首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 58 毫秒
1.
Light effect on cultures of microalgae has been studied mainly on single species cultures. Cyanobacteria have photosynthetic pigments that can capture photons of wavelengths not available to chlorophylls. A native Louisiana microalgae (Chlorella vulgaris ) and cyanobacteria (Leptolyngbya sp.) co‐culture was used to study the effects of light quality (blue–467 nm, green–522 nm, red–640 nm and white–narrow peak at 450 nm and a broad range with a peak at 550 nm) at two irradiance levels (80 and 400 μmol m?2 s?1) on the growth, species composition, biomass productivity, lipid content and chlorophyll‐a production. The co‐culture shifted from a microalgae dominant culture to a cyanobacteria culture at 80 μmol m?2 s?1. The highest growth for the cyanobacteria was observed at 80 μmol μmol m?2 s?1 and for the microalgae at 400 μmol m?2 s?1. Red light at 400 μmol m?2 s?1 had the highest growth rate (0.41 d?1), biomass (913 mg L?1) and biomass productivity (95 mg L?1 d?1). Lipid content was similar between all light colors. Green light had the highest chlorophyll‐a content (1649 μg/L). These results can be used to control the species composition of mixed cultures while maintaining their productivity.  相似文献   

2.
We determined the effects of cultivation conditions (nitrogen source, salinity, light intensity, temperature) on the composition of polyunsaturated fatty acids (PUFAs) and the production of eicosapentaenoic acid (EPA) in the laboratory cultured eustigmatophycean microalga, Trachydiscus minutus. T. minutus was capable of utilizing all nitrogen compounds tested (potassium nitrate, urea, ammonium nitrate, ammonium carbonate) with no differences in growth and only minor differences in fatty acid (FA) compositions. Ammonium carbonate was the least appropriate for lipid content and EPA production, while urea was as suitable as nitrates. Salinity (0.2 % NaCl) slightly stimulated EPA content and inhibited growth. Increasing salinity had a marked inhibitory effect on growth and PUFA composition; salinity at or above 0.8 % NaCl was lethal. Both light intensity and temperature had a distinct effect on growth and FA composition. The microalga grew best at light intensities of 470–1,070 μmol photons m?2 s?1 compared to 100 μmol photons m?2 s?1, and at 28 °C; sub-optimal temperatures (20, 33 °C) strongly inhibited growth. Saturated fatty acids increased with light intensity and temperature, whereas the reverse trend was found for PUFAs. Although the highest level of EPA (as a proportion of total FAs) was achieved at a light intensity of 100 μmol photons m?2 s?1 (51.1?± 2.8 %) and a temperature of 20 °C (50.9?±?0.8 %), the highest EPA productivity of about 30 mg L?1?day?1 was found in microalgae grown at higher light intensities, at 28 °C. Overall, for overproduction of EPA in microalgae, we propose that outdoor cultivation be used under conditions of a temperate climatic zone in summer, using urea as a nitrogen source.  相似文献   

3.
4.
Using microcosm experiments, we investigated the interactive effects of temperature and light on specific growth rates of three species each of the phytoplanktonic genera Cryptomonas and Dinobryon. Several species of these genera play important roles in the food web of lakes and seem to be sensitive to high water temperature. We measured growth rates at three to four photon flux densities ranging from 10 to 240 μmol photon · m?2 · s?1 and at 4–5 temperatures ranging from 10°C to 28°C. The temperature × light interaction was generally strong, species specific, and also genus specific. Five of the six species studied tolerated 25°C when light availability was high; however, low light reduced tolerance of high temperatures. Growth rates of all six species were unaffected by temperature in the 10°C–15°C range at light levels ≤50 μmol photon · m?2 · s?1. At high light, growth rates of Cryptomonas spp. increased with temperature until the temperature optimum was reached and then declined. The Dinobryon species were less sensitive than Cryptomonas spp. to photon flux densities of 40 μmol photon · m?2 · s?1 and 200 μmol photon · m?2 · s?1 over the entire temperature range but did not grow under a combination of very low light (10 μmol photon · m?2 · s?1) and high temperature (≥20°C). Among the three Cryptomonas species, cell volume declined with temperature and the maximum temperature tolerated was negatively related to cell size. Since Cryptomonas is important food for microzooplankton, these trends may affect the pelagic carbon flow if lake warming continues.  相似文献   

