首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Bovine serum albumin (BSA) and/or egg albumin were bound to astaxanthin or canthaxanthin easily and the spectroscopic characteristics of these complexes were similar to those of astaxanthin or canthaxanthin in the salmon muscle. 2. This result indicates that astaxanthin-BSA, -egg albumin, canthaxanthin-BSA and -egg albumin complexes were basically similar to astaxanthin-actomyosin and/or canthaxanthin-actomyosin complex in the salmon muscle. 3. The binding of salmon actomyosin to astaxanthin or canthaxanthin is not specific.  相似文献   

2.
3.
Rainbow trout were fed a diet supplemented with astaxanthin (89 mg/kg) or canthaxanthin (116 mg/kg) in two different experiments: experiment 1 was designed to measure the kinetics of the appearance and disappearance of carotenoids in the serum; experiment 2 was undertaken to establish the serum dose-response to synthetic astaxanthin and canthaxanthin for immature rainbow trout. The serum carotenoid concentrations of immature rainbow trout increased when fish were fed carotenoid supplemented feed and then reached a plateau after 1 day of intake for astaxanthin and after 2 days for canthaxanthin. Circulating astaxanthin represented a value 2.3 times that of canthaxanthin. After dietary supplementation was discontinued, the serum carotenoid concentrations decreased within 3 days for both carotenoids. The average decreasing slopes for the two carotenoid pigments were parallel, indicating a similarity in the rate of which astaxanthin and canthaxanthin are utilized by rainbow trout. The serum dose-response of trout that received dietary keto-carotenoids increased with increasing pigment levels. The hypothesis that absorption of dietary carotenoids in 12.5–200 mg/kg range of concentration across the gut wall may be by passive diffusion is proposed.  相似文献   

4.
B. Czeczuga 《Hydrobiologia》1973,41(1):113-125
The presence of various carotenoids and vitamin A in seven species of fish from the coastal region of the Black Sea was investigated by means of columnar and thinlayer chromatography. The investigations revealed the presence of the following carotenoids: Mugil auratus: ß-carotene, canthaxanthin, lutein, zeaxanthin, astaxanthin ester and astacene. Diplodus annularis: ß-carotene, canthaxanthin, tunaxanthin, lutein, zeaxanthin and astacene. Diplodus sargus: ß-carotene, tunaxanthin, lutein, taraxanthin, zeaxanthin and astaxanthin. Crenilabrus tinca: tunaxanthin, canthaxanthin, lutein, astaxanthin and astacene. Blennius sphinx: ß-carotene, χ-carotene (?), lutein, tunaxanthin, taraxanthin and astaxanthin. Blennius sanguinolentus: ß-carotene, tunaxanthin and astaxanthin (ester and free). Gobius melanostomus: ß-carotene and astacene. Some fractions were not identified. Vitamin A was found in all species investigated.  相似文献   

5.
B. Czeczuga 《Hydrobiologia》1980,70(3):197-199
The author investigated the presence of various carotenoids in three species of the Syngnathidae family by means of columnar and thin-layer chromatography. The investigations revealed the presence of the following carotenoids: canthaxanthin, lutein, lutein epoxide, zeaxanthin, astaxanthin (free and ester form) and 4-hydroxy-4-keto--carotene. Ketocarotenoids (astaxanthin and canthaxanthin) comprised the greatest part  相似文献   

6.
Caroteno-proteins containing astaxanthin, canthaxanthin, zeaxanthin and isozeaxanthin were purified from three species of starfish (Astropecten aurantiacus, A. spinulosus and Echinaster sepositus) and one species of sea-urchin (Paracentrotus lividus) from the Adriatic.  相似文献   

7.
Microorganisms (microalgae and fungi) are currently the main sources of astaxanthin; however, this carotenoid also accumulates in crustaceans, salmonids, and birds. Seafood (derived from marine animals) processing wastes are significant sources of astaxanthin and can be employed as feed and for nutraceutical applications, where shrimp wastes are the most exploited seafood industry waste employed for astaxanthin extraction. This review discusses different sources, efficient environment-friendly extraction methods employed for astaxanthin extraction, biorefinery approaches for efficient extraction and future aspects of the application of these waste sources for commercial preparation of astaxanthin complexes. It also includes a brief overview of the advantages, disadvantages, and challenges for obtaining astaxanthin from various sources and various case scenarios integrating different biorefinery approaches.  相似文献   

