首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
We have previously reported the expression of four different maize D cyclins during seed germination and showed that cytokinins and auxins stimulate the expression of every cyclin in a differential way. In this paper we characterize the behavior at the protein level of two of these cyclins, CycD5 and CycD4;1. Antibodies were raised against CycD5;2 (which very likely also recognizes D5;1) and CycD4;1 and Western blot studies demonstrated that neither BA nor indol-3 acetic acid (IAA) stimulate cyclin accumulation during germination, compared with control levels. However, phytohormones, particularly IAA, modify the kinase activity associated to D cyclins preferentially at early hours of germination. The associated kinase moiety to D cyclins appears to be of a Cdk-A type because this protein immunoprecipitates with D cyclins and because kinase activity is strongly inhibited by both olomoucine and also by a peptide corresponding to the carboxy end of a maize kip related protein (KRP) protein. There is thus no correlation between mRNA and protein expression for these maize D cyclins during seed germination, although phytohormones may stimulate a signaling cascade that stimulates activation of protein kinase activity in cyclin–Cdk complexes.  相似文献   

2.
3.
4.
5.
In mammals, D-type cyclin-associated kinases mainly regulate the G1/S transition by phosphorylating the retinoblastoma (Rb) protein. We previously demonstrated that in tobacco, cyclin D (Nicta; CycD3;3) is complexed with the PSTAIRE-containing cyclin-dependent kinase (CDKA) from tobacco. Here, we show that Nicta; CycD3;3-associated kinases phosphorylate both the tobacco Rb-related protein (NtRb1) and histone H1. Although NtRb1 kinase activity was detected only during the middle G1- to early S-phase, histone H1 kinase activity was observed as two peaks in G1- to S-phase and G2/M- to M-phase. Importantly, we show that the proportion of cells in the G1-phase was reduced in transgenic Bright Yellow-2 cells overexpressing Nicta; CycD3;3-GFP. Mutational analyses revealed that phosphorylation of Thr-191 in Nicta; CycD3;3 possibly is required for both full kinase activity and localization predominantly to the nucleus. These data suggest that Nicta; CycD3;3 acts as a rate-limiting regulator in the G1/S transition by forming active complexes with CDKA or its related kinases to phosphorylate Rb-related protein and potentially plays a novel role during G2/M and mitosis.  相似文献   

6.
Nakai T  Kato K  Shinmyo A  Sekine M 《FEBS letters》2006,580(1):336-340
Arabidopsis contains seven Kip-related protein (KRP) genes encoding CDK (cyclin-dependent kinase) inhibitors (CKIs), which shares a restricted similarity with mammalian p27Kip1. Here, we analyze the characteristics of the KRPs. Although KRP1-KRP7 interact with active cyclin D2 (CYCD2)/CDKA and CYCD2/CDKB complexes to a similar extent, they inhibit kinase activity to a different extent. Our results suggest that inhibitory activity is related to the binding ability between KRP proteins and cyclin/CDK complexes, but secondary and tertiary structure may be also involved. These data provide the first evidence that KRPs inhibit kinase activity associated with plant-specific CDKB.  相似文献   

7.
The proliferating cell nuclear antigen (PCNA) is a protein factor required for processive DNA synthesis that is associated with G(1) cell cycle proteins. It has been demonstrated previously that, in germinating maize (Zea mays) embryonic axes, PCNA forms protein complexes with two Cdk-A proteins (32 and 36 kDa) and with a putative D-type cyclin. These complexes exhibit protein kinase activity on histone H1 and on the maize homologue of the pRB (retinoblastoma) protein. Flow cytometry has been used to study the influence of the phytohormones benzyladenine (BA) and abscisic acid (ABA) on cell cycle advancement during maize germination. It was found that, while BA accelerates the passage of cells from G(1) to G(2), ABA delays cell cycle events so that most cells seem to remain in G(1). The amounts of PCNA and Cdk-A proteins also vary according to the hormone treatment. In embryonic axes, PCNA increases rapidly during early germination in BA, compared with a gradual increase in water, while ABA treatment had only a marginal effect. However, of the two Cdk-A proteins, the 32 kDa protein is strongly reduced after 15 h of imbibition in water while this occurs later when axes are imbibed in BA or ABA. The PCNA-associated protein kinase activity in the BA and ABA treatments falls after 3 h of imbibition compared with activity in the control; however, while kinase activity in the BA treatment continues to decline during imbibition, it remains relatively constant until 24 h of imbibition in the ABA treatment. By contrast, a p13(Suc1)-associated Cdk-A kinase is activated after 15 h of imbibition under all treatments, particularly in ABA. These results suggest that, in maize, ABA delays the germination process by affecting cell cycle advancement, stopping cells mostly in a G(1) state.  相似文献   

