首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The shells of bivalves are mainly composed of calcium carbonate, a product of calcium metabolism. In the process of shell formation, the uptake, transport and recruitment of calcium ion are highly regulated and involved in many factors. Among these regulatory factors, calmodulin (CaM), a pivotal multifunction regulator of calcium metabolism in nearly all organisms, is thought to play an important role in the calcium metabolism involved in shell formation. In this study, a full-length CaM cDNA was isolated from the pearl oyster (Pinctada fucata). The oyster calmodulin encodes a 16.8 kDa protein which shares high similarity with vertebrate calmodulin. The oyster CaM mRNA shows the highest level of expression in the gill, a key organ involved in calcium uptake in oyster calcium metabolism. In situ hybridization results revealed that oyster CaM mRNA is expressed at the folds and the outer epithelial cells of the dorsal region of the mantle, suggesting that CaM is involved in regulation of calcium transport and secretion. Oyster CaM also showed a typical Ca2+ dependent electrophoretic shift characterization and calcium binding activity. Taken together, we have identified and characterized a pivotal calcium metabolism regulator of the oyster that may play an important role in regulation of calcium uptake, transport and secretion in the process of shell formation.  相似文献   

2.
Ferritin has been shown as being the principal iron storage in the majority of living organisms. In marine species, ferritin is also involved in high-level accumulation of (210)Po. As part of our work on the investigation of these radionuclides' concentration in natural environment, ferritin was searched at the gene and protein level. Ferritin was purified from the visceral mass of the oyster Crassostrea gigas by ion-exchange chromatography and HPLC. SDS-PAGE revealed one band of 20 kDa. An Expressed Sequence Tag (EST) library was screened and led to the identification of two complementary DNA (cDNA) involved in ferritin subunit expression. The complete coding sequences and the untranslated regions (UTRs) of the two genes were obtained and a 5' Rapid Amplification of cDNA Ends (RACE) was used to obtain the two iron-responsive elements (IREs) with the predicted stem-loop structures usually present in the 5'-UTR of ferritin mRNA. Sequence alignment in amino acid of the two new cDNA showed an identity with Pinctada fucata (85.4-88.3%), Lymnaea stagnalis (79.3-82.2%) and Helix pomatia (79.1-79.1%). The residues responsible for the ferroxidase center, conserved in all vertebrate H-ferritins, are present in the two oyster ferritin subunits. Oyster ferritins do not present the special characteristics of other invertebrate ferritins like insect ferritins but have some functional similarities with the vertebrate H chains ferritin.  相似文献   

3.
4.
Ferritin plays a key role in cellular iron metabolism, which includes iron storage and detoxification. From disk abalone, Haliotis discus discus, the cDNA that encodes the two ferritin subunits abalone ferritin subunit 1 (Abf1) and abalone ferritin subunit 2 (Abf2) were cloned. The complete cDNA coding sequences for Abf1 and Abf2 contained 621 and 549 bp, encoding for 207 and 183 amino acid residues, respectively. The H. discus discus Abf2 subunit contained a highly conserved motif for the ferroxidase center, which consists of seven residues of a typical vertebrate heavy-chain ferritin with a typical stem-loop structure. Abf2 mRNA contains a 27 bp iron-responsive element (IRE) in the 5'UTR position. This IRE exhibited 96% similarity with pearl and Pacific oyster and 67% similarity with human H type IREs. However, the Abf1 subunit had neither ferroxidase center residues nor the IRE motif sequence; instead, it contained iron-binding region signature 2 (IBRS) residues. Recombinant Abf1 and Abf2 proteins were purified and the respective sizes were about 24 and 21 kDa. Abf1 and Abf2 exhibited iron-chelating activity 44.2% and 22.0%, respectively, at protein concentration of 6 microg/ml. Analysis of tissue-specific expression by RT-PCR revealed that Abf1 and Abf2 ferritin mRNAs were expressed in various abalone tissues, such as gill, mantle, gonad, foot and digestive tract in a wide distribution profile, but Abf2 expression was more prominent than Abf1.  相似文献   