8.
The presence of 41 carotenoids in 114 species of Lepidoptera was determined. The carotenoids characteristic of butterflies were zeaxanthin, β-cryptoxanthin, lutein epoxide, astaxanthin, lycopene, torulene and canthaxanthin.  相似文献   

9.
  • 1.1. Eggs of wild cod, and of farmed cod fed (a) a diet supplemented with astaxanthin and (b) a diet supplemented with both astaxanthin and canthaxanthin, were analysed with respect to carotenoids.
  • 2.2. The total carotenoid contents in eggs were 0.7 ppm for wild cod and 0.5 ppm for farmed cod.
  • 3.3. Cod, having white flesh, deposit ketocarotenoids in the eggs, preferably astaxanthin.
  • 4.4. Canthaxanthin can replace astaxanthin in the eggs, but astaxanthin appears to be deposited preferentially when both carotenoids are present in the diet.
  • 5.5. The isomer distribution of (3S, 3′S):(3R, 3′S, meso):(3R, 3′R) astaxanthin in the eggs reflected the isomer composition of the diet.
  • 6.6. Echinenone, 4′-hydroxyechinenone, adonixanthin and zeaxanthin encountered in cod eggs may represent reductive metabolites of canthaxanthin and astaxanthin.
  相似文献   

10.
A comparative investigation of tissue carotenoid distribution between rainbow trout, Oncorhynchus mykiss, and Atlantic salmon, Salmo salar, was undertaken to identify the relative efficiency of utilization of astaxanthin and canthaxanthin. Higher apparent digestibility coefficients (ADCs) (96% in trout vs. 28-31% in salmon; P<0.05), and pigment retention efficiencies (11.5-12.5% in trout vs. 5.5% in salmon; P<0.05), for both astaxanthin and canthaxanthin, were observed for rainbow trout. Astaxanthin deposition was higher than canthaxanthin in rainbow trout, while the reverse was true for Atlantic salmon, suggesting species-specificity in carotenoid utilization. The white muscle (95% in trout vs. 93% in salmon) and kidneys (0.5% in trout vs. 0.2% in salmon) represented higher proportions of the total body carotenoid pool in rainbow trout than in Atlantic salmon (P<0.05), whereas the liver was a more important storage organ in Atlantic salmon (2-6% in salmon vs. 0.2% in trout; P<0.05). The liver and kidney appeared to be important sites of carotenoid catabolism based on the relative proportion of the peak chromatogram of the fed carotenoid in both species, with the pyloric caecae and hind gut being more important in Atlantic salmon than in the rainbow trout. Liver catabolism is suspected to be a critical determinant in carotenoid clearance, with higher catabolism expected in Atlantic salmon than in rainbow trout.  相似文献   

11.
For the heterologous synthesis of keto-carotenoids such as astaxanthin, two carotenoid ketolase genes crtW38 and crtW148, were cloned from the cyanobacterium, Nostoc punctiforme PCC 73102 and functionally characterized. Upon expression in Escherichia coli, both genes mediated the conversion of beta-carotene to canthaxanthin. However in a zeaxanthin-producing E. coli, only the gene product of crtW148 introduced 4-keto groups into the 3,3'-dihydroxy carotenoid zeaxanthin yielding astaxanthin. The gene product of crtW38 was unable to catalyze this reaction. Both ketolases differ in their interaction with a hydroxylase in the biosynthetic pathway from beta-carotene to astaxanthin.  相似文献   

12.
The conversion of beta-carotene into xanthophylls is a subject of great scientific and industrial interest. We cloned the crtS gene involved in astaxanthin biosynthesis from two astaxanthin producing strains of Xanthophyllomyces dendrorhous: VKPM Y2410, an astaxanthin overproducing strain, and the wild type ATCC 24203. In both cases, the ORF has a length of 3166 bp, including 17 introns, and codes for a protein of 62.6 kDa with similarity to cytochrome-P450 hydroxylases. crtS gene sequences from strains VKPM Y2410, ATCC 24203, ATCC 96594, and ATCC 96815 show several nucleotide changes, but none of them causes any amino acid substitution, except a G2268 insertion in the 13th exon of ATCC 96815 which causes a change in the reading frame. A G1470 --> A change in the 5' splicing region of intron 8 was also found in ATCC 96815. Both point mutations explain astaxanthin idiotrophy and beta-carotene accumulation in ATCC 96815. Mutants accumulating precursors of the astaxanthin biosynthetic pathway were selected from the parental strain VKPM Y2410 (red) showing different colors depending on the compound accumulated. Two of them were blocked in the biosynthesis of astaxanthin, M6 (orange; 1% astaxanthin, 71 times more beta-carotene) and M7 (orange; 1% astaxanthin, 58 times more beta-carotene, 135% canthaxanthin), whereas the rest produced lower levels of astaxanthin (5-66%) than the parental strain. When the crtS gene was expressed in M7, canthaxanthin accumulation disappeared and astaxanthin production was partially restored. Moreover, astaxanthin biosynthesis was restored when X. dendrorhous ATCC 96815 was transformed with the crtS gene. The crtS gene was heterologously expressed in Mucor circinelloides conferring to this fungus an improved capacity to synthesize beta-cryptoxanthin and zeaxanthin, two hydroxylated compounds from beta-carotene. These results show that the crtS gene is involved in the conversion of beta-carotene into xanthophylls, being potentially useful to engineer carotenoid pathways.  相似文献   

