首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In January and February 2010, heavy sea ice formed along the coast of the Bohai Sea and the northern Yellow Sea, China. Intertidal organisms were subjected to serious freezing stress. In this study, we investigated the freezing tolerance of the upper intertidal economic seaweed Porphyra yezoensis. The maximum photochemical efficiency of PS II (F v/F m) in undehydrated thalli remained high after 24 h at −2°C and that in dehydrated thalli decreased in a proportion to thallial water loss. F v/F m dropped sharply after 24 h at −20°C, regardless of absolute cellular water content (AWC). The F v/F m in frozen thalli recovered rapidly at 0–20°C. A wide range of water loss in the thalli enhanced their tolerance to freezing. F v/F m values in undehydrated thalli dropped sharply after 3 d at −2°C or 10 d at −20°C while those in dehydrated thalli (20–53% AWCs) remained at high levels after 9 d at −2°C or 30 d at −20°C. These results indicate that P. yezoensis has high freezing tolerance by means of dehydration during the ebb tide and rapid recovery of F v/F m from freezing. A strategy of P. yezoensis industry to avoid heavy loss during freezing season is discussed based on these findings.  相似文献   

2.
Knowledge concerning the effects of several abiotic factors on the physiology of carrageenophytes is essential both in ecological and economic standpoints, to ensure their sufficient supply for the sustainability of seaweed‐based industries. This paper presents the photosynthetic characteristics of farmed carrageenophytes, E ucheuma denticulatum and K appaphycus alvarezii [brown (BRN) and green (GRN) color morphotypes] from Sulawesi Utara (Sulawesi Island), Indonesia, as determined by examining their photosynthetic response across different temperatures and irradiances using dissolved oxygen measurements and pulse‐amplitude modulated fluorometer. Net photosynthesis–irradiance ( P E ) curves at 26°C revealed that net photosynthetic rates of the three seaweeds gradually increased until the estimated saturation irradiances ( E k ) of 58 μmol photons m? 2 s?1 (49–68 μmol photons m? 2 s?1, 95% Bayesian prediction intervals; BPI) for E . denticulatum, and 158 and 143 μmol photons m? 2 s?1 (134–185 and 99–203 μmol photons m? 2 s?1, 95% BPI) for BRN and GRN K . alvarezii, respectively; and that no photoinhibition was observed at the highest irradiance of 1000 μmol photons m? 2 s?1. All seaweed samples exhibited photosynthetic tolerance to high PAR as shown by their recovery in maximum quantum yields (Fv / Fm ) following chronic exposures; as well as tolerance over a broad range of temperature, which is from 19 to 33°C for E . denticulatum, 20–29°C for BRN K . alvarezii, and 17–32°C for GRN K . alvarezii. Temperature responses of these carrageenophytes indicated that they were well‐adapted to the annual seawater temperatures in the cultivation site; however, they are also likely close to threshold levels for thermal inhibition, given the decline in Fv / Fm above 30°C.  相似文献   

3.
The effects of irradiance, temperature, thermal‐ and chilling‐light sensitivities on the photosynthesis of a temperate alga, Sargassum macrocarpum (Fucales) were determined by a pulse amplitude modulation (PAM)‐chlorophyll fluorometer and dissolved oxygen sensors. Oxygenic photosynthesis–irradiance curves at 8, 20, and 28°C revealed that the maximum net photosynthetic rates (NP max) and saturation irradiance were highest at 28°C, and lowest at 8°C. Gross photosynthesis and dark respiration determined over a range of temperatures (8–36°C) at 300 μmol photons m?2 s?1 revealed that the maximum gross photosynthetic rate (GPmax) occurred at 27.8°C, which is consistent with the highest seawater temperature in the southern distributional limit of this species in Japan. Additionally, the maximum quantum yields of photosystem II (F v/F m) during the 72‐h temperature exposures were stable at 8–28°C, but suddenly dropped to zero at higher temperatures, indicative of PSII deactivation. Continuous exposure (12 h) to irradiance of 200 (low) and 1000 (high) μmol photons m?2 s?1 at 8, 20, and 28°C revealed greater declines in their effective quantum yields (Φ PSII) under high irradiance. While Φ PSII under low irradiance were very similar with the initial F v/F m under 20 and 28°C, values rapidly decreased with exposure duration at 8°C. At this temperature, F v/F m did not recover to initial values even after 12 h of dark acclimation. Final F v/F m of alga at 28°C under high irradiance treatment also did not recover, suggesting its sensitivity to photoinhibition at both low and high temperatures. These photosynthetic characteristics reflect both the adaptation of the species to the general environmental conditions, and its ability to acclimate to seasonal changes in seawater temperature within their geographical range of distribution.  相似文献   

