首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Lin CY  Tsai WS  Ku HM  Jan FJ 《Transgenic research》2012,21(2):231-241
Tomato-infecting begomoviruses, a member of whitefly-transmitted geminivirus, cause the most devastating virus disease complex of cultivated tomato crops in the tropical and subtropical regions. Numerous strategies have been used to engineer crops for their resistance to geminiviruses. However, nearly all have concentrated on engineering the replication-associated gene (Rep), but not on a comprehensive evaluation of the entire virus genome. In this study, Tomato leaf curl Taiwan virus (ToLCTWV), a predominant tomato-infecting begomovirus in Taiwan, was subjected to the investigation of the viral gene fragments conferring resistance to geminiviruses in transgenic plants. Ten transgenic constructs covering the entire ToLCTWV genome were fused to a silencer DNA, the middle half of N gene of Tomato spot wilt virus (TSWV), to induce gene silencing and these constructs were transformed into Nicotiana benthamiana plants. Two constructs derived from IRC1 (intergenic region flanked with 5′ end Rep) and C2 (partial C2 ORF) were able to render resistance to ToLCTWV in transgenic N. benthamiana plants. Transgenic plants transformed with two other constructs, C2C3 (overlapping region of C2 and C3 ORFs) and Rep2 (3′ end of the C1 ORF), significantly delayed the symptom development. Detection of siRNA confirmed that the mechanism of resistance was via gene silencing. This study demonstrated for the first time the screening of the entire genome of a monopartite begomovirus to discover viral DNA fragments that might be suitable for conferring virus resistance, and which could be potential candidates for developing transgenic plants with durable and broad-spectrum resistance to a DNA virus via a gene silencing approach.  相似文献   

2.
Tomato leaf curl Taiwan virus (ToLCTWV) and Tomato spotted wilt virus (TSWV) are two major tomato viruses that cause serious economic losses. In this study, a partial C2 gene from ToLCTWV and the middle half of the N gene of TSWV were fused as a chimeric transgene to develop multiple virus resistance in transgenic plants. This construct was introduced into Nicotiana benthamiana and tomato by Agrobacterium-mediated transformation. Several transgenic lines showed no symptom post agro-inoculation with ToLCTWV and displayed high resistance to TSWV. The detection of siRNAs indicated that the resistance was via RNA silencing. This study demonstrated that linkage of gene segments from two viruses with distinct genomic organization, one DNA and the other RNA, can confer multiple virus resistance in transgenic plants via gene silencing.  相似文献   

3.
Tomato yellow leaf curl disease caused by different begomovirus species leads to substantial tomato production losses worldwide. In Taiwan, the monopartite tomato leaf curl Taiwan virus (ToLCTWV) and bi-partite tomato yellow leaf curl Thailand virus (TYLCTHV) are the predominant begomovirus species causing this disease. Resistance genes are available in wild tomato species and a continuous search for new resistance genes and alternative control methods is required to respond to the rapid evolution of virus strains. RNA interference is an efficient technology to induce resistance against viral pathogens. Six different sections of the ToLCTWV genome were tested in transformed tomato for their capacity to reduce symptoms and inhibit viral DNA accumulation. The two most effective constructs for ToLCTWV infection carried regions of the C1 and C2 genes, and portions of either the C3 or C4 gene of ToLCTWV. A RNAi construct containing fusions of C1, C2 and C3 sections of ToLCTWV and the corresponding sections of the TYLCTHV DNA-A genome were introgressed into tomato line CLN1621L. R1 and R2 families were challenged using viruliferous whiteflies in separate screen houses for ToLCTWV and TYLCTHV. Sixteen and 12 R2 plants derived from one primary transformant remained symptomless until at least 3 weeks after exposure to ToLCTWV and TYLCTHV, respectively, and accumulated only very low titres of viral DNA, as shown by real-time polymerase chain reaction analysis. Our results suggest that expression of bi-viral RNAi constructs in tomato can lead to resistance against two different tomato infecting begomovirus species.  相似文献   

4.
5.
6.
Transgenic tomato plants expressing full‐length (CPV1) and truncated coat protein (CP) gene (CPV2) of Tomato leaf curl Taiwan virus (ToLCTWV) were generated by Agrobacterium‐mediated transformation. Transgene integration and expression was confirmed by PCR and Southern blotting and Northern analysis, respectively. Resistance was evaluated both in plants of T0 and T1 progenies using viruliferous whiteflies under two different inoculum pressures (10–15 and 40–50 whiteflies/plant). Upon inoculation with ToLCTWV using viruliferous whiteflies, various levels of phenotypic reaction were observed. No complete resistance was observed in any of the plants tested. The reaction of the transgenic tomato lines carrying full‐length and truncated CP gene to ToLCTWV phenotype was (i) susceptible as non‐transgenic control, (ii) delayed symptom expression, (iii) complete susceptible (from delayed symptom expression phenotype) and (iv) recovered phenotype (either plants from symptom expression as non‐transgenic plants or delayed symptom expression phenotype). Dot blot quantification of the ToLCTWV using the replicase gene as a probe revealed that the recovered phenotypes accumulated a low level of ToLCTWV, and virus concentration was gradually reduced from 10 to 14 weeks postinoculation. The possible mechanisms of CP‐mediated resistance are discussed.  相似文献   

