because pyruvate ferredoxin oxidoreductase, which diverts pyruvate to ethanol production pathway, has low affinity to the substrate. Therefore, the present study was undertaken to genetically modify C. thermocellum for enhancing its ethanol production capacity by transferring pyruvate carboxylase (pdc) and alcohol dehydrogenase (adh) genes of the homoethanol pathway from Zymomonas mobilis.

Results

The pdc and adh genes from Z. mobilis were cloned in pNW33N, and transformed to Clostridium thermocellum DSM 1313 by electroporation to generate recombinant CTH-pdc, CTH-adh and CTH-pdc-adh strains that carried heterologous pdc, adh, and both genes, respectively. The plasmids were stably maintained in the recombinant strains. Though both pdc and adh were functional in C. thermocellum, the presence of adh severely limited the growth of the recombinant strains, irrespective of the presence or absence of the pdc gene. The recombinant CTH-pdc strain showed two-fold increase in pyruvate carboxylase activity and ethanol production when compared with the wild type strain.

Conclusions

Pyruvate decarboxylase gene of the homoethanol pathway from Z mobilis was functional in recombinant C. thermocellum strain and enhanced its ability to produced ethanol. Strain improvement and bioprocess optimizations may further increase the ethanol production from this recombinant strain.
  相似文献   

11.
12.
梭热杆菌(Clostridium thermocellum)是一种嗜热厌氧细菌,通过分泌大量纤维素酶高效降解纤维素.根据作用纤维素的不同部位,梭热杆菌分泌的纤维素酶分为内切纤维素酶和外切纤维素酶.纤维小体是由支架蛋白、锚定元件、黏合蛋白、纤维素结合域和催化单位组成的复合体,其独特的结构,使得它可以比真菌纤维素酶更紧密地结合到纤维素表面,这个复合结构结合着多种催化单位,而此特殊的结构是梭热杆菌高效降解纤维素的必要条件.近年来,为更深入透彻地了解纤维小体的结构与功能进行了大量的研究工作,现对相关研究进展进行综述,并给出了未来可能的发展方向.  相似文献   

13.
A thermostable beta-glucosidase from Clostridium thermocellum which is expressed in Escherichia coli was used to determine the substrate specificity of the enzyme. A restriction map of the beta-glucosidase gene cloned in plasmid pALD7 was determined. Addition of the E. coli cell extract (containing the beta-glucosidase) to the cellulase complex from C. thermocellum increased the conversion of crystalline cellulose (Avicel) to glucose. The increase was specifically due to hydrolysis of the accumulated cellobiose. A cellulose degradation process using beta-glucosidase to assist the potent cellulase complex of C. thermocellum, as shown here can open the way for industrial saccharification of cellulose to glucose.  相似文献   

14.
Electrotransformation of Clostridium thermocellum   总被引:3,自引:0,他引:3  
Electrotransformation of several strains of Clostridium thermocellum was achieved using plasmid pIKm1 with selection based on resistance to erythromycin and lincomycin. A custom-built pulse generator was used to apply a square 10-ms pulse to an electrotransformation cuvette consisting of a modified centrifuge tube. Transformation was verified by recovery of the shuttle plasmid pIKm1 from presumptive transformants of C. thermocellum with subsequent PCR specific to the mls gene on the plasmid, as well as by retransformation of Escherichia coli. Optimization carried out with strain DSM 1313 increased transformation efficiencies from <1 to (2.2 +/- 0.5) x 10(5) transformants per micro g of plasmid DNA. Factors conducive to achieving high transformation efficiencies included optimized periods of incubation both before and after electric pulse application, chilling during cell collection and washing, subculture in the presence of isoniacin prior to electric pulse application, a custom-built cuvette embedded in an ice block during pulse application, use of a high (25-kV/cm) field strength, and induction of the mls gene before plating the cells on selective medium. The protocol and preferred conditions developed for strain DSM 1313 resulted in transformation efficiencies of (5.0 +/- 1.8) x 10(4) transformants per micro g of plasmid DNA for strain ATCC 27405 and approximately 1 x 10(3) transformants per micro g of plasmid DNA for strains DSM 4150 and 7072. Cell viability under optimal conditions was approximately 50% of that of controls not exposed to an electrical pulse. Dam methylation had a beneficial but modest (7-fold for strain ATCC 27405; 40-fold for strain DSM 1313) effect on transformation efficiency. The effect of isoniacin was also strain specific. The results reported here provide for the first time a gene transfer method functional in C. thermocellum that is suitable for molecular manipulations involving either the introduction of genes associated with foreign gene products or knockout of native genes.  相似文献   