8.
9.
Although activation of A-type cyclin-dependent kinase (CDKA) is required for plant cell division, little is known about how CDKA is activated before commitment to cell division. Here, we show that auxin is required for the formation of active CDKA-associated complexes, promoting assembly of the complex in tobacco suspension culture Bright Yellow-2 (BY-2) cells. Protein gel blot analysis revealed that CDKA levels increased greatly after stationary-phase BY-2 cells were subcultured into fresh medium to re-enter the cell cycle. However, these increasing levels subsided when cells were subcultured into auxin-deprived medium, and a subtle increase was observed after subculturing into sucrose-deprived medium. Additionally, p13(suc1)-associated kinase activity did not increase significantly after subculturing into either auxin- or sucrose-deprived medium, but increased strongly after subculturing into medium containing both auxin and sucrose. Using gel filtration, we found that p13(suc1)-associated kinase activity against tobacco retinoblastoma-related protein was maximal in fractions corresponding to the molecular mass of the cyclin/CDKA complex. Interestingly, this peak distribution of high molecular-mass fractions of CDKA disappeared after cells were subcultured into auxin-deprived medium. These findings suggest an important role for auxin in the assembly of active CDKA-associated complexes.  相似文献   

10.
11.
Ostreococcus tauri (Prasinophyceae) is a marine unicellular green alga which diverged early in the green lineage. The interest of O. tauri as a potential model to study plant cell division is based on its key phylogenetic position, its simple binary division, a very simple cellular organisation and now the availability of the full genome sequence. In addition O. tauri has a minimal yet complete set of cell cycle control genes. Here we show that division can be naturally synchronised by light/dark cycles and that organelles divide before the nucleus. This natural synchronisation, although being only partial, enables the study of the expression of CDKs throughout the cell cycle. The expression patterns of OtCDKA and OtCDKB were determined both at the mRNA and protein levels. The single OtCDKA gene is constantly expressed throughout the cell cycle, whereas OtCDKB is highly regulated and expressed only in S/G2/M phases. More surprisingly, OtCDKA is not phosphorylated at the tyrosine residue, in contrast to OtCDKB which is strongly phosphorylated during cell division. OtCDKA kinase activity appears before the S phase, indicating a possible role of this protein in the G1/S transition. OtCDKB kinase activity occurs later than OtCDKA, and its tyrosine phosphorylation is correlated to G2/M, suggesting a possible control of the mitotic activity. To our knowledge this is the first organism in the green lineage which showed CDKB tyrosine phosphorylation during cell cycle progression.  相似文献   

12.
13.
Endosperm development in maize (Zea mays L.) and related cereals comprises a cell proliferation stage followed by a period of rapid growth coupled to endoreduplication. Regulation of the cell cycle in developing endosperm is poorly understood. We have characterized various subunits of cyclin-dependent kinase (CDK) complexes, master cell cycle regulators in all eukaryotes. A-, B-, and D-type cyclins as well as A- and B-type cyclin-dependent kinases were characterized with respect to their RNA and protein expression profiles. Two main patterns were identified: one showing expression throughout endosperm development, and another characterized by a sharp down-regulation with the onset of endoreduplication. Cyclin CYCB1;3 and CYCD2;1 proteins were distributed in the cytoplasm and nucleus of cells throughout the endosperm, while cyclin CYCD5 protein was localized in the cytoplasm of peripheral cells. CDKB1;1 expression was strongly associated with cell proliferation. Expression and cyclin-binding patterns suggested that CDKA;1 and CDKA;3 are at least partially redundant. The kinase activity associated with the cyclin CYCA1 was highest during the mitotic stage of development, while that associated with CYCB1;3, CYCD2;1 and CYCD5 peaked at the mitosis-to-endoreduplication transition. A-, B- and D-type cyclins were more resistant to proteasome-dependent degradation in endoreduplicating than in mitotic endosperm extracts. These results indicated that endosperm development is characterized by differential expression and activity of specific cyclins and CDKs, and suggested that endoreduplication is associated with reduced cyclin proteolysis via the ubiquitin–proteasome pathway.  相似文献   

14.
Growth of tomato fruits is determined by cell division and cell expansion, which are tightly controlled by factors that drive the core cell cycle. The cyclin-dependent kinases (CDKs) and their interacting partners, the cyclins, play a key role in the progression of the cell cycle. In this study the role of CDKA1, CDKB1, and CDKB2 in fruit development was characterized by fruit-specific overexpression and down-regulation. CDKA1 is expressed in the pericarp throughout development, but is strongly up-regulated in the outer pericarp cell layers at the end of the growth period, when CDKB gene expression has ceased. Overexpression of the CDKB genes at later stages of development and the down-regulation of CDKA1 result in a very similar fruit phenotype, showing a reduction in the number of cell layers in the pericarp and alterations in the desiccation of the fruits. Expression studies revealed that CDKA1 is down-regulated by the expression of CDKB1/2 in CDKB1 and CDKB2 overexpression mutants, suggesting opposite roles for these types of CDK proteins in tomato pericarp development.  相似文献   

