首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent efforts to collect and mine crystallization data from structural genomics (SG) consortia have led to the identification of minimal screens and novel screening strategies that can be used to streamline the crystallization process. Two groups, the Joint Center for Structural Genomics and the University of Toronto, carried out large-scale crystallization trials on different sets of bacterial targets (539, JCSG and 755, Toronto), using different sample processing and crystallization methods, and then analyzed their results to identify the smallest subset of conditions that would have crystallized the maximum number of protein targets. The JCSG Core Screen contains 67 conditions (from 480) while the Toronto Minimal Screen contains 6 (from 48). While the exact conditions included in the two screens do not overlap, the major precipitants of the conditions are similar and thus both screens can be used to determine if a protein has a natural propensity to crystallize. In addition, studies from other groups including the University of Queensland, the Mycobacterium tuberculosis SG group, the Southeast Collaboratory for SG, and the York Structural Biology Laboratory indicate that alternative crystallization strategies may be more successful at identifying initial crystallization conditions than typical sparse matrix screens. These minimal screens and alternative screening strategies are already being used to optimize the crystallization processes within large SG efforts. The differences between these results, however, demonstrate that additional studies which examine the influence of protein biophysical properties and sample preparation methods on crystal formation must also be carried out before more robust screens can be identified.  相似文献   

2.
MOTIVATION: Increased efficiency in initial crystallization screening reduces cost and material requirements in structural genomics. Because pH is one of the few consistently reported parameters in the Protein Data Bank (PDB), the isoelectric point (pI) of a protein has been explored as a useful indirect predictor for the optimal choice of range and distribution of the pH sampling in crystallization trials. RESULTS: We have analyzed 9596 unique protein crystal forms from the August 2003 PDB and have found a significant relationship between the calculated pI of successfully crystallized proteins and the difference between pI and reported pH at which they were crystallized. These preferences provide strong prior information for the design of crystallization screening experiments with significantly increased efficiency and corresponding reduction in material requirements, leading to potential cost savings of millions of US$ for structural genomics projects involving high-throughput crystallographic structure determination. AVAILABILITY: A prototype example of a screen design and efficiency estimator program, CrysPred, is available at http://www-structure.llnl.gov/cryspred/  相似文献   

3.
4.
Protein crystallization is one of the major bottlenecks in protein structure elucidation with new strategies being constantly developed to improve the chances of crystallization. Generally, well‐ordered epitopes possessing complementary surface and capable of producing stable inter‐protein interactions generate a regular three‐dimensional arrangement of protein molecules which eventually results in a crystal lattice. Metals, when used for crystallization, with their various coordination numbers and geometries, can generate such epitopes mediating protein oligomerization and/or establish crystal contacts. Some examples of metal‐mediated oligomerization and crystallization together with our experience on metal‐mediated crystallization of a putative rRNA methyltransferase from Sinorhizobium meliloti are presented. Analysis of crystal structures from protein data bank (PDB) using a non‐redundant data set with a 90% identity cutoff, reveals that around 67% of proteins contain at least one metal ion, with ~14% containing combination of metal ions. Interestingly, metal containing conditions in most commercially available and popular crystallization kits generally contain only a single metal ion, with combinations of metals only in a very few conditions. Based on the results presented in this review, it appears that the crystallization screens need expansion with systematic screening of metal ions that could be crucial for stabilizing the protein structure or for establishing crystal contact and thereby aiding protein crystallization.  相似文献   

5.
Conceptually, protein crystallization can be divided into two phases search and optimization. Robotic protein crystallization screening can speed up the search phase, and has a potential to increase process quality. Automated image classification helps to increase throughput and consistently generate objective results. Although the classification accuracy can always be improved, our image analysis system can classify images from 1536-well plates with high classification accuracy (85%) and ROC score (0.87), as evaluated on 127 human-classified protein screens containing 5600 crystal images and 189472 non-crystal images. Data mining can integrate results from high-throughput screens with information about crystallizing conditions, intrinsic protein properties, and results from crystallization optimization. We apply association mining, a data mining approach that identifies frequently occurring patterns among variables and their values. This approach segregates proteins into groups based on how they react in a broad range of conditions, and clusters cocktails to reflect their potential to achieve crystallization. These results may lead to crystallization screen optimization, and reveal associations between protein properties and crystallization conditions. We also postulate that past experience may lead us to the identification of initial conditions favorable to crystallization for novel proteins.  相似文献   