7.
8.
It has been hypothesized that plants can get beneficial trade‐offs from viral infections when grown under drought conditions. However, experimental support for a positive correlation between virus‐induced drought tolerance and increased host fitness is scarce. We investigated whether increased virulence exhibited by the synergistic interaction involving Potato virus X (PVX) and Plum pox virus (PPV) improves tolerance to drought and host fitness in Nicotiana benthamiana and Arabidopsis thaliana. Infection by the pair PPV/PVX and by PPV expressing the virulence protein P25 of PVX conferred an enhanced drought‐tolerant phenotype compared with single infections with either PPV or PVX. Decreased transpiration rates in virus‐infected plants were correlated with drought tolerance in N. benthamiana but not in Arabidopsis. Metabolite and hormonal profiles of Arabidopsis plants infected with the different viruses showed a range of changes that positively correlated with a greater impact on drought tolerance. Virus infection enhanced drought tolerance in both species by increasing salicylic acid accumulation in an abscisic acid‐independent manner. Viable offspring derived from Arabidopsis plants infected with PPV increased relative to non‐infected plants, when exposed to drought. By contrast, the detrimental effect caused by the more virulent viruses overcame potential benefits associated with increased drought tolerance on host fitness.  相似文献   

9.
Translationally controlled tumour protein (TCTP) is a ubiquitously distributed protein in eukaryotes, involved in the regulation of several processes, including cell cycle progression, cell growth, stress protection, apoptosis and maintenance of genomic integrity. Its expression is induced during the early stages of tomato (Solanum lycopersicum) infection by the potyvirus Pepper yellow mosaic virus (PepYMV, a close relative of Potato virus Y). Tomato TCTP is a protein of 168 amino acids, which contains all the conserved domains of the TCTP family. To study the effects of TCTP silencing in PepYMV infection, Nicotiana benthamiana plants were silenced by virus‐induced gene silencing (VIGS) and transgenic tomato plants silenced for TCTP were obtained. In the early stages of infection, both tomato and N. benthamiana silenced plants accumulated less virus than control plants. Transgenic tomato plants showed a drastic reduction in symptoms and no viral accumulation at 14 days post‐inoculation. Subcellular localization of TCTP was determined in healthy and systemically infected N. benthamiana leaves. TCTP was observed in both the nuclei and cytoplasm of non‐infected cells, but only in the cytoplasm of infected cells. Our results indicate that TCTP is a growth regulator necessary for successful PepYMV infection and that its localization is altered by the virus, probably to favour the establishment of virus infection. A network with putative interactions that may occur between TCTP and Arabidopsis thaliana proteins was built. This network brings together experimental data of interactions that occur in other eukaryotes and helps us to discuss the possibilities of TCTP involvement in viral infection.  相似文献   

10.
DNA methylation is essential for normal developmental processes and genome stability. DNA methyltransferases are key enzymes catalyzing DNA methylation. Chromomethylase (CMT) genes are specific to the plant kingdom and encode chromodomain‐containing methyltransferases. However, the function of CMT genes in plants remains elusive. In this study, we isolated and characterized a CMT gene from Nicotiana benthamiana, designated NbCMT3. Alignment of the NbCMT3 amino acid sequence with other plant CMT3s showed conservation of bromo‐adjacent‐homology and methyltransferase catalytic domains. We investigated the expression patterns of NbCMT3 and its function in developmental programs. NbCMT3 was expressed predominately in proliferating tissues such as apical shoots and young leaves. NbCMT3 protein showed a nuclear location, which could be related to its putative cellular functions. Knocking down NbCMT3 expression by virus‐induced gene silencing revealed its vital role(s) in leaf morphogenesis. The formation of palisade cells was defective in NbCMT3‐silenced plants as compared with controls. NbCMT3 has a role in developmental programs.  相似文献   