5.
The second most abundant protein of eastern oyster plasma was purified, characterized and named segon. The 39 kDa protein as determined by SDS-PAGE under reducing conditions made up about 17% of plasma proteins and was found in extrapallial fluid. RACE reactions with primers designed from an EST sequence identified by BLAST search in GenBank using the N-terminal amino acid sequence obtained by Edman degradation of the purified protein, predicted a 997 bp complete cDNA that encoded 277 amino acids including a 16-residue signal peptide at the N-terminus. The deduced mature protein, composed of 261 amino acids, had a calculated molecular mass of 30,483.9 Da which was lower than the molecular mass of the purified protein measured by MALDI. The difference was likely due to post-translational modifications as the protein was predicted to have multiple sites for glycosylation and phosphorylation. The protein mRNA was detected in hemocytes by in situ hybridization and quantified in oyster tissues by RT-qPCR. Immunohistochemistry revealed that the protein was most abundant in tissues rich in blood sinuses like the gills and dorsally along the base of the mantle. ICP metal analysis of purified protein indicated highest association with zinc, calcium and iron and much greater metal content than in purified dominin, the most abundant protein of eastern oysters. Results of N-terminal and internal peptide sequencing of SDS-PAGE separated plasma proteins from Pacific, Suminoe and European flat oysters indicated that the second most abundant plasma protein is conserved. Several possible functions of segon in metal transport and detoxification, host defense, antioxidation and shell mineralization are proposed as they relate to its capacity to bind metals.  相似文献   

6.
Ferritin, the iron storage protein, plays a key role in iron metabolism. Here, we have cloned an inducible ferritin cDNA with 516 bp within the open reading frame fragment from the visceral mass of Saccostrea cucullata. The subunit sequence of the ferritin was predicted to be a polypeptide of 171 amino acids with a molecular weight (MW) of 19.9182 kDa and an isoelectric point of 5.24. The cDNA sequence of S. cucullata ferritin was constructed into a pET-32a expression system for expressing its relative protein efficiently in the Escherichia coli BL21 strain under isopropyl-β-D-thiogalactoside (IPTG) induction. The recombinant ferritin, which was further purified on a Ni-NTA resin column and digested with enterokinase, was detected as a single subunit of approximately MW 20 kDa using both SDS-PAGE and mass spectrometry. S. cucullata ferritin (ScFer) showed 98% identity with Crassostrea gigas ferritin at the amino acid level. The secondary structure and phosphorylation sites of deduced amino acids were predicted with ExPASy proteomics tools and the NetPhos 2.0 server, respectively, and the subunit space structure of recombinant S. cucullata ferritin (rScFer) was built using the molecular operating environmental software system. The results of both in-gel digestion and identification using MALDI-TOF MS/MS showed that the recombinant protein was ScFer. ICP-MS indicated that rScFer subunit can directly bind to cisplatin[cis-Diaminedichloroplatinum(CDDP)], giving approximately 22.9 CDDP/ferritin subunit for forming a novel complex of CDDP-subunit, which suggests that it constructs a nanometer CDDP core-ferritin for developing a new drug of anti-cancer. The results of both the real-time PCR and Western blotting showed that the expression of ScFer mRNA was up-regulated in the oyster under the stress of Cd(2+). In addition, the expression increment of ScFer mRNA under bacterial challenge indicated that ferritin participated in the immune response of S. cucullata. The recombinant ScFer should prove to be useful for further study of the structure and function of ferritin in S. cucullata.  相似文献   

7.
Li C  Li H  Su X  Li T 《Fish & shellfish immunology》2011,30(4-5):1147-1151
Ferritin, a major iron storage protein of most living organisms, plays a crucial role in iron metabolism. Here we reported the isolation and characterization of a cDNA of ferritin gene from Sinonovacula constricta (denoted as ScFER). The full-length cDNA of ScFER was of 996 bp, consisting of a 5'-UTR of 120 bp, a 3'-UTR of 360 bp, and a complete open reading frame of 516 bp encoding a polypeptide with 171 amino acid residues. The predicted molecular mass of deduced amino acid of ScFER was 19.76 kDa and the theoretical pI was 5.07. Quantitative real-time PCR was employed to analyze the expression profiles of ScFER mRNA in muscle, mantle and visceral mass after iron exposure. The peak expression level of ScFER in the three tissues was 1.79-fold, 1.31-fold and 3.51-fold increases in muscle, mantle and visceral mass, respectively. The polyclonal antibodies generated from the recombinant product of ScFER could be specifically identified not only the recombinant product, but also the native protein from muscle. All these results strongly suggested that ScFER was involved in the iron metabolism regulation in S. constricta.  相似文献   

