首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We studied the effect of a single intravenous bolus of 0.5 microgram/kg of growth hormone-releasing factor (GRF) on plasma GH, prolactin (PRL) and somatomedin C (SMC) in 12 short normal children and 24 patients with severe GH deficiency (GHD), i.e. GH less than 5 ng/ml after insulin and glucagon tolerance tests. GRF elicited an increase in plasma GH in both short normal and GHD children. The mean GH peak was lower in the GHD than in the short normal children (8.2 +/- 2.5 vs. 39.2 +/- 5.1 ng/ml, p less than 0.001). In the GHD patients (but not in the short normals) there was a negative correlation between bone age and peak GH after GRF (r = -0.58, p less than 0.005); GH peaks within the normal range were seen in 5 out of 8 GHD children with a bone age less than 5 years. In the short normal children, GRF had no effect on plasma PRL, which decreased continuously between 8.30 and 11 a.m. (from 206 +/- 22 to 86 +/- 10 microU/ml, p less than 0.005), a reflection of its circadian rhythm. In the majority of the GHD patients, PRL levels were higher than in the short normal children but had the same circadian rhythm, except that a slight increase in PRL was observed 15 min after GRF; this increase in PRL was seen both in children with isolated GHD and in those with multiple hormone deficiencies; it did occur in some GHD patients who had no GH response to GRF. Serum SMC did not change 24 h after GRF in the short normal children. We conclude that: (1) in short normal children: (a) the mean GH response to a single intravenous bolus of 0.5 microgram/kg of GRF is similar to that reported in young adults and (b) GRF has no effect on PRL secretion; (2) in GHD patients: (a) normal GH responses to GRF are seen in patients with a bone age less than 5 years and establish the integrity of the somatotrophs in those cases; (b) the GH responsiveness to GRF decreases with age, which probably reflects the duration of endogenous GRF deficiency, and (c) although the PRL response to GRF is heterogeneous, it does in some patients provide additional evidence of responsive pituitary tissue.  相似文献   

2.
BACKGROUND: Recent studies have shown that many patients treated with growth hormone (GH) during childhood because of idiopathic GH deficiency (GHD) are no longer GH deficient when retested after cessation of GH therapy when final height is achieved. These patients are labelled as transient GHD. We hypothesized that normalization of GH secretion in transient GHD could occur earlier during the course of GH treatment, which could allow earlier cessation of GH treatment. METHODS: In a retrospective study, GH secretion was re-evaluated after cessation of GH treatment at final height in 43 patients diagnosed during childhood as idiopathic GHD (10 with multiple pituitary hormonal deficiencies (MPHD) and 33 with isolated GHD (IsGHD)). In a prospective study, GH secretion was re-assessed after interruption of GH treatment given for 1 year in 18 children with idiopathic GHD (2 MPHD, 16 IsGHD). GH secretion was evaluated by glucagon or insulin stimulation tests. RESULTS: In the retrospective study, all the 10 patients with MPHD and 64% of the 33 patients with IsGHD were still deficient at re-evaluation using the paediatric criteria to define GHD (GH peak <10 ng/ml at provocative test). The proportion of persisting deficiency was greater in patients with complete IsGHD (86%, 12/14 patients) than in patients with partial IsGHD (47%, 9/19 patients). With the criteria proposed in adulthood (GH peak <3 ng/ml), all the 10 patients with MPHD were still considered to be deficient. In contrast, only 15% (5/33 patients) with IsGHD had a maximal GH value <3 ng/ml (36% of the 14 patients with complete IsGHD and none of the 19 patients with partial IsGHD). In the prospective study, after interruption of GH therapy given for 1 year, the 2 patients with MPHD were still GHD at re-evaluation and they resumed GH treatment. Among the 16 patients with IsGHD, 13 (81%) were still deficient (peak response <10 ng/ml) after 1 year. Two of the 3 patients in whom GHD was not confirmed at retesting after 1 year GH showed again a deficient response at second retesting. CONCLUSIONS: Although many patients diagnosed with IsGHD during childhood have a normalized GH secretory capacity when retested during adulthood, early retesting after interruption of GH treatment given for 1 year during childhood does not enable to determine if GH therapy has to be discontinued before cessation of growth.  相似文献   