4.
Porphyra yezoensis Ueda is an important marine aquaculture crop with single‐layered gametophytic thalli. In this work, the influences of thallus dehydration level, cold‐preservation (freezing) time, and thawing temperature on the photosynthetic recovery of young P. yezoensis thalli were investigated employing an imaging pulse‐amplitude‐modulation (PAM) fluorometer. The results showed that after 40 d of frozen storage when performing thallus thawing under 10°C, the water content of the thalli showed obvious effects on the photosynthetic recovery of the frozen thalli. The thalli with absolute water content (AWC) of 10%–40% manifested obvious superiority compared to the thalli with other AWCs, while the thalli thawed at 20°C showed very high survival rate (93.10%) and no obvious correlation between thallus AWCs and thallus viabilities. These results indicated that inappropriate thallus water content contributed to the cell damage during the freeze‐thaw cycle and that proper thawing temperature is very crucial. Therefore, AWC between 10% and 40% is the suitable thallus water content range for frozen storage, and the thawing process should be as short as possible. However, it is also shown that for short‐term cold storage the Porphyra thallus water content also showed no obvious effect on the photosynthetic recovery of the thalli, and the survival rate was extremely high (100%). These results indicated that freezing time is also a paramount contributor of the cell damage during the freeze‐thaw cycle. Therefore, the frozen nets should be used as soon as time permits.  相似文献   

5.
Thermotolerance of photosynthesis in salt‐adapted Atriplex centralasiatica plants (100–400 mm NaCl) was evaluated in this study after detached leaves and whole plants were exposed to high temperature stress (30–48 °C) either in the dark or under high light (1200 mol m?2 s?1). In parallel with the decrease in stomatal conductance, intercellular CO2 concentration and CO2 assimilation rate decreased significantly with increasing salt concentration. There was no change in the maximal efficiency of PSII photochemistry (Fv/Fm) with increasing salt concentration, suggesting that there was no damage to PSII in salt‐adapted plants. On the other hand, there was a striking difference in the response of PSII and CO2 assimilation capacity to heat stress in non‐salt‐adapted and salt‐adapted leaves. Leaves from salt‐adapted plants maintained significantly higher Fv/Fm values than those from non‐salt‐adapted leaves at temperatures higher than 42 °C. The Fv/Fm differences between non‐salt‐adapted and salt‐adapted plants persisted for at least 24 h following heat stress. Leaves from salt‐adapted plants also maintained a higher net CO2 assimilation rate than those in non‐salt‐adapted plants at temperatures higher than 42 °C. This increased thermotolerance was independent of the degree of salinity since no significant changes in Fv/Fm and net CO2 assimilation rate were observed among the plants treated with different concentrations of NaCl. The increased thermotolerance of PSII induced by salinity was still evident when heat treatments were carried out under high light. Given that photosynthesis is considered to be the physiological process most sensitive to high temperature damage, increased thermotolerance of photosynthesis may be of significance since A. centralasiatica, a typical halophyte, grows in the high salinity regions in the north of China, where the temperature in the summer is often as high as 45 °C.  相似文献   