15.
In most plants, sucrose is the major transported carbon source. Carbon source availability in the form of sucrose is likely to be a major determinant of cell division, and mechanisms must exist for sensing sugar levels and mediating appropriate control of the cell cycle. We show that sugar availability plays a major role during the G(1) phase by controlling the expression of CycD cyclins in Arabidopsis. CycD2 mRNA levels increase within 30 min of the addition of sucrose; CycD3 is induced after 4 h. This corresponds to induction of CycD2 expression early in G(1) and CycD3 expression in late G(1) near the S-phase boundary. CycD2 and CycD3 induction is independent both of progression to a specific point in the cell cycle and of protein synthesis. Protein kinase activity of CycD2- and CycD3-containing cyclin-dependent kinases is consistent with the observed regulation of their mRNA levels. CycD2 and CycD3 therefore act as direct mediators of the presence of sugar in cell cycle commitment. CycD3, but not CycD2, expression responds to hormones, for which we show that the presence of sugars is required. Finally, protein phosphatases are shown to be involved in regulating CycD2 and CycD3 induction. We propose that control of CycD2 and CycD3 by sucrose forms part of cell cycle control in response to cellular carbohydrate status.  相似文献   

16.
17.
Somatic embryogenesis (SE) of Cyathea delgadii presents a model system for investigating the mechanisms associated with the acquisition of embryogenic competence by single epidermal cells of stipe explants cultured on plant growth regulator-free medium. The present work reveals relationship between endogenous hormone and sugar content in the process of early SE in C. delgadii. By comparing two types of initial explants, i.e. incapable (non-etiolated) and capable (etiolated) of SE, it was established that in etiolated explants, the glucose, fructose, sucrose, and abscisic acid (ABA) contents diminished, but indole-3-acetic acid (IAA) and cytokinins (CKs; i.e. cis/trans zeatin, cis/trans-zeatin riboside, kinetin, kinetin riboside, isopentenyladenosine) contents increased. The ratios between phytohormones revealed that a high concentration of ABA is the main factor inhibiting SE induction. Because of explant excision, a dramatic reduction in concentration of all phytohormones studied was observed, but hormonal balance and sugar content remained almost unchanged. During the 14-day-long culture, the ABA/CKs and ABA/IAA ratios remained constant, whereas the greatest differences were detected for the IAA/CKs and Z-type/iPA cytokinin ratios. Excluding day 6 of culture, cytokinins were found to be the predominant phytohormones over IAA. An almost 12-fold increase in soluble sucrose concentration at day 6 of culture might be the switch to the SE expression phase. Frequent cell divisions leading to somatic embryo formation are clearly associated with increase in trans-zeatin riboside content.  相似文献   

18.
Induction of defense responses by pathogens or elicitors is often accompanied by growth inhibition in planta, but its molecular mechanisms are poorly understood. In this report, we characterized the molecular events that occur during cryptogein-induced cell cycle arrest at G(2) phase in synchronously cultured tobacco Bright Yellow-2 (BY-2) cells. Concomitant with the proteinaceous elicitor-induced G(2) arrest, we observed inhibition of the histone H1 kinase activity of cyclin-dependent kinases (CDKs), which correlated with a decrease in mRNA and protein levels of CDKB1. In contrast, the amount of CDKA was almost unaffected by cryptogein even at M phase. Cryptogein rapidly inhibited the expression not only of positive, e.g. A- and B-type cyclins and NtCAK, but also of negative cell cycle regulators such as WEE1, suggesting that cryptogein affects multiple targets to inactivate CDKA to induce G(2) arrest by mechanisms distinct from known checkpoint regulation. Moreover, we show that CDKB1 and cyclin proteins are also rapidly degraded by cryptogein and that the proteasome-dependent protein degradation has a crucial role in the control of cryptogein-induced hypersensitive cell death.  相似文献   

19.
A putative G1 cyclin gene, Antma;CycD1;1 (CycD1), from Antirrhinum majus is known to be expressed throughout the cell cycle in the meristem and other actively proliferating cells. To test its role in cell cycle progression, we examined the effect of CycD1 expression in the tobacco (Nicotiana tabacum) cell suspension culture BY-2. Green fluorescent protein:CycD1 is located in the nucleus throughout interphase. Using epitope-tagged CycD1, we show that it interacts in vivo with CDKA, a cyclin dependent protein kinase that acts at both the G1/S and the G2/M boundaries. We examined the effect of induced expression at different stages of the cell cycle. Expression in G0 cells accelerated entry into both S-phase and mitosis, whereas expression during S-phase accelerated entry into mitosis. Consistent with acceleration of both transitions, the CycD1-associated cyclin dependent kinase can phosphorylate both histone H1 and Rb proteins. The expression of cyclinD1 led to the early activation of total CDK activity, consistent with accelerated cell cycle progression. Continuous expression of CycD1 led to moderate increases in growth rate. Therefore, in contrast with animal D cyclins, CycD1 can promote both G0/G1/S and S/G2/M progression. This indicates that D cyclin function may have diverged between plants and animals.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号