3.
OBJECTIVE: To examine the spontaneous leptin secretion in patients with myelomeningocele (MMC) and growth hormone deficiency (GHD). METHODS: Serum leptin levels were studied in 10 prepubertal MMC patients with GHD (CA 6.2 +/- 0.5 years), 10 patients with idiopathic GHD (IGHD; CA 7.6 +/- 0.7 years) and 12 children with normal variant short stature (NVSS; CA 7.6 +/- 0.5 years). Mean BMI (kg/m(2)) values of the groups did not differ significantly. Nocturnal leptin levels were analyzed over 10 h (blood samples every 20 min) and measured by specific radioimmunoassay. RESULTS: Mean leptin concentrations did not correlate with BMI in MMC patients. Nocturnal leptin secretion of MMC patients was significantly different to those of children with IGHD and NVSS. Morning leptin levels did not decline as observed in both other groups. CONCLUSION: Since all groups were matched for BMI values, we suggest a hypothalamic dysregulation of leptin secretion in MMC patients.  相似文献   

4.
This short review will focus on the mechanisms which are thought to be directly involved in GH expression and particularly on the monogenetic disorders which were shown to cause isolated growth hormone deficiency (IGHD) due to insufficient expression of GH. The overwhelming majority of genetic defects detected in isolated growth hormone deficiency (IGHD) are mutations of the coding region of the GH-1 gene which belongs to a five genes containing gene cluster located on 17q22-24. Depending on the type of the GH-1 gene mutation, the mode of inheritance is recessive or dominant. The promotor region of the GH-1 gene which encompasses the 300 bp of the 5' flanking region is highly polymorphic, but the functionally important cis-acting elements are conserved. This sequence is sufficient to control GH expression in cultured cells, but not in transgenic mice: the human GH locus control region, an enhancer region of the GH-1 gene located approximately 15-32 kB upstream of the GH-1 coding region was shown to direct pituitary-specific, high-level GH expression in vivo. Promotion of the GH expression needs the coordinate binding of pituitary-specific (i.e., POU1F1) and ubiquitous trans-acting factors to the cis-acting elements. The mutational analysis of trans-acting factors and cis-acting elements of the GH-1 gene has so far not established any defect outside the coding region as the genetic basis of IGHD except for POU1F1 mutations which cause multiple pituitary hormone deficiency including GHD. Several mutations of the GHRH-receptor gene were shown to result in severe IGHD. In the future, the discovery of new defects of the GH expression machinery will add to our understanding of how GH is sufficiently supplied to the organism and will hopefully simplify and improve the diagnostic approach in a subset of children with IGHD.  相似文献   

5.
OBJECTIVE: To evaluate the factors influencing the growth hormone (GH) response to GH-releasing hormone (GHRH) test in idiopathic GH deficiency. METHODS: 28 patients aged 4.9 +/- 0.7 years with certain GH deficiency were given GHRH (2 microg/kg). RESULTS: The GH peak after GHRH was correlated negatively with age at evaluation (r = -0.37, p < 0.05) and body mass index (r = -0.44, p = 0.02), and positively with anterior pituitary height (r = 0.47, p = 0.02), GH peak after non-GHRH stimulation (r = 0.78, p < 0.0001) and spontaneous GH peak (r = 0.82, p = 0.007). It was lower in the patients aged >5 years than in the youngest (p = 0.04), but it was similar in the patients with and without features suggesting a hypothalamic origin. CONCLUSION: The GH response to GHRH test cannot be used to differentiate between hypothalamic and pituitary forms of idiopathic GH deficiency, probably because the GH response decreases after the first 5 years of life, whatever the origin of the deficiency.  相似文献   