6.
Many laboratories have solely used the Wilson isolate to physiologically characterize the harmful algal bloom (HAB) dinoflagellate Karenia brevis (C. C. Davis) G. Hansen et Moestrup. However, analysis of one isolate may lead to misinterpretations when extrapolating measurements to field populations. In this study, pulse‐amplitude‐modulated chlorophyll fluorometer (PAM‐FL) relative electron transport rate (ETR), Fv/Fm, and chl were compared with traditional techniques, such as 14C photosynthesis versus irradiance (P–E) curves, DCMU [3‐(3′,4′‐dichlorophenyl)‐1,1‐dimethyl urea] Fv/Fm, and extracted chl. The DCMU and PAM‐FL values of Fv/Fm (r2 = 0.51) and chl (r2 = 0.58) were in good agreement. There was no correlation between 14C and PAM‐FL α, Pmax, and β parameters because PAM‐FL ETR was only a relative measurement. The PAM‐FL techniques were then used to investigate P–E curves, quantum yield of PSII (Fv/Fm), and chl from 10 K. brevis isolates to determine whether one or all isolates would better represent the species. Comparisons were made with a radial photosynthetron, which allowed for controlled conditions of light and temperature. Isolate α, Pmax, and β varied between 0.097 and 0.204 μmol e? · m?2 · s?1 · (μmol quanta · m?2 · s?1)?1, 80.41 and 241 μmol e? · m?2 · s?1, and 0.005 and 0.160 μmol e? · m?2 · s?1 · (μmol quanta · m?2 · s?1)?1, respectively. Either carbon limitation and/or bacterial negative feedback were implicated as the cause of the P–E parameter variability. Furthermore, these results directly contradicted some literature suggestions that K. brevis is a low‐light‐adapted dinoflagellate. Results showed that K. brevis was more than capable of utilizing and surviving in light conditions that may be present on cloudless days off Florida.  相似文献   

7.
Sensitivity to cold and freezing differs between populations within two species of live oaks (Quercus section Virentes Nixon) corresponding to the climates from which they originate. Two populations of Quercus virginiana (originating from North Carolina and north central Florida) and two populations of the sister species, Q. oleoides, (originating from Belize and Costa Rica) were grown under controlled climate regimes simulating tropical and temperate conditions. Three experiments were conducted in order to test for differentiation in cold and freezing tolerance between the two species and between the two populations within each species. In the first experiment, divergences in response to cold were tested for by examining photosystem II (PS II) photosynthetic yield (ΔF/F m′) and non-photochemical quenching (NPQ) of plants in both growing conditions after short-term exposure to three temperatures (6, 15 and 30°C) under moderate light (400 μmol m−2 s−1). Without cold acclimation (tropical treatment), the North Carolina population showed the highest photosynthetic yield in response to chilling temperatures (6°C). Both ecotypes of both species showed maximum ΔF/F m′ and minimum NPQ at their daytime growth temperatures (30°C and 15°C for the tropical and temperate treatments, respectively). Under the temperate treatment where plants were allowed to acclimate to cold, the Q. virginiana populations showed greater NPQ under chilling temperatures than Q. oleoides populations, suggesting enhanced mechanisms of photoprotective energy dissipation in the more temperate species. In the second and third experiments, inter- and intra-specific differentiation in response to freezing was tested for by examining dark-adapted F v/F m before and after overnight freezing cycles. Without cold acclimation, the extent of post-freezing declines in F v/F m were dependent on the minimum freezing temperature (0, −2, −5 or −10°C) for both populations in both species. The most marked declines in F v/F m occurred after freezing at −10°C, measured 24 h after freezing. These declines were continuous and irreversible over the time period. The North Carolina population, however, which represents the northern range limit of Q. virginiana, showed significantly less decline in F v/F m than the north central Florida population, which in turn showed a lower decline in Fv/F m than the two Q. oleoides populations from Belize and Costa Rica. In contrast, after exposure to three months of chilling temperatures (temperate treatment), the two Q. virginiana populations showed no decline in F v/F m after freezing at −10°C, while the two Q. oleoides populations showed declines in F v/F m reaching 0.2 and 0.1 for Costa Rica and Belize, respectively. Under warm growth conditions, the two species showed different F 0 dynamics directly after freezing. The two Q. oleoides populations showed an initial rise in F 0 30 min after freezing, followed by a subsequent decrease, while the Q. virginiana populations showed a continuous decrease in F 0 after freezing. The North Carolina population of Q. virginiana showed a tendency toward deciduousness in response to winter temperatures, dropping 58% of its leaves over the three month winter period compared to only 6% in the tropical treatment. In contrast, the Florida population dropped 38% of its leaves during winter. The two populations of the tropical Q. oleoides showed no change in leaf drop during the 3-months winter (10% and 12%) relative to their leaf drop over the same timecourse in the tropical treatment. These results indicate important ecotypic differences in sensitivity to freezing and cold stress between the two populations of Q. virginiana as well as between the two species, corresponding to their climates of origin.  相似文献   