8.
9.
Bai Z  Yuan Y  Yue G  Li J 《PloS one》2011,6(7):e22886
Iron is one of the most important minor elements in the shells of bivalves. This study was designed to investigate the involvement of ferritin, the principal protein for iron storage, in shell growth. A novel ferritin subunit (Fth1) cDNA from the freshwater pearl mussel (Hyriopsis cumingii) was isolated and characterized. The complete cDNA contained 822 bp, with an open reading frame (ORF) of 525 bp, a 153 bp 5' untranslated region (UTR) and a 144 bp 3' UTR. The complete genomic DNA was 4125 bp, containing four exons and three introns. The ORF encoded a protein of 174 amino acids without a signal sequence. The deduced ferritin contained a highly conserved motif for the ferroxidase center comprising seven residues of a typical vertebrate heavy-chain ferritin. It contained one conserved iron associated residue (Try27) and iron-binding region signature 1 residues. The mRNA contained a 27 bp iron-responsive element with a typical stem-loop structure in the 5'-UTR position. Copy number variants (CNVs) of Fth1 in two populations (PY and JH) were detected using quantitative real-time PCR. Associations between CNVs and growth were also analyzed. The results showed that the copy number of the ferritin gene of in the diploid genome ranged from two to 12 in PY, and from two to six in JH. The copy number variation in PY was higher than that in JH. In terms of shell length, mussels with four copies of the ferritin gene grew faster than those with three copies (P<0.05), suggesting that CNVs in the ferritin gene are associated with growth in shell length and might be a useful molecular marker in selective breeding of H. cumingii.  相似文献   

10.
11.
Understanding the molecular composition is of great interest for both nacre formation mechanism and biomineralization in mollusk shell. A cDNA clone encoding an MSI31 relative, termed MSI7 because of its estimated molecular mass of 7.3 kDa, was isolated from the pearl oyster, Pinctada fucata. This novel protein shares similarity with MSI31, a prismatic framework protein of P. fucata. It is peculiar that MSI7 is much shorter in size, harboring only the Gly-rich sequence that has been proposed to be critical for Ca(2+) binding. In situ hybridization result showed that MSI7 mRNA was expressed specifically at the folds and outer epithelia of the mantle, indicating that MSI7 participates in the framework formation of both the nacreous layer and prismatic layer. In vitro experiment on the function of MSI7 suggested that it accelerates the nucleation and precipitation of CaCO(3). Taken together, we have identified a novel matrix protein of the pearl oyster, which may play an important role in determining the texture of nacre.  相似文献   

12.
软体动物engrailed蛋白和骨形成相关蛋白对胚胎贝壳区域边界形成可能具有重要作用,engrailed还被推测为调节基质蛋白在外套膜组织区域化表达的重要调控因子.因此,弄清调控engrailed在软体动物中特征表达的分子机制有着重要的研究意义.但是,由于贝类基因组测序尚不完整,目前也没有建立获得贝类细胞系,以致于许多预测可能参与调控的基因需要通过克隆来鉴定,而且经典的研究细胞信号通路的方法也很难得到应用.目前,在中国南海广泛养殖的合浦珠母贝中,已获知其BMP2和Smad3的cDNA全长,以该贝的基因组为模板,PCR扩增获得了一段engrailed编码区片段.经软件分析,该片段含有EH4结构域,且与其他物种engrailed蛋白具有很高的同源性.研究的贝中,特别是外套膜组织中,engrailed、BMP2和Smad3三者表达之间的相关性,将有助于我们理解贝壳形成的分子机制.贝壳缺刻后半定量PCR试验结果表明,三者均参与贝壳修复,且在贝壳缺刻后的修复过程中,engrailed和Smad3的mRNA表达变化规律非常相似,提示它们之间可能存在相互影响的联系.用地塞米松(DXM)和过氧化氢(H2O2)分别处理原代培养的贝外套膜组织迁出细胞,实时相对定量PCR检测engrailed、BMP2和Smad3的mRNA表达水平,统计分析结果表明,三者具有显著的相关性.上述所有结果为进一步研究贝类生物矿化的发育和信号转导机制提供了新的思路和基础.  相似文献   

