首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
2.
In the climate change scenario the drought has been diagnosed as major stress affecting crop productivity. This review demonstrates some recent findings on the amelioration of drought stress. Nanoparticles, synthetic growth regulators viz. Trinexapac-ethyl, and Biochar addition helps to economize the water budget of plants, enhances the bioavailability of water and nutrients as well as overcomes drought induced osmotic and oxidative stresses. Besides ABA, SA and JA are also involved in inducing tolerance to drought stress through modulation of physiological and biochemical processes in plants. Plant growth promoting rhizobacteria (PGPR) offer new opportunities in agricultural biotechnology. These beneficial microorganisms colonize the rhizosphere/endo-rhizosphere of plants and impart drought tolerance by improving root architechture, enhancing water use efficiency, producing exopolysaccharides, phytohormones viz, ABA, SA and IAA and volatile compounds. Further PGPR also play positive role in combating osmotic and oxidative stresses induced by drought stress through enhancing the accumulation of osmolytes, antioxidants and upregulation or down regulation of stress responsive genes. In transgenic plants stress inducible genes enhanced abiotic stress tolerance by encoding key enzymes regulating biosynthesis of compatible solutes. The role of genes/cDNAs encoding proteins involved in regulating other genes/proteins, signal transduction process and strategies to improve drought stress tolerance have also been discussed.  相似文献   

3.
Rhizosphere bacteria that colonize plant roots and confer beneficial effects are referred as plant growth promoting rhizobacteria (PGPR). Among all PGPR, some rhizobacteria have an ability to produce ACC deaminase enzyme. This enzyme catalyzes stress ACC into a-ketobutyrate and ammonia instead of letting it to be converted to ethylene. Ethylene level rises in plants under stress conditions i.e., drought, salinity, poor soil fertility etc. As poor soil fertility is a big hurdle to achieve the optimum yield of crops, inoculation of ACC deaminase PGPR can overcome this problem to some extent. The aim of the current study was to examine the influence of multi-strain and single-strain inoculation of different ACC deaminase producing PGPR on wheat growth and yield. There were three PGPR strains, Enterobacter cloacae, Serratia ficaria and Burkholderia phytofirmans which were used as consortia and single-strain inoculations. The results showed that inoculation of E. cloacae + S. ficaria + B. phytofirmans significantly increased plant height (63%), spike length (61%), number of spikelets spike-1 (61%), number of grains spike-1 (131%), 1000 grains weight (33%), grains yield (71%), straw yield (71%) and biological yield (68%) of wheat as compared to control. A significant improvement in N (37 and 200%), P (46 and 166%) and K (39 and 61%) of seeds and shoot respectively, validated the efficacious and more effective role of multi-strain (E. cloacae + S. ficaria + B. phytofirmans) inoculation over control. It is obviously concluded that multi-strain ACC deaminase producing PGPR inoculation is a better approach as compared to singlestrain inoculation for the improvement in growth and yield of wheat.  相似文献   

4.
5.
6.

Aims

Bacteria possessing ACC deaminase activity reduce the level of stress ethylene conferring resistance and stimulating growth of plants under various biotic and abiotic stresses. The present study aims at isolating efficient ACC deaminase producing PGPR strains from the rhizosphere of rice plants grown in coastal saline soils and quantifying the effect of potent PGPR isolates on rice seed germination and seedling growth under salinity stress and ethylene production from rice seedlings inoculated with ACC deaminase containing PGPR.

Methods

Soils from root region of rice growing in coastal soils of varying salinity were used for isolating ACC deaminase producing bacteria and three bacterial isolates were identified following polyphasic taxonomy. Seed germination, root growth and stress ethylene production in rice seedlings following inoculation with selected PGPR under salt stress were quantified.

Results

Inoculation with selected PGPR isolates had considerable positive impacts on different growth parameters of rice including germination percentage, shoot and root growth and chlorophyll content as compared to uninoculated control. Inoculation with the ACC deaminase producing strains reduced ethylene production under salinity stress.