6.
van Dam PS 《Hormone research》2005,64(Z3):109-114
The clinical condition of growth hormone deficiency (GHD) as a consequence of pituitary or hypothalamic disease has been associated with reduced cognitive performance. In several studies, neuropsychological assessment has been performed in adults with GHD both before and after growth hormone (GH) replacement therapy. Interpretation of the available data is complicated by the variation in patient selection as well as the neuropsychological tests used in such studies. Most of the available studies indicate that GHD can lead to small, but clinically relevant changes in memory, processing speed and attention. Some of these changes may be reversed by GH replacement, although the number of reliable intervention studies is limited. In addition to the possible clinical relevance of neuropsychological improvement following GH replacement in patients with GHD, the observed findings may be of interest for studies in neurocognitive performance in other conditions associated with changes in the activity of the somatotrophic axis, and in the understanding of underlying pathophysiological mechanisms.  相似文献   

7.
Ghrelin is an endogenous growth hormone (GH) secretagogue recently isolated from the stomach. Although it possesses a strong GH releasing activity in vitro and in vivo, its physiological significance in endogenous GH secretion remains unclear. The aim of this study was to characterize plasma ghrelin levels in acromegaly and growth hormone deficiency (GHD). We investigated plasma total and active ghrelin in 21 patients with acromegaly, 9 patients with GHD and 24 age-, sex- and BMI-matched controls. In all subjects, we further assessed the concentrations of leptin, soluble leptin receptor, insulin, IGF-I, free IGF-I and IGFBP-1, 2, 3 and 6. Patients with acromegaly and GHD as well as control subjects showed similar levels of total ghrelin (controls 2.004+/-0.18 ng/ml, acromegalics 1.755+/-0.16 ng/ml, p=0.31, GHD patients 1.704+/-0.17 ng/ml, p=0.35) and active ghrelin (controls 0.057+/-0.01 ng/ml, acromegalics 0.047+/-0.01 ng/ml, p=0.29, GHD patients 0.062+/-0.01 ng/ml, p=0.73). In acromegalic patients plasma total ghrelin values correlated negatively with IGF-I (p<0.05), in GHD patients active ghrelin correlated with IGF-I positively (p<0.05). In the control group, total ghrelin correlated positively with IGFBP-2 (p<0.05) and negatively with active ghrelin (p=0.05), BMI (p<0.05), WHR (p<0.05), insulin (p=0.01) and IGF-I (p=0.05). Plasma active ghrelin correlated positively with IGFBP-3 (p=0.005) but negatively with total ghrelin and free IGF-I (p=0.01). In conclusion, all groups of the tested subjects showed similar plasma levels of total and active ghrelin. In acromegaly and growth hormone deficiency plasma ghrelin does not seem to be significantly affected by changes in GH secretion.  相似文献   

8.
Children with brain tumors are at high risk of developing growth hormone deficiency (GHD) after cranial irradiation (CI) if the hypothalamus/pituitary (HP) axis falls within the fields of irradiation. The biological effective dose (BED) of irradiation to the HP region was determined, since BED gives a means of expressing the biological effect of various irradiation treatment schedules in a uniform way. Hypothalamic versus pituitary damage as cause of GHD was distinguished in 62 patients by comparing the growth hormone (GH) peak response to an insulin tolerance test (ITT)/arginine stimulation test and the GH response to a growth hormone-releasing hormone (GHRH) stimulation test. Peak GH response to a GHRH test was significantly higher (median 7.3 mU/l; range: 0.5--79.0 mU/l) than that of an ITT/arginine test (median 4.7 mU/l; range: 0.01--75.0 mU/l) (p = 0.017). Peak GH after a GHRH test was significantly inversely correlated to follow-up time (r(s) = -0.46, p < 0.0001) and to BED (R(s) = -0.28, p = 0.03), and both were found to be of significance in a multivariante regression analysis. We speculate that a significant number of patients developed hypothalamic radiation-induced damage to the GHRH secreting neurons, and secondary to this the pituitary gland developed decreased responsiveness to GHRH following CI in childhood.  相似文献   