5.
The toxigenic diatom Pseudo‐nitzschia cuspidata, isolated from the U.S. Pacific Northwest, was examined in unialgal batch cultures to evaluate domoic acid (DA) toxicity and growth as a function of light, N substrate, and growth phase. Experiments conducted at saturating (120 μmol photons · m?2 · s?1) and subsaturating (40 μmol photons · m?2 · s?1) photosynthetic photon flux density (PPFD), demonstrate that P. cuspidata grows significantly faster at the higher PPFD on all three N substrates tested [nitrate (NO3?), ammonium (NH4+), and urea], but neither cellular toxicity nor exponential growth rates were strongly associated with one N source over the other at high PPFD. However, at the lower PPFD, the exponential growth rates were approximately halved, and the cells were significantly more toxic regardless of N substrate. Urea supported significantly faster growth rates, and cellular toxicity varied as a function of N substrate with NO3?‐supported cells being significantly more toxic than both NH4+‐ and urea‐supported cells at the low PPFD. Kinetic uptake parameters were determined for another member of the P. pseudodelicatissima complex, P. fryxelliana. After growth of these cells on NO3? they exhibited maximum specific uptake rates (Vmax) of 22.7, 29.9, 8.98 × 10?3 · h?1, half‐saturation constants (Ks) of 1.34, 2.14, 0.28 μg‐at N · L?1, and affinity values (α) of 17.0, 14.7, 32.5 × 10?3 · h?1/(μg‐at N · L?1) for NO3?, NH4+ and urea, respectively. These labo‐ratory results demonstrate the capability of P. cuspidata to grow and produce DA on both oxidized and reduced N substrates during both exponential and stationary growth phases, and the uptake kinetic results for the pseudo‐cryptic species, P. fryxelliana suggest that reduced N sources from coastal runoff could be important for maintenance of these small pennate diatoms in U.S. west coast blooms, especially during times of low ambient N concentrations.  相似文献   

6.
The interactions between Hg2+, Ce3+, and the mixuure of Ce3+ and Hg2+, and DNA from fish intestine in vitro were investigated by using absorption spectrum and fluorescence emission spectrum. The ultraviolet absorption spectra indicated that the addition of Hg2+, Ce3+, and the mixture of Ce3+ and Hg2+ to DNA generated an obviously hypochromic effect. Meanwhile, the peak of DNA at 205.2 nm blue-shifted and at 258.2 nm red-shifted. The size of the hypochromic effect and the peak shift of DNA by metal ion treatments was Hg2+>Hg2++Ce3+>Ce3+. The fluorescence emission spectra showed that with the addition of Hg2+, Ce3+, and the mixture of Ce3+ and Hg2+ the emission peak at about 416.2 nm of DNA did not obviously change, but the intensity reduced gradually and the sequence was Hg2+>Hg2++Ce2+>Ce3+. Hg2+, Ce3+, and the mixture of Ce3+ and Hg2+ had 1.12, 0.19, and 0.41 binding sites to DNA, respectively; the fluorescence quenching of DNA caused by the metal ions all attributed to static quenching. The binding constants (K A ) of binding siees were 8.98×104 L/mol and 1.02×104 L/mol, 5.12×104 L/mol and 1.10×103 L/mol, 6.66×104 L/mol and 2.36×103 L/mol, respectively. The results showed that Ce3+ could relieve the destruction of Hg2+ on the DNA structure.  相似文献   