6.
Structural proteomics projects are generating three-dimensional structures of novel, uncharacterized proteins at an increasing rate. However, structure alone is often insufficient to deduce the specific biochemical function of a protein. Here we determined the function for a protein using a strategy that integrates structural and bioinformatics data with parallel experimental screening for enzymatic activity. BioH is involved in biotin biosynthesis in Escherichia coli and had no previously known biochemical function. The crystal structure of BioH was determined at 1.7 A resolution. An automated procedure was used to compare the structure of BioH with structural templates from a variety of different enzyme active sites. This screen identified a catalytic triad (Ser82, His235, and Asp207) with a configuration similar to that of the catalytic triad of hydrolases. Analysis of BioH with a panel of hydrolase assays revealed a carboxylesterase activity with a preference for short acyl chain substrates. The combined use of structural bioinformatics with experimental screens for detecting enzyme activity could greatly enhance the rate at which function is determined from structure.  相似文献   

7.
Integral membrane proteins carry out some of the most important functions of living cells, yet relatively few details are known about their structures. This is due, in large part, to the difficulties associated with preparing membrane protein crystals suitable for X-ray diffraction analysis. Mechanistic studies of membrane protein crystallization may provide insights that will aid in determining future membrane protein structures. Accordingly, the solution behavior of the bacterial outer membrane protein OmpF porin was studied by static light scattering under conditions favorable for crystal growth. The second osmotic virial coefficient (B22) was found to be a predictor of the crystallization behavior of porin, as has previously been found for soluble proteins. Both tetragonal and trigonal porin crystals were found to form only within a narrow window of B22 values located at approximately -0.5 to -2 X 10(-4) mol mL g(-2), which is similar to the "crystallization slot" observed for soluble proteins. The B22 behavior of protein-free detergent micelles proved very similar to that of porin-detergent complexes, suggesting that the detergent's contribution dominates the behavior of protein-detergent complexes under crystallizing conditions. This observation implies that, for any given detergent, it may be possible to construct membrane protein crystallization screens of general utility by manipulating the solution properties so as to drive detergent B22 values into the crystallization slot. Such screens would limit the screening effort to the detergent systems most likely to yield crystals, thereby minimizing protein requirements and improving productivity.  相似文献   

8.
We have determined the structure of the immunoglobulin light-chain dimer Loc in a second crystal form that was grown from distilled water. The crystal structure was determined to 2.8-A resolution; the R factor is 0.22. The two variable domains are related by local 2-fold axes and form an antigen binding "pocket". The variable domain-variable domain interaction observed in this crystal form differs from the one exhibited by the protein when crystallized from ammonium sulfate in which the two variable domains formed a protrusion (Chang et al., 1985). The structure attained in the distilled water crystals is similar to, but not identical with, the one observed for the Mcg light-chain dimer in crystals grown from ammonium sulfate. Thus, two strikingly different structures were attained by this multisubunit protein in crystals grown under two different, commonly used, crystallization techniques. The quaternary interactions exhibited by the protein in the two crystal forms are sufficiently different to suggest fundamentally different interpretations of the structural basis for the function of this protein. This observation may have general implications regarding the use of single crystallographic determinations for detailed identification of structural and functional relationships. On the other hand, proteins whose structures can be altered by manipulation of crystallization conditions may provide useful systems for study of fundamental structural chemistry.  相似文献   

9.