8.
Understanding of the physiological responses of kelp to environmental parameters is crucial, especially in the context of environmental change that may have contributed to the decline of kelp forests all over the world. The current study presents the photosynthetic characteristics of the macroscopic sporophyte and microscopic gametophyte stages of the brown alga Alaria crassifolia from Hokkaido, Japan, as determined by examining their photosynthetic responses over a range of temperature and irradiance using dissolved oxygen and chlorophyll fluorescence measurements. Net photosynthetic rates of the sporophyte were consistently higher than those of gametophyte across temperature gradients and irradiance levels. Photosynthesis–irradiance curves at 8°C, 16°C, and 20°C revealed similar initial slopes (α = 0.4–0.9) on the two life history stages, but higher compensation (E c = 4–7 μmol photons m?2 s?1) and saturation irradiances (E k = 53–103 μmol photons m?2 s?1) for the sporophyte than for the gametophyte (E c = 0–7 μmol photons m?2 s?1; E k = 7–10 μmol photons m?2 s?1). Both stages exhibited chronic photoinhibition, as shown by the failure of recovery in their maximum quantum yields (F v/F m) following high irradiance stress, with greater possibility of photodamage at low temperature. Gametophytes were less sensitive to low temperatures than sporophytes, given their relatively stable F v/F m response. Nevertheless, temperature optima for photosynthesis of both stages coincide with each other at 20–23°C, which correspond to the growth and maturation periods of A. crassifolia in Japan. This species is also likely to suffer from thermal inhibition as both GP rates and F v/F m decreased above 24°C.  相似文献   

9.
P. Giorio 《Photosynthetica》2011,49(3):371-379
Tomato and pepper leaves were clipped with black leaf clips for dark adaptation under solar radiation in the late spring or early summer 2010 in southern Italy. The leaves showed highly variable maximum PSII quantum yield (Fv/Fm = 0.026−0.802) using a continuous-excitation fluorometer Pocket PEA. These results were confirmed using the modulated fluorometer FMS1 on tomato leaves in mid summer, with Fv/Fm as low as 0.222 ± 0.277 due to nearly equal minimum (Fo) and maximum (Fm) fluorescence emission. A significant clip effect on Fv/Fm occurred after only 12 (tomato) or 25 (pepper) min. Increasing the leaf temperature from 25 to 50°C reportedly induced an Fo increase and Fm decrease so that Fv/Fm approached zero. The hypothesis that black leaf clips overheated under intense solar irradiance was verified by shrouding the clipped leaves with aluminum foil. In clipped leaves of pepper, Fv/Fm with the black clip/Pocket-PEA was 0.769 ± 0.025 (shrouded) and as low as 0.271 ± 0.163 (nonshrouded), the latter showing a double Fo and 32% lower Fm. An 8% clip effect on Fv/Fm was observed with the white clip/FMS1. To avoid the clip effect in high irradiance environments, Fv/Fm measurements with black clip/Pocket PEA system required leaf dark adaptation with radiation-reflecting shrouds. It would be useful if manufacturing companies could develop better radiation-reflecting leaf clips for the Pocket PEA fluorometer.  相似文献   