Conclusions

This study demonstrates the effectiveness of rhizobacteria containing ACC deaminase for enhancing salt tolerance and consequently improving the growth of rice plants under salt-stress conditions.  相似文献   

7.
Longan species (Dimocarpus longan Lour.) exhibit a high agronomic potential in many subtropical regions worldwide; however, little is known about its responses to abiotic stress conditions. Drought and salinity are the most environmental factors inducing negative effects on plant growth and development. In order to elucidate the responses of longan to drought and salinity, seedlings were grown under conditions of drought and salt stresses. Drought was imposed by suspending water supply leading to progressive soil dehydration, and salinity was induced using two concentrations of NaCl, 100 and 150 mM in water solution, for 64 days. Data showed that salt concentrations increased foliar abscisic acid (ABA) and only 150 mM NaCl reduced indole-3-acetic acid (IAA) and increased proline levels. NaCl treatments also increased Na+ and Cl? content in plant organs proportionally to salt concentration. Drought increased leaf ABA but did not change IAA concentrations, and also increased proline synthesis. In addition, drought and salt stresses reduced the photosynthesis performance; however, only drought decreased leaf growth and relative leaf water content. Overall, data indicate that under severe salt stress, high ABA accumulation was accompanied by a reduction of IAA levels; however, drought strongly increased ABA but did not change IAA concentrations. Moreover, drought and high salinity similarly increased (or maintained) ion levels and proline synthesis. Data also suggest that ABA accumulation may mitigate the impact of salt stress through inducing stomatal closure and delaying water loss, but did not mediate the effects of long-term drought conditions probably because leaves reached a strong dehydration and the role of ABA at this stage was not effective to detain leaf injuries.  相似文献   

8.
9.
In order to assess whether salt tolerance could be Improved In spring wheat (Triticum aestivum L.), the present study was performed by soaking the seeds of two cultlvars, namely MH-97 (salt sensitive) and Inqlab-91 (salt tolerant), for 12 h In distilled water or 100 mol/m^3 CaCl2, KCI, or NaCI. Primed seeds from each treatment group and non-primed seeds were sown In a field In which NaCI salinity of 15 dS/m was developed. Priming of seeds with CaCl2, followed by priming with KCI and NaCI, was found to be effective In alleviating the adverse effects of salt stress on both wheat cultivars In terms of shoot fresh and dry weights and grain yield. Priming with CaCl2 alleviated the adverse effects of salt stress on hormonal balance In plants of both cultlvars. In MH-97 plants, CaCl2 pretreatment considerably reduced leaf absclslc acid (ABA) concentrations and Increased leaf free salicylic acid (SA) concentrations under both saline and non-saline conditions. In contrast, In the Inqlab-91 plant, CaCl2 Increased free Indoleacetic acid (IAA) and indolebutyrlc acid (IBA) content. However, priming of seeds with CaCl2 did not alter free polyamlne levels in either cultlvar, although spermldlne levels were considerably lower In plants raised from seeds treated with CaCl2 for both cultlvars under saline conditions. Priming with KCI Increased growth In Inqlab-91 plants, but not In MH-97 plants, under saline conditions. The salinity Induced reducUon In auxins (IAA and IBA) was alleviated by NaCI priming In both cultlvars under saline conditions. However, NaCI Increased leaf free ABA content and lowered leaf SA and putresclne levels In Inqlab-91 plants under saline conditions. In conclusion, although all three priming agents (I.e. CaCl2, KCI, and NaCI) were effective In alleviating the adverse effects of salt stress on wheat plants, their effects on altering the levels of different plant hormones were different In the two cuItlvars.  相似文献   

10.
11.
【目的】从在干旱、高盐碱生境下生长的盐生杂类草根际土壤中分离具有耐盐和促生性能的根际微生物,并研究其促生特性,为改良旱区土壤盐碱化提供优质菌种资源和理论基础。【方法】通过选择培养基筛选具有耐盐、解磷和解钾能力的菌株,再检测菌株产生长激素(indole-3-acetic acid,IAA)、产1-氨基环丙烷-1-羧酸(1-aminocyclopropane-1-carboxylate,ACC)脱氨酶、产铁载体以及产胞外多糖的能力,选择性状优良者通过拮抗实验组建复合菌剂。并采用菌液侵染萝卜和玉米种子验证菌株对在盐胁迫下种子发芽率和植株在干旱与盐双重胁迫下生长的影响。最后通过16S rRNA基因测序进行分子生物学鉴定。【结果】得到3株具有良好耐盐促生能力的根际微生物yl923、hs032和hy127,菌株yl923兼具解磷(46.29 mg/L)、解钾(58.07 mg/L)、产IAA(29.23 mg/L)、产ACC脱氨酶(13.83 U/mg)和产铁载体(SU=0.43)能力,菌株hs032具有最强产IAA(61.18mg/L)和产铁载体(SU=0.23)能力,菌株hy127具有最强产ACC脱氨酶(15.29U/mg)能力。经16SrRNA基因序列分析后分别将yl923和hs032鉴定为枯草芽孢杆菌(Bacillus subtilis),hy127鉴定为巨大普里斯特氏菌(Priestia megaterium)。3株菌互不拮抗可组建复合菌剂,2%混合菌液可提高种子在盐胁迫下种子发芽率(77%),对干旱和盐胁迫下玉米的根长、株高、干重和叶绿素也都有显著的提高(P<0.05),并且可以显著地降低玉米体内丙二醛(malondialdehyde,MDA)含量(60%)。【结论】菌株yl923、hs032和hy127具有优秀的耐盐促生性能,组合成的混合菌剂能在干旱和盐胁迫下促进植物的生长,具有改良旱区盐渍化土壤的潜力。  相似文献   