13.
14.
Biomineralization is a common biological phenomenon resulting in strong tissue, such as bone, tooth, and shell. Pinctada fucata martensii is an ideal animal for the study of biomineralization. Here, microarray technique was used to identify biomineralization gene in mantle edge (ME), mantle center (MC), and both ME and MC (ME-MC) for this pearl oyster. Results revealed that 804, 306, and 1127 contigs expressed at least three times higher in ME, MC, and ME-MC as those in other tissues. Blast against non-redundant database showed that 130 contigs (16.17 %), 53 contigs (17.32 %), and 248 contigs (22.01 %) hit reference genes (E?≤??10), among which 91 contigs, 48 contigs, and 168 contigs could be assigned to 32, 26, and 63 biomineralization genes in tissue of ME, MC, and ME-MC at a threshold of 3 times upregulated expression level. The ratios of biomineralization contigs to homologous contigs were similar at 3 times, 10 times, and 100 times of upregulated expression level in either ME, MC, or ME-MC. Moreover, the ratio of biomineralization contigs was highest in MC. Although mRNA distribution characters were similar to those in other studies for eight biomineralization genes of PFMG3, Pif, nacrein, MSI7, mantle gene 6, Pfty1, prismin, and the shematrin, most biomineralization genes presented different expression profiles from existing reports. These results provided massive fundamental information for further study of biomineralization gene function, and it may be helpful for revealing gene nets of biomineralization and the molecular mechanisms underlining formation of shell and pearl for the oyster.  相似文献   

15.
16.
Ferritin, the iron storage protein, plays a key role in iron metabolism. A cDNA encoding ferritin (FcFer) was cloned from hepatopancreas of Chinese shrimp, Fenneropenaeus chinensis. The predicted protein contains 170 amino acid residues with a predicted molecular weight (MW) about 19, 422.89 Da and theoretical isoelectric point (PI) of 4.73. Amino acid alignment of FcFer revealed 97% homology with Litopenaeus vannamei ferritin. Results of the RT-PCR showed that the expression of FcFer mRNA was up-regulated after shrimp was challenged with either white spot syndrome virus (WSSV) or heavy metal ions (Zn2+ and Cu2+) in the laboratory. A fusion protein containing FcFer was produced and the purified recombinant protein exhibited similar function of iron uptake in vitro. The result of in-gel digestion and identification using LC-ESI-MS showed that two peptide fragments (-DDVALPGFAK- and -LLEDEYLEEQVDSIKK-) of the recombinant protein were identical to the corresponding sequence of L. vannamei ferritin. The recombinant FcFer protein will be proved useful for study on the structure and function of ferritin in F. chinensis.  相似文献   

17.
We have isolated essentially full-length cDNA clones for human ferritin H and L chains from a human liver cDNA library. This allows the first comparison of H and L nucleotide and amino acid sequences from the same species as well as ferritin L cDNA sequences from different species. We conclude that human H and L ferritins are related proteins which diverged about the time of evolution of birds and mammals. We also deduce the secondary structure of the H and L subunits and compare this with the known structure of horse spleen ferritin. We find that residues involved in subunit interaction in shell assembly are highly conserved in H and L sequences. However, we find several interesting differences in H subunits at the amino acid residues involved in iron transport and deposition. These substitutions could account for known differences in the uptake, storage, and release of iron from isoferritins of different subunit composition.  相似文献   