13.
Ketocarotenoids are strong antioxidant compounds which accumulate in salmon, shrimp, crustaceans and algae, but are rarely found naturally in higher plants. In this study, we engineered constitutive expression of an algal beta-carotene ketolase gene (bkt) in carrot plants to produce a number of ketocarotenoids from beta-carotene. These included astaxanthin, adonirubin, canthaxanthin, echinenone, adonixanthin and beta-cryptoxanthin. Leaves accumulated up to 56mug/g total ketocarotenoids and contained higher beta-carotene levels but lower levels of alpha-carotene and lutein. The photosynthetic capacity of transgenic plants was not significantly altered by these changes. However, when high-expressing transgenic plants were exposed to UV-B irradiation, they grew significantly better than the wild-type controls. Similarly, leaf tissues exposed to various oxidative stresses including treatment with H(2)O(2) and methyl viologen showed less injury and retained higher levels of chlorophyll a+b. Total carotenoid extracts from transgenic leaves had higher antioxidant and free-radical scavenging activity in vitro compared to control leaves. Transgenic tissues also accumulated lower amounts of H(2)O(2) following exposure to oxidative stresses, suggesting that free radical and reactive oxygen species were quenched by the ketocarotenoids.  相似文献   

14.
  • 1.1. Feeding experiments with β,β-carotene, canthaxanthin and astaxanthin on the sea urchin Pseudocentrotus depressus were investigated.
  • 2.2. In the case of β,β-carotene group, β-carotene was accumulated, β-isocryptoxanthin appeared and β-echinenone increased 6.8 times as much as the control group. On the other hand, in canthaxanthin and astaxanthin groups, canthaxanthin and astaxanthin increased significantly, respectively. The metabolic products of these carotenoids could not be found.
  • 3.3. It was concluded that β,β-carotene was bioconverted to β-echinenone via β-isocryptoxanthin in P. depressus and could not be oxidatively metabolized beyond β-echinenone.
  相似文献   

15.
The only carotenoid detected in newly fertilized eggs of wild Atlantic salmon, Salmo salar, from western Scotland was astaxanthin at a concentration [μg carotenoid g?1 wet wt of eggs, mean ±S.D. (number of parental females)] of 6.2±1.2(7) in 1982, 6.4±1.8(20) in 1983, and 7.6 ± 13(6) in 1984. In eggs of farmed Atlantic salmon the only carotenoid detected was canthaxanthin at concentrations which varied significantly between farms depending on the level of synthetic canthaxanthin in the broodstock diet. Thus on two farms using feed with 50 μgg?1, the levels were 11.8 ± 3.4(7) and 12.3 ± 2.9(6), while on two farms using 75μgg?1 the levels were 18.7 ± 5.0(9) and 21.2 ± 2.7(21). The levels in eggs of one-seawinter fish (grilse) did not differ from those of two-seawinter fish reared on the same farm and diet. During development from newly fertilized egg to fry at the end of yolk-sac absorption, the quantity of carotenoid present per individual decreased, presumably as a result of metabolism. Despite large differences in quantity present, the quantity so metabolized was fairly constant at 2–4 μg carotenoid g?1 original egg weight for eggs from two-seawinter farmed and wild salmon, except that in eggs from farmed grilse it was 7 μg g?1. In fry from wild eggs, 99.14% of the remaining carotenoid was present in the integument (skin and fins) as astaxanthin, astaxanthin monoester and astaxanthin diester. In fry from farmed salmon eggs, 47 ± 8% of the carotenoid present was found in the unused yolk oil droplets and in the liver, and 37 ± 6% was found in the integument as canthaxanthin and an unidentified metabolite of canthaxanthin. These findings explain visible colour differences between fry from wild parents and fry from canthaxanthin-fed farmed parents, particularly in the fins, liver and residual oil droplets. The canthaxanthin metabolite was also found, together with canthaxanthin, in the skin of farmed adults fed canthaxanthin. Preliminary tests showed it to be unchanged by saponification but reduced by sodium borohydride. For eggs from the three farms incubated under the same conditions in the same season, percentage mortality both to the eyed stage and between hatching and first feeding varied significantly between farms, but percentage mortality between the eyed stage and hatching did not do so. Results combined from two seasons for eggs from three farms and one wild source showed that egg mortality between fertilization and the eyed stage was not significantly different between wild and farmed salmon, but mortality between the eyed stage and hatching, and between hatching and first feeding, were both significantly higher in farmed salmon than in wild salmon. Such differences could not be explained simply by the large differences in egg carotenoid content, but were almost certainly due to factors such as broodstock nutrition, broodstock management, and stripping and fertilization procedures.  相似文献   