9.
Synthetic human GRF (hGRF (1-44) NH2; SM-8144) was administered as an iv bolus to 141 normal children of short stature (NSC), 73 patients with severe idiopathic GH deficiency (IGD; group A), 30 patients with mild idiopathic GH deficiency (IGD; group B), 29 patients with secondary GH deficiency, 3 patients with primary hypothyroidism, 21 patients with Turner's syndrome and 25 patients with various other disease. Their height was below normal for their age and sex, and they were all below 25 years old without obesity. The maximal GH responses (M+SEM) were 39.5 +/- 2.2, 7.2 +/- 0.9, 27.2 +/- 3.7, 5.2 +/- 0.8, 9.7 +/- 4.4, 25.1 +/- 2.8 and 32.3 +/- 4.8 ng/ml, respectively (significance from the NSC, ; p less than 0.05, ; p less than 0.001). The GH responses to hGRF were greater than those elicited by standard pharmacological tests. There was a negative correlation between bone age and peak plasma GH response to hGRF in patients with idiopathic GH deficiency (IGD) but not in normal children (NSC). In twenty-two percent of the patients with IGD in group A the response was above 10 ng/ml and in 57% of the patients with IGD in group B the response was above 20 ng/ml, suggesting that a large percentage of patients with idiopathic GH deficiency lack hypothalamic GRF. The side effect of flushing was observed in 15.2% of all subjects. These results indicate the potential usefulness of hGRF (1-44) NH2 (SM-8144) in inducing GH release from the pituitary.  相似文献   

10.
Blood concentrations of anterior pituitary hormones, ACTH, GH, TSH, PRL, LH, and FSH were determined in corticotropin releasing factor (CRF) test (synthetic ovine CRF 1.0 microgram per kg body weight) and growth hormone releasing factor (GRF) test (synthetic human pancreatic GRF-44 100 micrograms) in 2 female sibling patients with congenital isolated TSH deficiency, in their mother, in 2 patients with congenital primary hypothyroidism and in 8 normal controls. The patients with isolated TSH deficiency showed normally increased plasma ACTH and serum GH after CRF and GRF, respectively, and also showed an abnormal GH response to CRF. The serum GH showed a rapid increase to maximum levels (12.9 ng/ml) within 30 to 60 min followed by decrease. The possibility of secretion of abnormal GH could be excluded by the fact that on serum dilution, GH value gave a linear plot passing through zero. In addition, serum PRL, LH and FSH levels after CRF administration in case 1 and PRL after GRF in case 2 were also slightly increased but these responses were marginal. The mother of the patients, patients with congenital primary hypothyroidism, and normal healthy controls showed normal responses of pituitary hormones throughout the experiment. Data from the present study and a previous report show that abnormal GH response to the hypothalamic hormones (CRF, TRH and LHRH) may be observed in patients with congenital isolated TSH deficiency.  相似文献   

11.
Plasma growth hormone (GH) responses to the repetitive administrations of synthetic human pancreatic growth hormone releasing factor (hpGRF-44) were studied in 15 patients with GH deficiency (11 diagnosed as idiopathic and 4 diagnosed as secondary to hypothalamo-pituitary tumor). hpGRF-44 was administered by single iv bolus (2 micrograms/kg), repetitive im (100 micrograms, twice a day), and/or repetitive iv infusion (2.5 micrograms/min for 90 min, once a day) for three to six consecutive days. Three of the eleven idiopathic GH deficient patients had plasma GH responses to both single iv bolus injection and repetitive administrations by im, or iv infusion of hpGRF. In four of the remaining eight, who had not had peak plasma GH levels above 5 ng/ml to a single iv bolus of the peptide, repetitive administrations of hpGRF-44 by im injection and/or iv infusion induced GH responses to the peptide. In the four patients with secondary GH deficiency, three had plasma GH response to hpGRF administration but one patient, who had indications of pituitary disorder, did not show any plasma GH response to either single iv injection or repetitive administrations of hpGRF-44. These data show that repetitive administrations of hpGRF-44 can induce plasma GH responses in some GH deficient patients who do not respond to a single iv bolus of the peptide.  相似文献   