18.
Li S  Xie L  Ma Z  Zhang R 《The FEBS journal》2005,272(19):4899-4910
Calcium metabolism in oysters is a very complicated and highly controlled physiological and biochemical process. However, the regulation of calcium metabolism in oyster is poorly understood. Our previous study showed that calmodulin (CaM) seemed to play a regulatory role in the process of oyster calcium metabolism. In this study, a full-length cDNA encoding a novel calmodulin-like protein (CaLP) with a long C-terminal sequence was identified from pearl oyster Pinctada fucata, expressed in Escherichia coli and characterized in vitro. The oyster CaLP mRNA was expressed in all tissues tested, with the highest levels in the mantle that is a key organ involved in calcium secretion. In situ hybridization analysis reveals that CaLP mRNA is expressed strongly in the outer and inner epithelial cells of the inner fold, the outer epithelial cells of the middle fold, and the dorsal region of the mantle. The oyster CaLP protein, with four putative Ca(2+)-binding domains, is highly heat-stable and has a potentially high affinity for calcium. CaLP also displays typical Ca(2+)-dependent electrophoretic shift, Ca(2+)-binding activity and significant Ca(2+)-induced conformational changes. Ca(2+)-dependent affinity chromatography analysis demonstrated that oyster CaLP was able to interact with some different target proteins from those of oyster CaM in the mantle and the gill. In summary, our results have demonstrated that the oyster CaLP is a novel member of the CaM superfamily, and suggest that the oyster CaLP protein might play a different role from CaM in the regulation of oyster calcium metabolism.  相似文献   

19.
Perlucin is an important functional protein that regulates shell and pearl formation. In this study, we cloned the perlucin gene from the freshwater pearl mussel Hyriopsis cumingii, designated as Hcperlucin. The full-length cDNA transcribed from the Hcperlucin gene was 1460 bp long, encoding a putative signal peptide of 20 amino acids and a mature protein of 141 amino acids. The mature Hcperlucin peptide contained six conserved cysteine residues and a carbohydrate recognition domain, similar to other members of the C-type lectin families. In addition, a “QPS” and an invariant “WND” motif near the C-terminal region were also found, which are extremely important for polysaccharide recognition and calcium binding of lectins. The mRNA of Hcperlucin was constitutively expressed in all tested H. cumingii tissues, with the highest expression levels observed in the mantle, adductor, gill and hemocytes. In situ hybridization was used to detect the presence of Hcperlucin mRNA in the mantle, and the result showed that the mRNA was specifically expressed in the epithelial cells of the dorsal mantle pallial, an area known to express genes involved in the biosynthesis of the nacreous layer of the shell. The significant Hcperlucin mRNA expression was detected on day 14 post shell damage and implantation, suggesting that the Hcperlucin might be an important gene in shell nacreous layer and pearl formation. The change of perlucin expression in pearl sac also confirmed that the mantle transplantation results in a new expression pattern of perlucin genes in pearl sac cells that are required for pearl biomineralization. These findings could help better understanding the function of perlucin in the shell and pearl formation.  相似文献   

20.
Homologs of the ferric uptake regulator Fur and the iron storage protein ferritin play a central role in maintaining iron homeostasis in bacteria. The gastric pathogen Helicobacter pylori contains an iron-induced prokaryotic ferritin (Pfr) which has been shown to be involved in protection against metal toxicity and a Fur homolog which has not been functionally characterized in H. pylori. Analysis of an isogenic fur-negative mutant revealed that H. pylori Fur is required for metal-dependent regulation of ferritin. Iron starvation, as well as medium supplementation with nickel, zinc, copper, and manganese at nontoxic concentrations, repressed synthesis of ferritin in the wild-type strain but not in the H. pylori fur mutant. Fur-mediated regulation of ferritin synthesis occurs at the mRNA level. With respect to the regulation of ferritin expression, Fur behaves like a global metal-dependent repressor which is activated under iron-restricted conditions but also responds to different metals. Downregulation of ferritin expression by Fur might secure the availability of free iron in the cytoplasm, especially if iron is scarce or titrated out by other metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号