12.
In maize (Zea mays), the mitogen‐activated protein kinase ZmMPK5 has been shown to be involved in abscisic acid (ABA)‐induced antioxidant defence and to enhance the tolerance of plants to drought, salt stress and oxidative stress. However, the underlying molecular mechanisms are poorly understood. Here, using ZmMPK5 as bait in yeast two‐hybrid screening, a protein interacting with ZmMPK5 named ZmABA2, which belongs to a member of the short‐chain dehydrogenase/reductase family, was identified. Pull‐down assay and bimolecular fluorescence complementation analysis and co‐immunoprecipitation test confirmed that ZmMPK5 interacts with ZmABA2 in vitro and in vivo. Phosphorylation of Ser173 in ZmABA2 by ZmMPK5 was shown to increase the activity of ZmABA2 and the protein stability. Various abiotic stimuli induced the expression of ZmABA2 in leaves of maize plants. Pharmacological, biochemical and molecular biology and genetic analyses showed that both ZmMPK5 and ZmABA2 coordinately regulate the content of ABA. Overexpression of ZmABA2 in tobacco plants was found to elevate the content of ABA, regulate seed germination and root growth under drought and salt stress and enhance the tolerance of tobacco plants to drought and salt stress. These results suggest that ZmABA2 is a direct target of ZmMPK5 and is involved in ABA biosynthesis and functions.  相似文献   

13.
Light and abiotic stress both strongly modulate plant growth and development. However, the effect of light‐responsive factors on growth and abiotic stress responses in wheat (Triticum aestivum) is unknown. G–box binding factors (GBFs) are blue light‐specific components, but their function in abiotic stress responses has not been studied. Here we identified a wheat GBF1 gene that mediated both the blue light‐ and abiotic stress‐responsive signaling pathways. TaGBF1 was inducible by blue light, salt and exposure to abscisic acid (ABA). TaGBF1 interacted with a G–box light‐responsive element in vitro and promoted a blue‐light response in wheat and Aradidopsis thaliana. Both TaGBF1 over‐expression in wheat and its heterologous expression in A. thaliana heighten sensitivity to salinity and ABA, but its knockdown in wheat conferred resistance to high salinity and ABA. The expression of AtABI5, a key component of the ABA signaling pathway in A. thaliana, and its homolog Wabi5 in wheat was increased by transgenic expression of TaGBF1. The hypersensitivity to salt and ABA caused by TaGBF1 was not observed in the abi5 mutant background, showing that ABI5 is the mediator in TaGBF1‐induced abiotic stress responses. However, the hypersensitivity to salt conferred by TaGBF1 is not dependent on light. This suggests that TaGBF1 is a common component of blue light‐ and abiotic stress‐responsive signaling pathways.  相似文献   

14.
15.
16.
17.
18.
19.
20.
In this report we address the changes in the expression of the genes involved in ROS scavenging and ethylene biosynthesis induced by the inoculation of plant growth-promoting rhizobacteria (PGPR) isolated from potato rhizosphere. The two Bacillus isolates used in this investigation had earlier demonstrated a striking influence on potato tuberization. These isolates showed enhanced 1-aminocyclopropane-1-carboxylic acid deaminase activity, phosphate solubilization, and siderophore production. Potato plants inoculated with these PGPR isolates were subjected to salt, drought, and heavy-metal stresses. The enhanced mRNA expression levels of the various ROS-scavenging enzymes and higher proline content in tubers induced by PGPR-treated plants contributed to increased plant tolerance to these abiotic stresses. Furthermore, the photosynthetic performance indices of PGPR-inoculated plants clearly exhibited a positive influence of these bacterial strains on the PSII photochemistry of the plants. Overall, these results suggest that the PGPR isolates used in this study are able to confer abiotic stress tolerance in potato plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号