12.
BACKGROUND/AIMS: The aim of the present study was to investigate whether short children with normal growth hormone (GH) immunoreactivity, but reduced bioactivity (bioinactive GH) could benefit from rhGH treatment as GH deficient (GHD) patients. Methods: We evaluated 12 pre-pubertal children (8 M, 4 F), with GH deficiency-like phenotype showing normal serum GH peak levels (>10 ng/ml), measured by immunofluorimetric assay (IFMA-GH), in contrast with a reduced GH bioactivity (bio-GH), evaluated using the Nb(2) cells. We also evaluated 15 age-matched GHD pre-pubertal children (11 M, 4 F) with serum GH peak <5 ng/ml. Both groups were treated with rhGH therapy at the dose of 0.23 mg/kg/week s.c. RESULTS: Serum bio-GH/IFMA-GH ratio at peak time for each patient during the provocative test was significantly lower in bioinactive GH than in GHD children (0.29 vs. 2.05, p = 0.00001). Recombinant human GH therapy induced a significant (p < 0.001) increase in growth rate in both groups during the first 2 years. In the third year of treatment, while growth rate in GHD children is maintained, in bioinactive GH patients it decreases remaining, however higher compared to the pre-treatment one. CONCLUSIONS: Short rhGH therapy given to selected bioinactive GH children improve growth rate and might result in greater final adult height.  相似文献   

13.
To establish a single and reliable test for evaluating growth hormone (GH) secretion, we examined successive GH provocation by two agents with different modes of action, GH releasing-hormone (GHRH) and arginine (Arg) in 60 children of short stature, 6 patients with pituitary dwarfism and 9 normal young adults. Their GH profiles were qualitatively classified into 4 types: 25 children and 7 adults responded to both stimuli with 2 GH peaks (48.7 +/- 4.3 [SEM] micrograms/L for GHRH and 32.2 +/- 2.6 micrograms/L for Arg in children; 25.8 +/- 7.6 micrograms/L and 30.1 +/- 9.2 micrograms/L respectively in adults) (type A). A single peak for GHRH (57.7 +/- 4.6 micrograms/L) without an Arg-induced peak was obtained in 29 younger children (type B), which is considered to be a GHRH-dominant pattern. Two of them were diagnosed as hypothalamic GHRH deficiency based on a low nocturnal plasma GH and good response to GH treatment. Six adolescents and 2 adults showed a blunted response to GHRH (9.0 +/- 1.1 micrograms/L) but a normal response to Arg (40.6 +/- 9.5 micrograms/L) (type C), which appears to be caused by somatostatin (SRIH) hypertonicity. None with pituitary dwarfism responded to both stimuli (4.5 +/- 1.3 and 2.3 +/- 0.5 micrograms/L). Thus, the GHRH-Arg test makes it possible to evaluate the counterbalance between GHRH and SRIH as well as to differentiate pituitary GH deficiency from hypothalamic GHRH dysfunction.  相似文献   

14.
Adult growth hormone deficiency (GHD) is a multifactorial disorder in which pituitary dysfunction associated with pituitary adenomas or their treatment plays a major role. The introduction of recombinant growth hormone (GH) for the treatment of GHD has opened up new treatment avenues but has also raised concerns about possible untoward long-term metabolic effects of GH, such as the potential effect of GH on insulin sensitivity and a deterioration in glucose tolerance. Research has shown that GH induces insulin resistance by the stimulation of lipolysis and a concomitant switch from oxidation of glucose to oxidation of lipids, during both acute and chronic treatment. However, although this is a consistent effect of GH therapy, it does not mean per se that it leads to abnormal glucose tolerance and diabetes mellitus. This article discusses this and other potential long-term metabolic effects of GH, and raises a number of questions to be addressed by future research.  相似文献   