Background

Structural studies of integral membrane proteins (IMPs) are often hampered by difficulties in producing stable homogenous samples for crystallization. To overcome this hurdle it has become common practice to screen large numbers of target proteins to find suitable candidates for crystallization. For such an approach to be effective, an efficient screening strategy is imperative. To this end, strategies have been developed that involve the use of green fluorescent protein (GFP) fusion constructs. However, these approaches suffer from two drawbacks; proteins with a translocated C-terminus cannot be tested and scale-up from analytical to preparative purification is often non-trivial and may require re-cloning.

Methods

Here we present a screening approach that prioritizes IMP targets based on three criteria: expression level, detergent solubilization yield and homogeneity as determined by high-throughput small-scale immobilized metal affinity chromatography (IMAC) and automated size-exclusion chromatography (SEC).

Results

To validate the strategy, we screened 48 prokaryotic IMPs in two different vectors and two Escherichia coli strains. A set of 11 proteins passed all preset quality control checkpoints and was subjected to crystallization trials. Four of these crystallized directly in initial sparse matrix screens, highlighting the robustness of the strategy.

Conclusions

We have developed a rapid and cost efficient screening strategy that can be used for all IMPs regardless of topology. The analytical steps have been designed to be a good mimic of preparative purification, which greatly facilitates scale-up.

General significance

The screening approach presented here is intended and expected to help drive forward structural biology of membrane proteins.  相似文献   

10.
Crystallization holds the potential to be used for protein purification and low‐viscosity drug substance and drug product formulations. Twenty‐two different proteins (20 monoclonal antibodies and two Fc‐fusions) were examined to determine the breadth of applicability of crystallization to these therapeutic proteins. Vapor diffusion technique and an evaporative screening method were used to identify crystallization conditions using around a 100 initial conditions based on reagents that are generally regarded as safe (GRAS). Of 16 IgG2s examined, at least four formed diffraction‐quality crystals and four others formed crystal‐like particles. At least three of the IgG2s that crystallized well were also crystallized under the same set of operating conditions using inexpensive GRAS reagents. The crystals were formed to high‐yields in a few hours and were dissolved quickly without impacting product quality. Although only a fraction of the proteins examined crystallized, all exhibited liquid‐liquid phase separation (LLPS), which could be used for their concentration or possibly purification. One of the Fc‐fusions, for example, was concentrated by LLPS to a self‐buffering solution at 150 g/L. Crystallization and LLPS in the salting‐in region were shown to be feasible. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011  相似文献   

11.
Crystallizing membrane proteins remains a challenging endeavor despite the increasing number of membrane protein structures solved by X-ray crystallography. The critical factors in determining the success of the crystallization experiments are the purification and preparation of membrane protein samples. Moreover, there is the added complication that the crystallization conditions must be optimized for use in the presence of detergents although the methods used to crystallize most membrane proteins are, in essence, straightforward applications of standard methodologies for soluble protein crystallization. The roles that detergents play in the stability and aggregation of membrane proteins as well as the colloidal properties of the protein-detergent complexes need to be appreciated and controlledbefore and during the crystallization trials. All X-ray quality crystals of membrane proteins were grown from preparations of detergent-solubilized protein, where the heterogeneous natural lipids from the membrane have been replaced by ahomogeneous detergent environment. It is the preparation of such monodisperse, isotropic solutions of membrane proteins that has allowed the successful application of the standard crystallization methods routinely used on soluble proteins. In this review, the issues of protein purification and sample preparation are addressed as well as the new refinements in crystallization methodologies for membrane proteins. How the physical behavior of the detergent, in the form of micelles or protein-detergent aggregates, affects crystallization and the adaptation of published protocols to new membrane protein systems are also addressed. The general conclusion is that many integral membrane proteins could be crystallized if pure and monodisperse preparations in a suitable detergent system can be prepared.In memory of Glenn D. Garavito.  相似文献   