15.
Electrotransformation of Clostridium thermocellum   总被引:2,自引:0,他引:2       下载免费PDF全文
Electrotransformation of several strains of Clostridium thermocellum was achieved using plasmid pIKm1 with selection based on resistance to erythromycin and lincomycin. A custom-built pulse generator was used to apply a square 10-ms pulse to an electrotransformation cuvette consisting of a modified centrifuge tube. Transformation was verified by recovery of the shuttle plasmid pIKm1 from presumptive transformants of C. thermocellum with subsequent PCR specific to the mls gene on the plasmid, as well as by retransformation of Escherichia coli. Optimization carried out with strain DSM 1313 increased transformation efficiencies from <1 to (2.2 ± 0.5) × 105 transformants per μg of plasmid DNA. Factors conducive to achieving high transformation efficiencies included optimized periods of incubation both before and after electric pulse application, chilling during cell collection and washing, subculture in the presence of isoniacin prior to electric pulse application, a custom-built cuvette embedded in an ice block during pulse application, use of a high (25-kV/cm) field strength, and induction of the mls gene before plating the cells on selective medium. The protocol and preferred conditions developed for strain DSM 1313 resulted in transformation efficiencies of (5.0 ± 1.8) × 104 transformants per μg of plasmid DNA for strain ATCC 27405 and ~1 × 103 transformants per μg of plasmid DNA for strains DSM 4150 and 7072. Cell viability under optimal conditions was ~50% of that of controls not exposed to an electrical pulse. Dam methylation had a beneficial but modest (7-fold for strain ATCC 27405; 40-fold for strain DSM 1313) effect on transformation efficiency. The effect of isoniacin was also strain specific. The results reported here provide for the first time a gene transfer method functional in C. thermocellum that is suitable for molecular manipulations involving either the introduction of genes associated with foreign gene products or knockout of native genes.  相似文献   

16.
Abstract Certain isolated components of fungal cellulases, which cannot effect the breakdown of highly ordered cellulose individually, interact together synergistically to do so when recombined. Suprisingly, not all fungal cellulase components exhibit this property, and no such synergism has been observed so far between fungal and bacterial cellulases.
The cellulase complex of Clostridium thermocellum cannot effect the extensive breakdown of highly ordered cellulose unless Ca2+ and dithiothreitol (DTT) are present. However, we now report that isolated cellobiohydrolase from Trichoderma koningii can combine with C. thermocellum cellulase to effect the breakdown of cellulose in the absence of Ca2+ and DTT. enhanced activity is observed if Ca2+ and DTT are present.
This finding may have important applications in industry: it certainly has important implications for those interested in the basic mechanism of cellulase action in C. thermocellum .  相似文献   

17.
Summary During growth in the presence of fibers composed of cellulose or hemicellulose, various strains of the thermophilic soil bacterium Clostridium thermocellum and several newly isolated thermophilic anaerobic soil bacteria adhered to the fibers. Attachment occurred via a fibrous ruthenium red-staining material. C. thermocellum sporulated while attached to the fibers when the pH dropped below 6.4. It is postulated that the attachment is involved in cellulose breakdown and that C. thermocellum gaines an advantage by remaining attached to its insoluble substrates when the environment is not suitable for rapid growth. The tendency to adhere to cellulose fibers was used in the purification of thermophilic cellulolytic anaerobes.  相似文献   

18.
Medium-chain esters are versatile chemicals with broad applications as flavors, fragrances, solvents, and potential drop-in biofuels. Currently, these esters are largely produced by the conventional chemical process that uses harsh operating conditions and requires high energy input. Alternatively, the microbial conversion route has recently emerged as a promising platform for sustainable and renewable ester production. The ester biosynthesis pathways can utilize either lipases or alcohol acyltransferase (AAT), but the AAT-dependent pathway is more thermodynamically favorable in an aqueous fermentation environment. Even though a cellulolytic thermophile Clostridium thermocellum harboring an AAT-dependent pathway has recently been engineered for direct conversion of lignocellulosic biomass into esters, the production is not efficient. One potential bottleneck is the ester degradation caused by the endogenous carbohydrate esterases (CEs) whose functional roles are poorly understood. The challenge is to identify and disrupt CEs that can alleviate ester degradation while not negatively affecting the efficient and robust capability of C. thermocellum for lignocellulosic biomass deconstruction. In this study, by using bioinformatics, comparative genomics, and enzymatic analysis to screen a library of CEs, we identified and disrupted the two most critical CEs, Clo1313_0613 and Clo1313_0693, that significantly contribute to isobutyl acetate degradation in C. thermocellum. We demonstrated that an engineered esterase-deficient C. thermocellum strain not only reduced ester hydrolysis but also improved isobutyl acetate production while maintaining effective cellulose assimilation.  相似文献   

19.
Endoglucanase D, a cellulose degradation enzyme from Clostridium thermocellum has been cloned in Escherichia coli, purified and crystallized. The crystals are trigonal, space group P3(1)12 (or P3(2)12) with a = 57.7 (+/- 0.1) A, c = 192.1 (+/- 0.2) A, and diffract X-rays to a resolution of 2.8 A. They are suitable for a high-resolution X-ray diffraction analysis.  相似文献   

20.
Direct anaerobic bioconversion of cellulosic substances into ethanol by Clostridium thermocellum ATCC 27405 has been carried out at 60 degrees C and pH 7.0 (initial for 100 L) under continuous sparging of oxygen free nitrogen in a culture vessel. Raw bagasse, mild alkali-treated bagasse, and solka floc were used as substrates. The extent of conversion of raw bagasse (cellulose, 50%; hemicellulose, 25%; lignin, 19%) was observed as 52% (w/w) and 79% (w/w) in the case of mild alkali and steam-treated bagasse (cellulose, 72%; hemicellulose, 11%; lignin, 12%), respectively. Use of bagasse concentration above 10 g/L showed a decreased rate in ethanol production. An inoculum age between 28-30 h and cell mass content of 0.027-0.036 g/L (dry basis) were used. The results obtained with raw and pretreated bagasse have been compared with those of highly pure Solka Floc (hemicellulose, 10%). Studies on the product inhibition indicated a linear fall of the percent of survivors with time. An Arrhenius type correlation between the cell decay rate constant and the product concentration was predicted. Even at low levels, the inhibitory effects of products on cell viability, the specific growth rate, and extracellular cellulase enzyme were observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号