7.
The comparative ecophysiology of nine culture isolates of the eulittoral red alga Bostrychia radicans (Montagne) Montague collected at sites from seven states along the east coast of the U.S.A. was investigated. The growth response in relation to different salinity and light conditions as well as photosynthesis-irradiance curves were studied. In addition, the effect of salt treatment on the content of the isomeric polyols d -sorbitol and d -dulcitol was also studied. All isolates grew between salinities of 5.3 and 70 ppt but with quite different optima and maxima. The isolates were all adapted to low light levels, i.e. growth was already recorded at 2.5 μmol photons·m?2·s?1, and growth rates peaked between 40 and 60 μmol photons·m?2·s-1. These low-light requirements were also reflected by the photosynthesis-irradiance curves: all plants had low light compensation points (2.5–9.7 μmol photons ·m?2·?1) and low photon fluence rates for initial saturation of photosynthesis (38.1–84.7 μmol photons·m?2·s?1, indicating that these isolates are “shade-adapted.” Isolates from Florida and Georgia synthesized and accumulated both the osmolytes d -sorbitol and d -dulcitol in increasing salinities, whereas only d -sorbitol was present in plants from North Carolina north to Connecticut. d -sorbitol was always strongly involved in osmotic acclimation. In various isolates from the same location in South Carolina, both polyol patterns were found, i.e. d -sorbitol plus d -dulcitol and d -sorbitol only. All data indicate that B. radicans exhibits a broad salinity tolerance and a low-light preference, which explain the successful colonization of this alga on various intertidal and shaded substrates. The data also clearly indicate intraspecific differences among the nine isolates, which is interpreted as development of different physiological ecotypes.  相似文献   

8.
Diatoms are a group of highly abundant and diverse aquatic algae species. They contain high lipid content along with many bioactive compounds that can be exploited for biotechnological applications. Despite these attractive attributes, diatoms are underrepresented in production projects due to difficulties in their cultivation. To optimize the growth of three freshwater diatom isolates, Cyclotella sp., Synedra sp. and Navicula sp., an orthogonal assay on N, P, Si and Fe, as well as temperature and pH, was designed using traditional single‐factor tests. We also studied the effect of using nanosilica as an alternate Si source on growth and found that the diatom isolates studied achieved their highest growth rates under different combinations of nutrient and environmental conditions. Silica had the greatest influence on growth, followed by phosphate and iron. The optimized growth conditions for Synedra sp. were N: 30 mg L?1, P: 3 mg L?1, Si: 14.8 mg L?1, Fe: 0.448 mg L?1, temperature 25°C and pH 8. For Navicula sp.: N: 20 mg L?1, P: 2.5 mg L?1, Si: 19.7 mg L?1, Fe: 0.112 mg L?1, temperature 30°C and pH 7.5–8. For Cyclotella sp.: N: 20 mg L?1, P: 2.5 mg L?1, Si: 19.7 mg L?1, Fe: 0.448 mg L?1, temperature 30°C and pH 7.5–8. Nano silica negatively affected growth in Navicula sp. and Cyclotella sp., but no such effect was observed in Synedra sp. Fatty acid profiling showed C16:0, C16:1(n ? 7), C18:0 and C20:5(n ? 3) as major fatty acids, with no significant differences in fatty acid methyl ester profiles between traditional and modified media. This work gives us a new insight into the growth requirements of freshwater diatom species, which are less studied than marine species.  相似文献   

9.
Knowledge concerning the effects of several abiotic factors on the physiology of carrageenophytes is essential both in ecological and economic standpoints, to ensure their sufficient supply for the sustainability of seaweed‐based industries. This paper presents the photosynthetic characteristics of farmed carrageenophytes, E ucheuma denticulatum and K appaphycus alvarezii [brown (BRN) and green (GRN) color morphotypes] from Sulawesi Utara (Sulawesi Island), Indonesia, as determined by examining their photosynthetic response across different temperatures and irradiances using dissolved oxygen measurements and pulse‐amplitude modulated fluorometer. Net photosynthesis–irradiance ( P E ) curves at 26°C revealed that net photosynthetic rates of the three seaweeds gradually increased until the estimated saturation irradiances ( E k ) of 58 μmol photons m? 2 s?1 (49–68 μmol photons m? 2 s?1, 95% Bayesian prediction intervals; BPI) for E . denticulatum, and 158 and 143 μmol photons m? 2 s?1 (134–185 and 99–203 μmol photons m? 2 s?1, 95% BPI) for BRN and GRN K . alvarezii, respectively; and that no photoinhibition was observed at the highest irradiance of 1000 μmol photons m? 2 s?1. All seaweed samples exhibited photosynthetic tolerance to high PAR as shown by their recovery in maximum quantum yields (Fv / Fm ) following chronic exposures; as well as tolerance over a broad range of temperature, which is from 19 to 33°C for E . denticulatum, 20–29°C for BRN K . alvarezii, and 17–32°C for GRN K . alvarezii. Temperature responses of these carrageenophytes indicated that they were well‐adapted to the annual seawater temperatures in the cultivation site; however, they are also likely close to threshold levels for thermal inhibition, given the decline in Fv / Fm above 30°C.  相似文献   