12.
In order to meet the requirement for crystalline growth of O2-susceptible proteins in space, crystallization conditions on the earth was optimized for the proteins using a simple and suitable device for anaerobic addition of the protein samples. Nitrogenase is susceptible to O2. ΔnifZ MoFe protein from a nifZ deleted strain and MnFe protein from mutant strain UW3 grown on a medium containing Mn were crystallized at the first time in the world using an anaerobic device equipped with plastic bags or using a small simplified box, as a replacement for the cumbersome dry box. And the proteins could be also crystallized far from laboratory by sitting-drop method using a much lighter device. It was equipped with a smaller plastic food bag and a first-aid bag filled with Ar, as a substitute for the cumbersome dry box and the Ar cylinder, respectively. The results showed that the device could meet the requirement for studies on crystal growth of the above anaerobic proteins in space.  相似文献   

13.
Extra-small microcrystals of a human kinase CK2alpha were obtained for the first time by the optimization of a recent protein crystallization method based on highly packed protein nanofilm template. Protein crystal induction and growth appear indeed optimal at high surface pressure of the film template yielding high protein orientation and packing. The resulting extra-small CK2alpha microcrystals (of about 20 microm in diameter) was subsequently used for synchrotron radiation diffraction data collection, which proves possible by means of the Microfocus Beamline at the ESRF Synchrotron in Grenoble. The quality of the resulting crystal diffraction patterns and of its resulting atomic structure at 2.4 A resolution proves the unique validity of the above two combined frontier technologies in defining a new approach to structural proteomics capable to solve the atomic structure of proteins so far never been crystallized and of pharmaceutical relevance. Physical explanation in terms of template dipole moments and possibility of generalization of this method to the wide class of proteins not yet crystallized are finally discussed. The structure of our CK2alpha mutant is in the Protein Data Bank (PDB ID Code 1NA7, deposited on 27 November 2002).  相似文献   

14.
Actin is the most abundant protein in eukaryotes. Under physiological conditions, it can polymerize into polarized filaments. At the heart of these processes are actin-binding proteins that stimulate actin assembly. Most of them are composed of multiple domains that perform both regulatory and signaling functions. Many actin-binding proteins, including WASP and formin family proteins, are auto-inhibited through intramolecular interactions that mask the actin-regulating sites of these proteins. The large flexible molecules of formins have so far eluded crystallization, and have been crystallized only partially. The information from the available crystal structures is valuable, but somewhat difficult to interpret without a larger framework on which to pose the actin-binding mechanism. Single-particle electron microscopy and electron tomography could provide such a large framework with the full-length structures of protein complexes. The recent advances in determining the molecular interactions in protein complexes predict that the molecular modeling and molecular dynamics methods could be employed to study conformational changes in molecules.  相似文献   

15.
α-Helical membrane proteins (MPs) are the targets for many pharmaceutical drugs and play important roles in human physiology. In recent years, significant progress has been made in determining their atomic structure using X-ray crystallography. However, a major bottleneck in MP crystallography still remains, namely, the identification of conditions that give crystals that are suitable for structural determination. In 2008, we undertook an analysis of the crystallization conditions for 121 α-helical MPs to design a rationalized sparse matrix crystallization screen, MemGold. We now report an updated analysis that includes a further 133 conditions. The results reveal the current trends in α-helical MP crystallization with notable differences since 2008. The updated information has been used to design new crystallization and additive screens that should prove useful for both initial crystallization scouting and subsequent crystal optimization.  相似文献   

16.
Based on a hypothesis that various small molecules might establish stabilizing, intermolecular, non covalent crosslinks in protein crystals and thereby promote lattice formation, we carried out three separate experiments. We assessed the impact of 200 chemicals on the propensity of 81 different proteins and viruses to crystallize. The experiments were comprised of 18240 vapor diffusion trials. A salient feature of the experiments was that, aside from the inclusion of the reagent mixes, only two fundamental crystallization conditions were used, 30% PEG 3350, and 50% Tacsimate at pH 7. Overall, 65 proteins (85%) were crystallized. Most significant was that 35 of the 65 (54%) crystallized only in the presence of one or more reagent mixes, but not in control samples lacking any additives. Among the most promising types of reagent mixes were those composed of polyvalent, charged groups, such as di and tri carboxylic acids, diamino compounds, molecules bearing one or more sulfonyl or phosphate groups, and a broad range of common biochemicals, coenzymes, biological effectors, and ligands. We propose that an alternate approach to crystallizing proteins might be developed, which employs a limited set of fundamental crystallization conditions combined with a broad screen of potentially useful small molecule additives.  相似文献   