10.
The photochemical efficiency of symbiotic dinoflagellates within the tissues of two reef‐building corals in response to normal and excess irradiance at water temperatures < 30 °C were investigated using pulse amplitude modulated (PAM) chlorophyll fluorescence techniques. Dark‐adapted Fv/Fm showed clear diurnal changes, decreasing to a low at solar noon and increasing in the afternoon. However, Fv/Fm also drifted downwards at night or in prolonged darkness, and increased rapidly during the early morning twilight. This parameter also increased when the oxygen concentration of the water holding the corals was increased. Such changes have not been described previously, and most probably reflect state transitions associated with PQ pool reduction via chlororespiration. These unusual characteristics may be a feature of an endosymbiotic environment, reflective of the well‐documented night‐time tissue hypoxia that occurs in corals. Fv/Fm decreased to 0·25 in response to full sunlight in shade‐acclimated (shade) colonies of Stylophora pistillata, which is considerably lower than in light‐acclimated (sun) colonies. In sun colonies, the reversible decrease in Fv/Fm was caused by a lowering of Fm and Fo suggesting photoprotection and no lasting damage. The decrease in Fv/Fm, however, was caused by a decrease in Fm and an increase in Fo in shade colonies suggesting photoinactivation and long‐term cumulative photoinhibition. Shade colonies rapidly lost their symbiotic algae (bleached) during exposure to full sunlight. This study is consistent with the hypothesis that excess light leads to chronic damage of symbiotic dinoflagellates and their eventual removal from reef‐building corals. It is significant that this can occur with high light conditions alone.  相似文献   

11.
This study examined the utility of the ratio of variable fluorescence to maximum fluorescence (Fv/Fm) to detect freezing injury on buds of two Vitis vinifera cultivars: Pinot noir and Pinot gris. Freezing treatments on buds caused a decrease both in Fv/Fm and percentage of budburst, more severely on Pinot gris than Pinot noir, specifically at the lower temperature (−20°C). Fv/Fm ratio showed a close correlation with percentage of budburst, and a threshold of the lethal Fv/Fm was proposed as an indicator of bud mortality.  相似文献   

12.
Primary photochemistry of photosystem II (F v/F m) of the Antarctic hair grass Deschampsia antarctica growing in the field (Robert Island, Maritime Antarctic) and in the laboratory was studied. Laboratory plants were grown at a photosynthetic photon flux density (PPFD) of 180 μmol m−2 s−1 and an optimal temperature (13 ± 1.5°C) for net photosynthesis. Subsequently, two groups of plants were exposed to low temperature (4 ± 1.5°C day/night) under two levels of PPFD (180 and 800 μmol m−2 s−1) and a control group was kept at 13 ± 1.5°C and PPFD of 800 μmol m−2 s−1. Chlorophyll fluorescence was measured during several days in field plants and weekly in the laboratory plants. Statistically significant differences were found in F v/F m (=0.75–0.83), F 0 and F m values of field plants over the measurement period between days with contrasting irradiances and temperature levels, suggesting that plants in the field show high photosynthetic efficiency. Laboratory plants under controlled conditions and exposed to low temperature under two light conditions showed significantly lower F v/F m and F m. Moreover, they presented significantly less chlorophyll and carotenoid content than field plants. The differences in the performance of the photosynthetic apparatus between field- and laboratory-grown plants indicate that measurements performed in ex situ plants should be interpreted with caution.  相似文献   