10.
The aim of this study was to determine the optimal physical process conditions for the cultivation of locally isolated strains of Nannochloropsis sp. and Tetraselmis striata to achieve maximum growth rate. It was essential to evaluate biomass production at different agitation rates, light intensities, and temperature levels. Central composite design and response surface methodology were applied to design the experiments and optimize the cultivation process for Nannochloropsis sp. and T. striata. The specific growth rate of 0.250 d?1 was obtained for Nannochloropsis sp. cells under the light intensity of 54 μmol photons · m?2 · s?1, at the agitation rate of 151 rpm in 24.5°C. The optimal physical process conditions for T. striata were obtained under the light intensity of 56 μmol photons · m?2 · s?1 in 25.5°C at the agitation rate of 151 rpm in 25.5°C, resulting in a specific growth rate of 0.226 d?1. The predicted values were justified by the verification tests. Good agreement between the predicted values and the experimental values confirmed the validity of the models for the cultivation of microalgal strains. In this article, the noteworthy result was that temperature was a dominant factor in obtaining high chl‐a content for Nannochloropsis sp., whereas the growth of T. striata strongly depended on light exposure.  相似文献   

11.
The internal lipid, carotenoid, and toxin concentrations of Karenia brevis (C. C. Davis) Gert Hansen and Moestrup are influenced by its ability to use ambient light and nutrients for growth and reproduction. This study investigated changes in K. brevis toxicity, lipid class, and carotenoid concentrations in low‐light, nitrate‐replete (250 μmol quanta · m?2 · s?1, 80 μM NO3); high‐light, nitrate‐replete (960 μmol quanta · m?2 · s?1, 80 μM NO3); and high‐light, nitrate‐reduced (960 μmol quanta · m?2 · s?1, <5 μM NO3) mesocosms. Reverse‐phase HPLC quantified the epoxidation state (EPS) of the xanthophyll‐cycle pigments diadinoxanthin and diatoxanthin, and a Chromarod Iatroscan thin layer chromatography/flame ionization detection (TLC/FID) system quantified changes in lipid class concentrations. EPS did not exceed 0.20 in the low‐light mesocosm, but increased to 0.65 in the high‐light mesocosms. Triacylglycerol and monogalactosyldiacylglycerol (MGDG) were the largest lipid classes consisting of 9.3% to 48.7% and 37.3% to 69.7% of total lipid, respectively. Both lipid classes also experienced the greatest concentration changes in high‐light experiments. K. brevis increased EPS and toxin concentrations while decreasing its lipid concentrations under high light. K. brevis may mobilize its toxins into the surrounding environment by reducing lipid concentrations, such as sterols, limiting competition, or toxins are released because lipids are decreased in high light, reducing any protective mechanism against their own toxins.  相似文献   