17.
《FEBS letters》1985,189(2):179-182
A new method for the crystallization of proteins was developed. Saturated solutions of a protein for crystallization are prepared by chromatography of adsorbed proteins from an insoluble polysaccharide matrix using gradients with decreasing ionic strength, decreasing concentration of organic solvents or an appropriate shift in pH. Insulin, a-chymotrypsin and lysozyme for which the X-ray crystal structures are known, were crystallized by this method. X-ray diffraction photographs were taken to demonstrate the quality of the crystals. In addition to this analytical application, the method may be useful for the crystallization and the simultaneous purification of larger amounts of proteins.  相似文献   

18.
Inherent difficulties in growing protein crystals are major concerns within structural biology and particularly in structural proteomics. Here, we describe a novel approach of engineering target proteins by surface mutagenesis to increase the odds of crystallizing the molecules. To this end, we have exploited our recent triad-hypothesis using proteins with crystallographically defined beta-structures as the principal models. Crystal packing analyses of 182 protein structures belonging to 21 different superfamilies implied that the propensities to crystallize could be engineered into target proteins by replacing short segments, 5-6 residues, of their beta-strands with 'cassettes' of suitable packing motifs. These packing motifs will generate specific crystal packing interactions that promote crystallization. Key features of the primary and tertiary structures of such packing motifs have been identified for immunoglobulins. Further, packing motifs have been engineered successfully into six model antibodies without disturbing their capabilities to be produced, their immunoreactivity and their overall structure. Preliminary crystallization analyses have also been performed. Taken together, the procedures outline a rational protocol for crystallizing proteins by surface mutagenesis. The importance of these findings is discussed in relation to the crystallization of proteins in general.  相似文献   

19.
Structural biology and structural genomics projects routinely rely on recombinantly expressed proteins, but many proteins and complexes are difficult to obtain by this approach. We investigated native source proteins for high-throughput protein crystallography applications. The Escherichia coli proteome was fractionated, purified, crystallized, and structurally characterized. Macro-scale fermentation and fractionation were used to subdivide the soluble proteome into 408 unique fractions of which 295 fractions yielded crystals in microfluidic crystallization chips. Of the 295 crystals, 152 were selected for optimization, diffraction screening, and data collection. Twenty-three structures were determined, four of which were novel. This study demonstrates the utility of native source proteins for high-throughput crystallography.  相似文献   

20.
High throughput approaches to structural genomics requires expression, purification, and crystallization of proteins derived from predicted open reading frames cloned into a host organism, typically E. coli. Early results from this approach suggest that the success rate of obtaining well diffracting crystals from eukaryotic proteins is disappointingly low. A proven method of improving the odds of crystallization is formation of a complex with a conformation-stabilizing partner of known structure that is easily crystallized. Such complexes are also able to engage in different crystal contacts than the original protein by itself. Fab fragments derived from monoclonal antibodies have been successfully used for this purpose for a variety of proteins, however conventional methods for the isolation of monoclonal antibodies from hybridomas are time consuming and expensive. We are exploring the use of phage display to generate recombinant antibodies to target proteins that can be used to obtain co-complexes to facilitate crystallization and structural determination. We are using a large, human single-chain Fv (scFv) library to select for antibodies that bind to a panel of Leishmania major target proteins. Thirteen out of 16 target proteins yielded good binders after three rounds of enrichment. A total of 55 distinct scFvs were identified, with five targets each yielding at least five different scFvs. Individual clones were analyzed for binding specificity and soluble scFv can be readily produced and purified via the appended His6 epitope tag. Using immunoaffinity chromatography, eight scFv target protein pairs were identified that exhibit stable complex formation and are suitable for co-crystallization trials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号