13.
A canopy photosynthesis model was modified to assess the effect of photoinhibition on whole‐plant carbon gain. Photoinhibitory changes in maximum quantum yield of photosystem II (Fv/Fm) could be explained solely from a parameter (Lflux) calculated from the light micro‐environment of the leaves. This relationship between Fv/Fm and the intercepted cumulative light dose, integrated and equally weighted over several hours was incorporated into the model. The effect of photoinhibition on net photosynthesis was described through relationships between photoinhibition and the shaping parameters of the photosynthetic light‐response curve (quantum use efficiency, convexity, and maximum capacity). This new aspect of the model was then validated by comparing measured field data (diurnal courses of Fv/Fm) with simulation results. Sensitivity analyses revealed that the extent of photoinhibitory reduction of whole‐plant photosynthesis was strongly dependent on the structural parameters (LAI and leaf angle). Simulations for a Mediterranean evergreen oak, Quercus coccifera, under climatic conditions which cause mild photoinhibition revealed a daily loss of 7·5–8·5% of potential carbon gain in the upper sunlit canopy layers, a 3% loss in the bottom canopy, and an overall loss of 6·1%. Thus, this canopy photoinhibition model (CANO‐PI) allows the quantitative evaluation of photoinhibition effects on primary production.  相似文献   

14.
Temperate kelp forests (Laminarians) are threatened by temperature stress due to ocean warming and photoinhibition due to increased light associated with canopy loss. However, the potential for evolutionary adaptation in kelp to rapid climate change is not well known. This study examined family‐level variation in physiological and photosynthetic traits in the early life‐cycle stages of the ecologically important Australasian kelp Ecklonia radiata and the response of E. radiata families to different temperature and light environments using a family × environment design. There was strong family‐level variation in traits relating to morphology (surface area measures, branch length, branch count) and photosynthetic performance (Fv/Fm) in both haploid (gametophyte) and diploid (sporophyte) stages of the life‐cycle. Additionally, the presence of family × environment interactions showed that offspring from different families respond differently to temperature and light in the branch length of male gametophytes and oogonia surface area of female gametophytes. Negative responses to high temperatures were stronger for females vs. males. Our findings suggest E. radiata may be able to respond adaptively to climate change but studies partitioning the narrow vs. broad sense components of heritable variation are needed to establish the evolutionary potential of E. radiata to adapt under climate change.  相似文献   

15.
Micro glucose biosensors were used to measure net extracellular glucose produced by natural microphytobenthos and three diatom cultures (Amphora coffeaeformis, Navicula menisculus, Nitzschia longissima) from southern Tasmania, Australia. They were exposed to a light gradient in either nutrient‐replete or nutrient‐limiting conditions. Glucose exudation in the natural communities increased with increased light but the response in the cultures was variable. Similarly, nutrient‐replete conditions elicited lower rates of glucose exudation in the natural communities but produced variable species‐specific responses in the cultures. Increased glucose exudation mostly correlated with a reduction in maximum quantum yield (Fv/Fm). The same trend was observed in the natural communities for relative maximum electron transfer rates (rETRmax) but responses in the cultures were again variable and species‐specific. Responses of the three species to increased light and nutrient deficiency were variable, although glucose exudation, Fv/Fm and rETRmax was mostly lower in the nutrient‐limited media. In a second set of experiments species/communities were treated with/without antibiotics. In the dark, glucose concentrations in treatments with antibiotics remained unchanged, while in those with bacteria, it fell rapidly. In the sediment communities, glucose consumption in the dark was ~25% the rate of exudation at the highest light level. In culture, exudation rates were up to 100% greater than those with active bacteria. Rates of glucose consumption in the dark in the antibiotic–treated samples were negligible and up to 104 times lower than those with active bacteria. These results demonstrate the important role extracellular glucose exudation has on maintaining an active microbial loop.  相似文献   