12.
The effects of different temperatures and light intensities on growth, pigments, sugars, lipids, and proteins, as well as on some antioxidant and proteolytic enzymes of Trachydiscus minutus (Bourr.) H. Ettl, were investigated. The optimum growth temperature and light intensity were 25°C and 2 × 132 μmol photons · m?2 · s?1, respectively. Under these conditions, proteins were the main biomass components (33.45% dry weight [dwt]), with high levels of carbohydrates (29% dwt) and lipids (21.77% dwt). T. minutus tolerated temperatures between 20°C and 32°C, with only moderate changes in cell growth and biochemical composition. Extremely low (15°C) and high (40°C) temperatures decreased chl and RUBISCO contents and inhibited cell growth. The biochemical response of the alga to both unfavorable conditions was an increase in lipid content (up to 35.19% dwt) and a decrease in carbohydrates (down to 13.64% dwt) with much less of a change in total protein content (in the range of 30.51%–38.13% dwt). At the same time, the defense system of T. minutus was regulated differently in response to heat or cold treatments. Generally, at 40°C, the activities of superoxide dismutase (SOD), catalase (CAT), and proteases were drastically elevated, and three polypeptides were overexpressed, whereas the glutathione reductase (GR) and peroxidase (POD) activities were reduced. In contrast, at 15°C, all these enzymes except GR were suppressed. The effect of light was to enhance or decrease the temperature stress responses, depending on intensity. Our studies demonstrate the broad temperature adaptability of T. minutus as well as the potential for the production of valuable algal biomass.  相似文献   

13.
We studied the growth and photosynthetic characteristics of a toxic (CS506) and a nontoxic strain (CS509) of the bloom‐forming cyanobacterium Cylindrospermopsis raciborskii grown under identical experimental conditions. When exposed to light‐saturating growth conditions (100 μmol photons · m?2 · s?1), values for maximal photosynthetic capacity (Pmax) and maximum quantum yield (Fv/Fm) indicated that both strains had an equal ability to process captured photons and deliver them to PSII reaction centers. However, CS506 grew faster than CS509. This was consistent with its higher light requirement for saturation of photosynthesis (Ik). Greater shade tolerance of CS509 was indicated by its higher ability to harvest light (α), lower photosynthetic light compensation point (Ic), and higher chlorophyll a to biovolume ratio. Strain‐specific differences were found in relation to non‐photochemical quenching, effective absorption cross‐sectional area of PSIIα‐centers (σPSIIα), and the antenna connectivity parameter of PSIIα (JconPSIIα). These findings highlighted differences in the transfer of excitation from phycobilisome/PSII to PSI, on the dependence on different pigments for light harvesting and on the functioning of the PSII reaction centers between the two strains. The results of this study showed that both performance and composition of the photosynthetic apparatus are different between these strains, though with only two strains examined we cannot attribute the performance of strain 506 to its ability to produce cylindrospermopsins. The emphasis on a strain‐specific light adaptation/acclimation is crucial to our understanding of how different light conditions (both quantity and quality) can trigger the occurrence of different C. raciborskii strains and control their competition and/or dominance in natural ecosystems.  相似文献   

14.
Although sea‐ice represents a harsh physicochemical environment with steep gradients in temperature, light, and salinity, diverse microbial communities are present within the ice matrix. We describe here the photosynthetic responses of sea‐ice microalgae to varying irradiances. Rapid light curves (RLCs) were generated using pulse amplitude fluorometry and used to derive photosynthetic yield (ΦPSII), photosynthetic efficiency (α), and the irradiance (Ek) at which relative electron transport rate (rETR) saturates. Surface brine algae from near the surface and bottom‐ice algae were exposed to a range of irradiances from 7 to 262 μmol photons · m?2 · s?1. In surface brine algae, ΦPSII and α remained constant at all irradiances, and rETRmax peaked at 151 μmol photons · m?2 · s?1, indicating these algae are well acclimated to the irradiances to which they are normally exposed. In contrast, ΦPSII, α, and rETRmax in bottom‐ice algae reduced when exposed to irradiances >26 μmol photons · m?2 · s?1, indicating a high degree of shade acclimation. In addition, the previous light history had no significant effect on the photosynthetic capacity of bottom‐ice algae whether cells were gradually exposed to target irradiances over a 12 h period or were exposed immediately (light shocked). These findings indicate that bottom‐ice algae are photoinhibited in a dose‐dependent manner, while surface brine algae tolerate higher irradiances. Our study shows that sea‐ice algae are able to adjust to changes in irradiance rapidly, and this ability to acclimate may facilitate survival and subsequent long‐term acclimation to the postmelt light regime of the Southern Ocean.  相似文献   