16.
The author investigated the presence of various carotenoids in the Echinodermata from Gullmar Fjord (Bohuslan, Sweden) by means of columnar and thin-layer chromatography. The investigations revealed the presence of the following:
  • - inHenricia sanguinolenta:β-carotene, echinenone, canthaxanthin, guraxanthin, lutein-5, 6-epoxide and astaxanthin.
  • - inAmphiura filiformis: canthaxanthin, cryptoxanthin, lutein, lutein-5, 6-epoxide, isozeaxanthin, zeaxanthin, astaxanthin and 4-hydroxy-4-keto-β-carotene.
  • - inAmphipholis squamata:β-carotene, cryptoxanthin, lutein, lutein-5, 6-epoxide, astaxanthin, astaxanthin ester, asterin-acid and rubixanthin derivative.
  • - inOphiopholis aculeata: canthaxanthin, cryptoxanthin, isozeaxanthin, astaxanthin, astaxanthin ester, asterinacid, 4-hydroxy-4-keto-β-carotene, hydroxy rubixanthin and gazaniaxanthin-like substances.
  • - inOphiothrix fragilis: canthaxanthin, lutein-5, 6-epoxide, isozeaxanthin, astaxanthin, astaxanthin ester, 4-hydroxy-4-keto-β-carotene, and hydroxy rubixanthin.
  • - inAntedon petatus:canthaxanthin, guaraxanthin, isozeaxan-thin, zeaxanthin, astaxanthin, astaxanthin ester and 4-keto-4-ethoxy-β-carotene.
  • - inEchinocardium cordatum:β-carotene,γ-carotene, canthaxanthin, lutein, isozeaxanthin, zeaxanthin, astaxanthin and astaxanthin ester.
  • - inSpatangus purpureus: isozeaxanthin, astaxanthin, astaxanthin ester and 4-hydroxy-4-keto-β-carotene.
  •   相似文献   

    17.
    Investigations have been carried regarding carotenoids and vitamin A in the crabs Pachygrapsus marmoratus (FABRE) and Eriphia spinifrons (HERBST) from the Black and Adriatic Sea. The presence of carotenoids and vitamin A was determined by means of column and thinlayer chromatography. The following carotenoids were found: Pachygrapsus marmoratus: β-carotene, cryptoxanthin, canthaxanthin, lutein, astaxanthin and vitamin A; Eriphia spinifrons: β-carotene, echinenone, canthaxanthin, isozeaxanthin, zeaxanthin, lutein (ester and epoxy), astaxanthin and astacene.  相似文献   