16.
Sinocalycanthus chinensis Cheng et S. Y. Chang (Calycanthaceae), which has a unique systematic status, is listed as a national second‐class protected plant of China. In this study, the genetic diversity, performance, and fitness of F1 progeny from crosses between the Damingshan (DMS) population of S. chinensis and pollen parents from the Daleishan (DLS) and Longxushan (LXS) populations were examined. The DLS population has a relatively small population size, low genetic diversity, and considerable geographical and genetic distances from the DMS population relative to the LXS population. Compared with naturally occurring seeds, DLS‐sired seeds had the highest thousand‐seed weight, starch content, fat content, germination rate, germination index, and emergence rate, but the lowest protein content. Naturally occurring, open‐pollinated seeds had the lowest thousand‐seed weight, starch content, and fat content, but the highest protein content. Compared with natural F1 progeny, DMS × DLS seedlings had the highest genetic diversity, photosynthetic parameters, and growth characteristics, except for leaf mass ratio and stem mass ratio. Under strong light, DMS × DLS seedlings exhibited a Fv/Fm value of 0.75, while the other two seedling types exhibited Fv/Fm values of 0.65. DLS‐sired seeds had the most vigorous growth characteristics except for leaf mass ratio and stem mass ratio. These results suggest that genetic rescue by transplanting seedlings from the DLS population or hand pollination with pollen from the DLS population would be effective methods to reduce inbreeding depression and obtain strong offspring with high genetic diversity and fitness in the DMS population.  相似文献   

17.

The effects of temperature, irradiance, and desiccation on the photosynthesis of a cultivated Japanese green alga Caulerpa lentillifera (Caulerpaceae) were determined by a pulse amplitude modulation (PAM)-chlorophyll fluorometer and dissolved oxygen sensors. The photochemical efficiency in the photosystem II (Fv/Fm and ΔF/Fm') during the 72-h temperature exposures (8, 12, 16, 20, 24, 28, 32, 36, and 40°C) was generally stable at 16–32°C but quickly dropped at lower and higher temperatures. The photosynthesis–temperature curve at 200 μmol photons m?2 s?1 also revealed that the maximum gross photosynthesis (GPmax) occurred at 30.7°C (30.5–30.9, 95% highest density credible intervals). Photosynthesis–irradiance curves at 16, 24, and 32°C quickly saturated, then expressed photoinhibition, and revealed that the maximum net photosynthetic rates (NPmax) and saturation irradiance (Ek) were highest at 32°C and lowest at 16°C. Continuous 6-h exposure to irradiances of 200 (low) and 400 (high) μmol photons m?2 s?1 at 16, 24, and 32°C expressed greater declines in their ΔF/Fm' at 16°C, revealing chronic chilling-light stress. The response to continuous desiccation (~480 min) under 50% humidity at 24°C showed that ΔF/Fm' dropped to zero at 480-min aerial exposure, and the treatments of more than 60-min desiccation did not return to the initial level even after 24-h subsequent rehydration in seawater. Likewise, ΔF/Fm' fell when the absolute water content (AWC) of the frond dropped below AWC of 90% and mostly did not return to the initial level even after 24-h subsequent rehydration in seawater, signifying a low tolerance to desiccation.

  相似文献   

18.
The chlorophyll fluorescence parameter Fv/Fm reflects the maximum quantum efficiency of photosystem II (PSII) photochemistry and has been widely used for early stress detection in plants. Previously, we have used a three‐tiered approach of phenotyping by Fv/Fm to identify naturally existing genetic variation for tolerance to severe heat stress (3 days at 40°C in controlled conditions) in wheat (Triticum aestivum L.). Here we investigated the performance of the previously selected cultivars (high and low group based on Fv/Fm value) in terms of growth and photosynthetic traits under moderate heat stress (1 week at 36/30°C day/night temperature in greenhouse) closer to natural heat waves in North‐Western Europe. Dry matter accumulation after 7 days of heat stress was positively correlated to Fv/Fm. The high Fv/Fm group maintained significantly higher total chlorophyll and net photosynthetic rate (PN) than the low group, accompanied by higher stomatal conductance (gs), transpiration rate (E) and evaporative cooling of the leaf (ΔT). The difference in PN between the groups was not caused by differences in PSII capacity or gs as the variation in Fv/Fm and intracellular CO2 (Ci) was non‐significant under the given heat stress. This study validated that our three‐tiered approach of phenotyping by Fv/Fm performed under increasing severity of heat was successful in identifying wheat cultivars differing in photosynthesis under moderate and agronomically more relevant heat stress. The identified cultivars may serve as a valuable resource for further studies to understand the physiological mechanisms underlying the genetic variability in heat sensitivity of photosynthesis.  相似文献   