11.
12.
Members of the plant Dicer‐like (DCL) protein family are the critical components of the RNA‐silencing pathway that mediates innate antiviral defence. The distinct antiviral role of each individual DCL protein has been established with mostly based on observations of aerial parts of plants. Thus, although the roots are closely associated with the life cycle of many plant viruses, little is known about the antiviral activities of DCL proteins in roots. We observed that antiviral silencing strongly inhibits potato virus X (PVX) replication in roots of some susceptible Solanaceae species. Silencing of the DCL4 homolog in Nicotiana benthamiana partially elevated PVX replication levels in roots. In Arabidopsis thaliana, which was originally considered a non‐host plant of PVX, high levels of PVX accumulation in inoculated leaves were achieved by inactivation of DCL4, while in the upper leaves and roots, it required the additional inactivation of DCL2. In transgenic A. thaliana carrying the PVX amplicon with a green fluorescent protein (GFP) gene insertion in the chromosome (AMP243 line), absence of DCL4 enabled high levels of PVX‐GFP accumulation in various aerial organs but not in the roots, suggesting that DCL4 is critical for intracellular antiviral silencing in shoots but not in roots, where it can be functionally compensated by other DCL proteins. Together, the high level of functional redundancies among DCL proteins may contribute to the potent antiviral activities against PVX replication in roots.  相似文献   

13.
Although the Sw‐5 gene cluster has been cloned, and Sw‐5b has been identified as the functional gene copy that confers resistance to Tomato spotted wilt virus (TSWV), its avirulence (Avr) determinant has not been identified to date. Nicotiana tabacum ‘SR1‘ plants transformed with a copy of the Sw‐5b gene are immune without producing a clear visual response on challenge with TSWV, whereas it is shown here that N. benthamiana transformed with Sw‐5b gives a rapid and conspicuous hypersensitive response (HR). Using these plants, from all structural and non‐structural TSWV proteins tested, the TSWV cell‐to‐cell movement protein (NSM) was confirmed as the Avr determinant using a Potato virus X (PVX) replicon or a non‐replicative pEAQ‐HT expression vector system. HR was induced in Sw‐5b‐transgenic N. benthamiana as well as in resistant near‐isogenic tomato lines after agroinfiltration with a functional cell‐to‐cell movement protein (NSM) from a resistance‐inducing (RI) TSWV strain (BR‐01), but not with NSM from a Sw‐5 resistance‐breaking (RB) strain (GRAU). This is the first biological demonstration that Sw‐5‐mediated resistance is triggered by the TSWV NSM cell‐to‐cell movement protein.  相似文献   

14.
The screening of differentially expressed genes in plants after pathogen infection can uncover the potential host factors required for the pathogens. In this study, an up‐regulated gene was identified and cloned from Nicotiana benthamiana plants after Bamboo mosaic virus (BaMV) inoculation. The up‐regulated gene was identified as a member of the Rab small guanosine triphosphatase (GTPase) family, and was designated as NbRABG3f according to its in silico translated product with high identity to that of RABG3f of tomato. Knocking down the expression of NbRABG3f using a virus‐induced gene silencing technique in a protoplast inoculation assay significantly reduced the accumulation of BaMV. A transiently expressed NbRABG3f protein in N. benthamiana plants followed by BaMV inoculation enhanced the accumulation of BaMV to approximately 150%. Mutants that had the catalytic site mutation (NbRABG3f/T22N) or had lost their membrane‐targeting capability (NbRABG3f/ΔC3) failed to facilitate the accumulation of BaMV in plants. Because the Rab GTPase is responsible for vesicle trafficking between organelles, a mutant with a fixed guanosine diphosphate form was used to identify the donor compartment. The use of green fluorescent protein (GFP) fusion revealed that GFP‐NbRABG3f/T22N clearly co‐localized with the Golgi marker. In conclusion, BaMV may use NbRABG3f to form vesicles derived from the Golgi membrane for intracellular trafficking to deliver unidentified factors to its replication site; thus, both GTPase activity and membrane‐targeting ability are crucial for BaMV accumulation at the cell level.  相似文献   

15.
Tomato apex necrosis virus (ToANV, species Tomato marchitez virus, genus Torradovirus, family Secoviridae) causes a severe tomato disease in Mexico. One distinctive feature of torradoviruses compared with other members of the family Secoviridae is the presence of an additional open reading frame (ORF) in genomic RNA2 (denominated RNA2‐ORF1), located upstream of ORF2. RNA2‐ORF2 encodes a polyprotein that is processed into a putative movement protein and three capsid proteins (CPs). The RNA2‐ORF1 protein has homologues only amongst other torradoviruses and, so far, no function has been associated with it. We used recombinant and mutant ToANV clones to investigate the role of the RNA2‐ORF1 protein in various aspects of the virus infection cycle. The lack of a functional RNA2‐ORF1 resulted in an inability to systemically infect Nicotiana benthamiana and tomato plants, but both positive‐ and negative‐strand RNA1 and RNA2 accumulated locally in agroinfiltrated areas in N. benthamiana plants, indicating that the RNA2‐ORF1 mutants were replication competent. Furthermore, a mutant with a deletion in RNA2‐ORF1 was competent for virion formation and cell‐to‐cell movement in the cells immediately surrounding the initial infection site. However, immunological detection of the ToANV CPs in the agroinfiltrated areas showed that this mutant was not detected in the sieve elements even if the surrounding parenchymatic cells were ToANV positive, suggesting a role for the RNA2‐ORF1 protein in processes occurring prior to phloem uploading, including efficient spread in inoculated leaves.  相似文献   