    18.
    The pathway from beta-carotene to astaxanthin is a crucial step in the synthesis of astaxanthin, a red antioxidative ketocarotenoid that confers beneficial effects on human health. Two enzymes, a beta-carotene ketolase (carotenoid 4,4'-oxygenase) and a beta-carotene hydroxylase (carotenoid 3,3'-hydroxylase), are involved in this pathway. Cyanobacteria are known to utilize the carotenoid ketolase CrtW and/or CrtO, and the carotenoid hydroxylase CrtR. Here, we compared the catalytic functions of CrtW ketolases, which originated from Gloeobacter violaceus PCC 7421, Anabaena (also known as Nostoc) sp. PCC 7120 and Nostoc punctiforme PCC 73102, and CrtR from Synechocystis sp. PCC 6803, Anabaena sp. PCC 7120 and Anabaena variabilis ATCC 29413 by complementation analysis using recombinant Escherichia coli cells that synthesized various carotenoid substrates. The results demonstrated that the CrtW proteins derived from Anabaena sp. PCC 7120 as well as N. punctiforme PCC 73102 (CrtW148) can convert not only beta-carotene but also zeaxanthin into their 4,4'-ketolated products, canthaxanthin and astaxanthin, respectively. In contrast, the Anabaena CrtR enzymes were very poor in accepting either beta-carotene or canthaxanthin as substrates. By comparison, the Synechocystis sp. PCC 6803 CrtR converted beta-carotene into zeaxanthin efficiently. We could assign the catalytic functions of the gene products involved in ketocarotenoid biosynthetic pathways in Synechocystis sp. PCC 6803, Anabaena sp. PCC 7120 and N. punctiforme PCC 73102, based on the present and previous findings. This explains why these cyanobacteria cannot produce astaxanthin and why only Synechocystis sp. PCC 6803 can produce zeaxanthin.  相似文献   

    19.
    B. Czeczuga 《Hydrobiologia》1975,46(2-3):223-239
    The author investigated the presence of various carotenoids in the Salmonidae and Thymallidae family by means of columnar and thin-layer chromatography. The investigations revealed the presence of the following carotenoids:

    Abstract

  • - in the muscles of Salmo salar: astaxanthin (pure and ester), canthaxanthin, lutein and zeaxanthin.
  • - in the eggs of Salmo trutta m. trutta: β-carotene, iso- and zeaxanthin, lutein, taraxanthin and astaxanthin.
  • - in the eggs of Salmo trutta m. fario: β-carotene, canthaxanthin, 4-keto-4-hydroxy-β-carotene, astaxanthin (pure and ester), lutein, taraxanthin and astacene.
  • - in the eggs of Salmo gairdneri: β-carotene, γ-carotene (?), canthacanthin, isozeaxanthin, lutein and astaxanthin, and in the sperm Salmo gairdneri: β-carotene, γ-carotene (?), 4-keto-4-hydroxy-β-carotene, canthaxanthin, lutein and astaxanthin.
  • - in the eggs of Salvelinus fontinalis: ester astaxanthin, canthaxanthin, isozeaxanthin, lutein and astacene.
  • - in the eggs of Hucho hucho: β-carotene, tunaxanthin, lutein, taraxanthin and astaxanthin.
  • - in the eggs of Coregonus albula: β-carotene, 4-keto-4-hydroxy-β-carotene, ester astaxanthin, zeaxanthin, taraxanthin and astacene.
  • - in Coregonus lavaretus: a) in eggs: β-carotene, ester astaxanthin, canthaxanthin, iso- and zeaxanthin, lutein, taraxanthin and astacene b) in the sperm: canthaxanthin, 4-hydroxy-4-keto-β-carotene, isozeaxanthin and astaxanthin, and other organs: 4-hydroxy-α-carotene, canthaxanthin, tunaxanthin, monoepoxy lutein, lutein, iso- and zeaxanthin and astaxanthin.
  • - in the eggs of Coregonus peled: β-carotene, 4-keto-4-hydroxy-β-carotene, lutein, zeaxanthin, taraxanthin and astacene.
  • - in the eggs of Thymallus thymallus: β-carotene, tunaxanthin, lutein and astaxanthin.
  •   相似文献   

    20.
    Huang J  Zhong Y  Sandmann G  Liu J  Chen F 《Planta》2012,236(2):691-699
    β-Carotene ketolase (BKT) catalyzes the rate-limiting steps for the biosynthesis of astaxanthin. Several bkt genes have been isolated and explored to modify plant carotenoids to astaxanthin with limited success. In this study, five algal BKT cDNAs were isolated and characterized for the engineering of high-yield astaxanthin in plants. The products of the cDNAs showed high similarity in sequence and enzymatic activity of converting β-carotene into canthaxanthin. However, the enzymes exhibited extremely different activities in converting zeaxanthin into astaxanthin. Chlamydomonas reinhardtii BKT showed the highest conversion rate (ca 85%), whereas, Neochloris wimmeri BKT exhibited very poor activity of ketolating zeaxanthin. Expression of C. reinhardtii BKT in tobacco led to a twofold increase of total carotenoids in the leaves with astaxanthin being the predominant. The bkt genes described here provide a valuable resource for metabolic engineering of plants as cell factories for astaxanthin production.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号