15.
Simocephalus vetulus is a large (2.0–4.0 mm at maturity) cladoceran often found in the littoral region of lakes and ponds, and capable of moderate growth rates even on poor‐quality cyanobacterial diets. It frequently co‐occurs with fishes and similar sized ostracods such as Heterocypris incongruens, but little is known of its response to fish kairomones or its interactions with potential competitors. We studied the demographic responses of S. vetulus fed the green alga Scenedesmus acutus, Microcystis cf. aeruginosa strain A, Microcystis cf. aeruginosa strain B, or Limnothrix sp. Experiments were conducted separately and together in the presence of Heterocypris incongruens and cichlid fish (Oreochromis) kairomones. A diet of Limnothrix sp. resulted in the lowest population growth rate (0.21±0.023 d?1), while on diets of S. acutus or Microcystis, population growth was higher (0.30±0.009 d?1). The presence of ostracods resulted in significantly higher growth rates of S. vetulus fed Limnothrix (0.33±0.01 d?1), but not Microcystis or S. acutus. Regardless of the diet, the presence of fish kairomones resulted in significantly higher growth rates as compared with controls, particularly when ostracods were also present. Coexistence with ostracods may be beneficial to S. vetulus, particularly when food quality is poor.  相似文献   

16.
We examined the energetic dependency of the biochemical and physiological responses of Thalassiosira pseudonana Hasle and Heimdal. Chaetoceros gracilis Schütt, Dunaliella tertiolecta Butcher, and Gymnodinium sanguineum Hirasaka to NH4+, NO3?, and urea by growing them at subsaturating and saturating photon flux (PF). At subsaturating PF, when energy was limiting, NO3? and NH4+ grown cells had similar growth rates and C and X quotas. Therefore, NO3? grown cells used up to 48% more energy than NH4+ grown cells to assimilate carbon and nitrogen. Based on our measurements of pigments, chlorophyll-a-specific in vivo absorption cross-section, and fluorescence-chlorophyll a?1, we suggest that NO3?, grown cells do not compensate for the greater energy requirements of NO3? reduction by trapping more light energy. At saturating PF, when energy is not limiting, the utilization of NO3?, compared to NH4+ resulted in lower growth rates and N quotas in Thalassiosira pseudonana and lower N quotas in Chaetoceros gracilis, suggesting enzymatic rather than energetic limitations to growth. The utilization of urea compared to Nh4+ resulted in lower growth rates in Chaetoceros gracilis and Gymnodinium sanguineum (saturating PF) and in lower N quotas in all species tested at both subsaturating and saturating PF. The high C:N ratios observed in all urea-grown species suggest that nitrogen assimilation may be limited by urea uptake or deamination and that symptoms of N limitation in microalgae may be induced by the nature of the N source in addition to the N supply rate. Our results provide new eridence that the maximum growth rates of microalgae may be limited by enzymatic processes associated with the assimilation of NO3?, or urea.  相似文献   

17.
Photosystem II (PSII) from Arabidopsis thaliana treated by lanthanum (La3+), cerium (Ce3+), and neodymium (Nd3+) were isolated to investigate the effects of 4f electron characteristics and alternation valence of rare earth elements (REEs) on PSII function regulation comparatively. Results showed that REE treatment could induce the generous expression of LhcII b in A. thaliana and increase the content of light-harvesting complex II and its trimer on the thylakoid membrane significantly. Meanwhile, the light absorption in the red and blue region and fluorescence quantum yield near 683 nm were obviously increased; oxygen evolution rate was greatly improved too, suggesting that REEs could enhance the efficiency of light absorption, regulate excitation energy distribution from photosystem I (PSI) to PSII, and thus increase the activity of photochemical reaction and oxygen evolution accordingly. The efficiency order of the four treatments was Ce3+ > Nd3+ > La3+ > control.  相似文献   