16.
17.
The accumulation of heat shock protein 70 (Hsp70) generally occurs in plants infected with viruses. However, the effect of Hsp70 accumulation on plant viral infection and pathogenesis remains elusive. In this study, the expression of six Hsp70 genes was found to be induced by the four diverse RNA viruses, Tobacco mosaic virus, Potato virus X (PVX), Cucumber mosaic virus and Watermelon mosaic virus, in Nicotiana benthamiana. Heat treatment enhanced the accumulation and systemic infection of these viruses. Similar results were obtained for viral infection in plants heterologously expressing an Arabidopsis cytoplasmic Hsp70 through either a PVX vector or Agrobacterium infiltration. In contrast, viral infection was compromised in cytoplasmic NbHsp70c‐1 gene‐silenced plants. These data demonstrate that the cytoplasmic Hsp70s can enhance the infection of N. benthamiana by diverse viruses.  相似文献   

18.
Tomato cultivars containing the Tm-22 resistance gene have been widely known to resist tobacco mosaic virus (TMV) and tomato mosaic virus. Tomato brown rugose fruit virus (ToBRFV), a new emerging tobamovirus, can infect tomato plants carrying the Tm-22 gene. However, the virulence determinant of ToBRFV that overcomes the resistance conferred by the Tm-22 gene remains unclear. In this study, we substituted the movement protein (MP) encoding sequences between ToBRFV and TMV infectious clones and conducted infectivity assays. The results showed that MP was the virulence determinant for ToBRFV to infect Tm-22 transgenic Nicotiana benthamiana plants and Tm-22-carrying tomato plants. A TMV MP chimera with amino acid residues 60–186 of ToBRFV MP failed to induce hypersensitive cell death in the leaves of Tm-22 transgenic N. benthamiana plants. Chimeric TMV containing residues 60–186 of ToBRFV MP could, but chimeric ToBRFV containing 61–187 residues of TMV MP failed to infect Tm-22 transgenic N. benthamiana plants, indicating that 60–186 residues of MP were important for ToBRFV to overcome Tm-22 gene-mediated resistance. Further analysis showed that six amino acid residues, H67, N125, K129, A134, I147, and I168 of ToBRFV MP, were critical in overcoming Tm-22-mediated resistance in transgenic N. benthamiana plants and tomato plants. These results increase our understanding of the mechanism by which ToBRFV overcomes Tm-22-mediated resistance.  相似文献   

19.
20.
Infection caused by the synergistic interaction of two plant viruses is typically manifested by severe symptoms and increased accumulation of either virus. In potex–potyviral synergism, the potyviral RNA silencing suppressor helper component proteinase (HCPro) is known to enhance the pathogenicity of the potexvirus counterpart. In line with this, Potato virus X (PVX; genus Potexvirus) genomic RNA (gRNA) accumulation and gene expression from subgenomic RNA (sgRNA) are increased in Nicotiana benthamiana by Potato virus A (PVA; genus Potyvirus) HCPro expression. Recently, we have demonstrated that PVA HCPro interferes with the host cell methionine cycle by interacting with its key enzymes S‐adenosyl‐l ‐methionine synthetase (SAMS) and S‐adenosyl‐l ‐homocysteine hydrolase (SAHH). To study the involvement of methionine cycle enzymes in PVX infection, we knocked down SAMS and SAHH. Increased PVX sgRNA expression between 3 and 9 days post‐infiltration (dpi) and upregulation of (–)‐strand gRNA accumulation at 9 dpi were observed in the SAHH‐silenced background. We found that SAMS and SAHH silencing also caused a significant reduction in glutathione (GSH) concentration, specifically in PVX‐infected plants between 2 and 9 dpi. Interestingly, HCPro expression in PVX‐infected plants caused an even stronger reduction in GSH levels than did SAMS + SAHH silencing and a similar level of reduction was also achieved by knocking down GSH synthetase. PVX sgRNA expression was increased in the GSH synthetase‐silenced background. GSH is a major antioxidant of plant cells and therefore GSH shortage may explain the strong oxidative stress and severe symptoms observed during potex–potyvirus mixed infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号