15.
BACKGROUND: Elevated plasma ghrelin levels have recently been reported in adults and children with Prader-Willi syndrome (PWS). The aim of the study is to investigate the relationship between obesity, growth hormone (GH) deficiency (GHD) and ghrelinemia in PWS and to examine whether hyperghrelinemia is specific to PWS. METHODS: We measured fasting ghrelinemia in children with PWS, idiopathic GHD (iGHD), obese children, controls and in 6 children presenting another congenital syndrome associated with GHD: pituitary stalk interruption (PSI). RESULTS: Children with PWS exhibited significantly higher ghrelin levels (995 pg/ml (801/1,099, median 1st/3rd quartile)) than iGHD (517 pg/ml (392/775)), obese (396 pg/ml (145/610)) and control (605 ng/ml (413/753)) children. Similar to PWS hyperghrelinemia was found in PSI children (1,029 pg/ml (705/1,151)), and was not modified by GH treatment. CONCLUSION: We conclude that hyperghrelinemia in PWS and PSI is not related to GH secretion. We hypothesize that a major site of ghrelin action is at the hypothalamic level and that a 'ghrelin resistance' syndrome may be present in these patients, primarily due to a hypothalamic defect. Combined alterations such as impaired serotonin receptor regulation associated with abnormal ghrelin responsiveness are probably responsible for obesity in PWS.  相似文献   

16.
Much has been learned over the last two decades regarding the management of growth hormone (GH) deficiency (GHD) in children and adolescents. However, significant divergence and debate continue to exist on the ideal approach to the management of GHD. Despite active controversy, several paradigms have recently emerged which should guide the treatment of GHD patients as we head into the new millennium. The primary objectives of GH therapy remain the normalization of height in childhood and the attainment of normal adult height, but the recognition of the metabolic roles of GH define additional therapeutic benefits. A daily subcutaneous injection of recombinant human GH in a dose range of 25-50 microg/kg/day has been established as the mainstay of therapy. Alternative modes of treatment including GH-releasing hormone (GHRH), GH secretagogues and depot GH have been developed, but evaluation of their clinical utility remains incomplete. Careful monitoring and follow-up of pediatric GHD patients by a pediatric endocrinologist are essential. Accurate determination of height velocity and interval height increases (expressed as the change in height z score) continue to be the most important parameters in monitoring the response to treatment. Monitoring serum insulin-like growth factor (IGF)-I and IGF-binding protein-3 has gained utility in the assurance of compliance and safety, but does not always correlate well with the growth response. A clear role for a biochemical as well as an auxological monitoring approach has nonetheless been established. The comparison of attained growth response to that which has been calculated by various modeling approaches is also becoming a valuable monitoring tool. Significant side effects of GH therapy are quite rare and are easily identified and addressed during close follow-up. Despite previous concerns, it now appears that in the absence of additional risk factors there is no evidence that long-term recipients of GH are at any increased risk of developing diabetes, slipped capital femoral epiphysis, brain tumor recurrence or leukemia. Although GHD may or may not persist into adult life, adult GHD diagnostic criteria and the importance of GH therapy in adult GHD patients have recently been established. Therefore, the pediatric endocrinologist now has a crucial role in guiding the transition to adult GHD management in collaboration with the adult endocrinologist. In the years to come, with the continued investigation and collaborationof experts from around the world, the approach to GH treatment will undoubtedly continue to evolve and improve.  相似文献   

17.
Growth hormone (GH) deficiency in children covers a spectrum of disorders involving an impairment in GH secretion and a clinical syndrome characterized by permanent stunting of growth. Ascertaining impairments in GH secretion directly is complex, especially if GH deficiency (GHD) is isolated and not caused by congenital or acquired pituitary defects or genetic abnormalities. It has been established that the concentrations of GH-dependent peptides, such as insulin-like growth factor I (IGF-I) and IGF-binding protein 3 (IGFBP-3), are low in patients with GHD. Their levels are, however, also influenced by a multitude of factors, such as age, gender, height, liver function, nutritional status and other hormones. In addition, the type of complex formed, e.g. either binary or ternary, may influence the measurements of IGFs and their binding proteins. Therefore, levels of IGF-I and IGFBP-3 are generally lower in short children compared with age-matched norms. The reported diagnostic value of sub-normal basal levels of IGF-I and IGFBP-3 is, in terms of sensitivity and specificity, approximately 70%. Thus, definite proof of GHD can only be achieved by means of GH measurements. As the diagnosis of GHD is somewhat unlikely if IGF testing shows normal values, it is clearly advantageous to schedule these tests as part of the initial diagnostic work-up in short children, as their implementation is not only practical but also inexpensive. The Pfizer International Growth Database (KIGS) analysis of IGF-I (n = 2,750) and IGFBP-3 (n = 1,300) levels in children with idiopathic GHD shows that these two parameters are now firmly embedded in diagnostic strategies around the world.  相似文献   