19.
Uptake rates of dissolved inorganic phosphorus and dissolved inorganic nitrogen under unsaturated and saturated conditions were studied in young sporophytes of the seaweeds Saccharina latissima and Laminaria digitata (Phaeophyceae) using a “pulse‐and‐chase” assay under fully controlled laboratory conditions. In a subsequent second “pulse‐and‐chase” assay, internal storage capacity (ISC) was calculated based on VM and the parameter for photosynthetic efficiency Fv/Fm. Sporophytes of S. latissima showed a VS of 0.80 ± 0.03 μmol · cm?2 · d?1 and a VM of 0.30 ± 0.09 μmol · cm?2 · d?1 for dissolved inorganic phosphate (DIP), whereas VS for DIN was 11.26 ± 0.56 μmol · cm?2 · d?1 and VM was 3.94 ± 0.67 μmol · cm?2 · d?1. In L. digitata, uptake kinetics for DIP and DIN were substantially lower: VS for DIP did not exceed 0.38 ± 0.03 μmol · cm?2 · d?1 while VM for DIP was 0.22 ± 0.01 μmol · cm?2 · d?1. VS for DIN was 3.92 ± 0.08 μmol · cm?2 · d?1 and the VM for DIN was 1.81 ± 0.38 μmol · cm?2 · d?1. Accordingly, S. latissima exhibited a larger ISC for DIP (27 μmol · cm?2) than L. digitata (10 μmol · cm?2), and was able to maintain high growth rates for a longer period under limiting DIP conditions. Our standardized data add to the physiological understanding of S. latissima and L. digitata, thus helping to identify potential locations for their cultivation. This could further contribute to the development and modification of applications in a bio‐based economy, for example, in evaluating the potential for bioremediation in integrated multitrophic aquacultures that produce biomass simultaneously for use in the food, feed, and energy industries.  相似文献   

20.
We determined the effect of irradiance and temperature on the photosynthesis of two heteromorphic life‐history stages of an endangered freshwater red alga, Thorea gaudichaudii (Thoreales) by laboratory and field measurements. Net oxygenic photosynthesis–irradiance models of macroscopic and microscopic life‐history stages revealed similar low irradiance‐adapted responses, with a compensation irradiance (Ec) of 6.71 and 2.56 μmol photons m?2 s?1 (4.30–9.13 and 0.13–7.19, 95% Bayesian prediction interval, BPI) and saturating irradiance (Ek) of 26.6 and 30.0 μmol photons m?2 s?1 (19.0–37.4 and 12.1–63.0, BPI), respectively. A temperature‐dependent model of net photosynthesis and dark respiration in macroscopic and microscopic stages also showed similar temperature responses, and the gross photosynthetic rate (GPmax), 3.54 and 6.34 μg O2 gww?1 min?1 (3.10–3.99 and 5.31–8.21, BPI), was highest at 32.1 and 35.7°C (29.8–34.0 and 29.5–48.6, BPI). The maximum quantum yields (F v/F m) in macroscopic and microscopic stages were also similar in response with respect to temperature; however, it was somewhat steady at low temperatures with the highest value of 0.54 and 0.62 (0.54–0.55 and 0.61–0.63, BPI) at 17.8 and 15.0°C (16.7–18.8 and 12.3–17.1, BPI). The effective quantum yield (Φ PSII) in macroscopic and microscopic stages was also negatively correlated with irradiance, which decreased after 12 h of continuous exposure to 50 (low) and 1000 (high) μmol photons m?2 s?1 at 12 and 22°C. Large declines of Φ PSII and subsequent failure of F v/F m recovery were particularly enhanced at high irradiance, signifying photoinhibition. Diurnal change of Φ PSII and incident irradiance of the macroscopic stage under the field measurement revealed the midday depression of Φ PSII; however, there was little direct sunlight due to shading by the trees, and algae were occurring in the shaded locations in the freshwater spring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号