18.
The roles of temperature and light on grazing and photosynthesis were examined for Dinobryon sociale, a common freshwater mixotrophic alga. Photosynthetic rate was determined for D. sociale adapted to temperatures of 8, 12, 16, and 20°C under photosynthetically active radiation light irradiances of 25, 66, and 130 μmol photons · m?2 · s?1, with concurrent measurement of bacterial ingestion at all temperatures under medium and high light (66 and 130 μmol photons · m?2 · s?1). Rates of ingestion and photosynthesis increased with temperature to a maximum at 16°C under the two higher light regimes, and declined at 20°C. Although both light and temperature had a marked effect on photosynthesis, there was no significant difference in bacterivory at medium and high irradiances at any given temperature. At the lowest light condition (25 μmol photons · m?2 · s?1), photosynthesis remained low and relatively stable at all temperatures. D. sociale acquired the majority of carbon from photosynthesis, although the low photosynthetic rate without a concurrent decline in feeding rate at 8°C suggested 20%–30% of the carbon budget could be attributed to bacterivory at low temperatures. Grazing experiments in nutrient‐modified media revealed that this mixotroph had increased ingestion rates when either dissolved nitrogen or phosphorus was decreased. This work increases our understanding of environmental effects on mixotrophic nutrition. Although the influence of abiotic factors on phagotrophy and phototrophy in pure heterotrophs and phototrophs has been well studied, much less is known for mixotrophic organisms.  相似文献   

19.
Phenotypic traits associated with light capture and phylogenetic relationships were characterized in 34 strains of diversely pigmented marine and freshwater cryptophytes. Nuclear SSU and partial LSU rDNA sequence data from 33 of these strains plus an additional 66 strains produced a concatenated rooted maximum likelihood tree that classified the strains into 7 distinct clades. Molecular and phenotypic data together support: (i) the reclassification of Cryptomonas irregularis NIES 698 to the genus Rhodomonas, (ii) revision of phycobiliprotein (PBP) diversity within the genus Hemiselmis to include cryptophyte phycocyanin (Cr‐PC) 569, (iii) the inclusion of previously unidentified strain CCMP 2293 into the genus Falcomonas, even though it contains cryptophyte phycoerythrin 545 (Cr‐PE 545), and (iv) the inclusion of previously unidentified strain CCMP 3175, which contains Cr‐PE 545, in a clade with PC‐containing Chroomonas species. A discriminant analysis‐based model of group membership correctly predicted 70.6% of the clades using three traits: PBP concentration · cell?1, the wavelength of PBP maximal absorption, and habitat. Non‐PBP pigments (alloxanthin, chl‐a, chl‐c2, α‐carotene) did not contribute significantly to group classification, indicating the potential plasticity of these pigments and the evolutionary conservation of the PBPs. Pigment data showed evidence of trade‐offs in investments in PBPs vs. chlorophylls (a +c2).  相似文献   

20.
In order to develop an effective CO2 mitigation process using microalgae for potential industrial application, the growth and physiological activity of Chlorella vulgaris in photobioreactor cultures were studied. C. vulgaris was grown at two CO2 concentrations (2 and 13% of CO2 v/v) and at three incident light intensities (50, 120 and 180 μmol m?2 s?1) for 9 days. The measured specific growth rate was similar under all conditions tested but an increase in light intensity and CO2 concentration affected the biomass and cell concentrations. Although carbon limitation was observed at 2% CO2, similar cellular composition was measured in both conditions. Light limitation induced a net change in the growth behavior of C. vulgaris. Nitrogen limitation seemed to decrease the nitrogen quota of the cells and rise the intracellular carbon:nitrogen ratio. Exopolysaccharide production per cell appeared to be affected by light intensity. In order to avoid underestimation of the CO2 biofixation rate of the microalgae, exopolysaccharide production was taken into account. The maximum CO2 removal rate (0.98 g CO2 L?1 d?1) and the highest biomass concentration (4.14 g DW L?1) were determined at 13% (v/v) CO2 and 180 μmol m?2 s?1. Our results show that C. vulgaris has a real potential for industrial CO2 remediation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号