18.
BACKGROUND/AIMS: The effects of growth hormone deficiency (GHD) on linear growth in children are well documented, but there is less convincing evidence regarding the impact on health-related quality of life (QOL). We examined QOL in children aged 8-16 years with acquired GHD following treatment for malignancy (AGHD) or idiopathic GHD (IGHD) on commencing growth hormone treatment (GHT) over 6 months. We adopted a longitudinal design involving consecutive patients and their families attending clinic over an 18-month period. Mothers and children were invited to complete questionnaires before GHT (T1) and 6 months later (T2). METHODS: Mothers of 22 children (AGHD n = 14; IGHD n = 8) completed standardized measures of child QOL and behaviour. Children completed parallel measures of QOL, short-term memory tasks and fitness either in clinic or at the family home. RESULTS: For children with AGHD, QOL was significantly below population norms at T1 and improved over time. For children diagnosed with IGHD, QOL at T1 was below, but comparable with population norms. QOL improved over time, though not significantly. CONCLUSION: GHT is potentially valuable for improving QOL in children, especially in cases of AGHD. We conclude that benefits of GHT for QOL need to be evaluated independent of different diagnostic groups.  相似文献   

19.
The response of growth hormone (GH) to acute administration of GH-releasing hormone 1-40 (GHRH) was evaluated in 12 patients with Turner's syndrome and in 12 prepubertal or early pubertal girls. In 7 of 12 patients GHRH induced a definite increase (greater than 10 ng/ml) of plasma GH levels. In 5 patients there was a poor GH rise after GHRH administration (less than 10 ng/ml). Overall, the mean GH response of patients was significantly lower than that of normal girls. Five out of 7 patients with a 45 X,O karyotype had a reduced GH rise after GHRH, while all patients with non X,O karyotype (mosaicism and/or 46 X,iX) had a normal GH response to GHRH. Although the cause of short stature in patients with Turner's syndrome is most likely multifactorial, a reduced pituitary GH reserve, as documented by the reduced GH response to GHRH in some of our patients, may contribute to the growth impairment in this disorder.  相似文献   

20.
The identification of adults with severe growth hormone (GH) deficiency (GHD) is not straightforward. The insulin tolerance test remains the gold standard diagnostic test, although other stimuli such as GH-releasing hormone-arginine are gaining acceptance. Insulin-like growth factor-I has a poor diagnostic sensitivity in adult-onset GHD, but is more useful in the subgroup of adults with childhood-onset GHD. Therapeutic developments include increasing recognition of the need to continue GH therapy beyond final height in young adults with severe GHD on retesting. Consensus guidelines have provided a useful algorithm to identify individuals requiring retesting and the number of tests needed. The concept of partial GHD, recognized by paediatric endocrinologists for many years, is being examined in adults with hypothalamic-pituitary disease. Preliminary evidence suggests that this entity is associated with metabolic and anthropometric abnormalities intermediate between those in severe GHD and in healthy controls. It remains to be seen whether this subgroup will derive benefit from GH therapy. To date, therapeutic benefits of GH have been demonstrated only in adults with severe GHD. It is, therefore, imperative that these individuals are unequivocally identified; the diagnosis becomes more uncertain in the presence of obesity, increasing age, and in the absence of additional pituitary hormone deficits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号