首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aquaporin8 (AQP8) is a transmembrane water channel that is found mainly in hepatocytes. The direct involvement of AQP8 in high glucose condition has not been established. Therefore, this study examined the effects of high glucose on AQP8 and its related signal pathways in primary cultured chicken hepatocytes. High glucose increased the movement of AQP8 from the intracellular membrane to plasma membrane in a 30 mM glucose concentration and in a time- (> or =10 min) dependent manner. On the other hand, 30 mM mannitol did not affect the translocation of AQP8, which suggested the absence of osmotic effect. Thirty millimolar glucose increased intracellular cyclic adenosine 3, 5-monophosphate (cAMP) level. Moreover, high glucose level induced Akt phosphorylation, protein kinase C (PKC) activation, p44/42 mitogen-activated protein kinases (MAPKs), p38 MAPK, and c-jun NH2-terminal kinase (JNK) phosphorylation. On the other hand, inhibition of each pathway by SQ 22536 (adenylate cyclase inhibitor), LY 294002 (PI3-K phosphatidylinositol 3-kinase inhibitor), Akt inhibitor, staurosporine (PKC inhibitor), PD 98059 (MEK inhibitor), SB 203580 (p38 MAPK inhibitor), or SP 600125 (JNK inhibitor) blocked 30 mM glucose-induced AQP8 translocation, respectively. In addition, inhibition of microtubule movement with nocodazole blocked high glucose-induced AQP8 translocation. High glucose level also increased the level of kinesin light chain and dynein protein expression. In conclusion, high glucose level stimulates AQP8 via cAMP, PI3-K/Akt, PKC, and MAPKs pathways in primary cultured chicken hepatocytes.  相似文献   

2.
Stress factors, such as osmotic stress and genotoxic agents, activate stress kinases, whereas growth factors preferentially stimulate the structurally homologous mitogen-activated protein kinases, ERK1/2. Hyperosmolarity also has insulin-mimicking action as reflected by ERK1/2 activation and by the stimulation of glucose uptake in adipocytes. We examined to what extent hyperosmolarity activates components of the insulin receptor (IR) signalling pathway. CHO cells expressing the human IR were treated with 500 mM NaCl or 700 mM sorbitol and the activation of insulin signalling intermediates was studied. Hyperosmolarity induced tyrosine phosphorylation of the IR beta-subunit, and the adaptor proteins p52-Shc, p66-Shc, and IRS1. Furthermore, the stress kinases JNK and p38 were activated. When CHO cells were transfected with a kinase-dead IR (K1030R) mutant, hyperosmolarity did not induce tyrosine phosphorylation of the IR, indicating that hyperosmolarity induced IR autophosphorylation directly, rather than inducing phosphorylation by an exogenous tyrosine kinase. A partially purified and detergent-solubilized IR was not phosphorylated in response to hyperosmolarity, suggesting that hyperosmolarity activates the receptor only when present in the plasma membrane. In cells stably expressing the kinase-dead IR, IRS1 and Shc Tyr phosphorylation was abrogated, indicating that the hyperosmolarity signalling was dependent on an active IR tyrosine kinase. In contrast, the stress kinases p38 and JNK were normally activated by hyperosmolarity in the IR-K1030R mutant. We conclude that, at least in CHO cells, hyperosmolarity signals partially through IR autophosphorylation and subsequent activation of the IR downstream targets. This may be responsible for some of the insulin-mimicking effects of hyperosmolarity. The activation of stress kinases by hyperosmolarity occurs independent of the IR.  相似文献   

3.
The implication of MAP kinases in the proliferation control of pancreatic cancer cells is still unknown. This study was undertaken to examine the contribution of the p44/p42 and p38 MAP kinases in the mitogenic response to epidermal growth factor (EGF) and bombesin in human pancreatic cancer cells, MIA PaCa-2 and PANC-1. Data indicate that EGF and bombesin stimulated growth of both cell lines. In MIA PaCa-2 cells, EGF and bombesin stimulated the in gel activation of p38 while p44/p42 kinases exhibited high basal activity and no response to stimuli. Growth and p38 activation were inhibited by genistein, wortmannin, PD98059 and SB203580, specific inhibitors of tyrosine kinase, phosphatidylinositol 3-kinase, MEK-1 and p38 kinases, respectively. In PANC-1 cells, EGF and bombesin stimulated p42 in gel activation; p44 remained highly activated and unresponsive to stimuli and p38 did not respond. Stimulated growth and p42 activation were inhibited by genistein, wortmannin and PD98059. Estimation of MAPK activities with a specific anti-active MAP kinase antibody indicated, however, that EGF increased the intensity of the bands corresponding to p42 and p44 MAP kinases in both cell lines, indicating that the mitogenic factor can regulate MAP kinase activity. Data also pointed out that ATP is sufficient to increase MAP kinase activity within the in gel assay technique and may thus explain the discrepancies existing between the in gel assay data and those obtained with the anti-active MAP kinase antibody.  相似文献   

4.
We have investigated the cellular mechanisms that participate in reducing insulin sensitivity in response to increased oxidant stress in skeletal muscle. Measurement of glucose transport and glycogen synthesis in L6 myotubes showed that insulin stimulated both processes, by 2- and 5-fold, respectively. Acute (30 min) exposure of muscle cells to hydrogen peroxide (H(2)O(2)) blocked the hormonal activation of both these processes. Immunoblot analyses of cell lysates prepared after an acute oxidant challenge using phospho-specific antibodies against c-Jun N-terminal kinase (JNK), p38, protein kinase B (PKB), and p42 and p44 mitogen-activated protein (MAP) kinases established that H(2)O(2) induced a dose-dependent activation of all five protein kinases. In vitro kinase analyses revealed that 1 mM H(2)O(2) stimulated the activity of JNK by approximately 8-fold, MAPKAP-K2 (the downstream target of p38 MAP kinase) by approximately 12-fold and that of PKB by up to 34-fold. PKB activation was associated with a concomitant inactivation of glycogen synthase kinase-3. Stimulation of the p38 pathway, but not that of JNK, was blocked by SB 202190 or SB203580, while that of p42/p44 MAP kinases and PKB was inhibited by PD 98059 and wortmannin respectively. However, of the kinases assayed, only p38 MAP kinase was activated at H(2)O(2) concentrations (50 microM) that caused an inhibition of insulin-stimulated glucose transport and glycogen synthesis. Strikingly, inhibiting the activation of p38 MAP kinase using either SB 202190 or SB 203580 prevented the loss in insulin-stimulated glucose transport, but not that of glycogen synthesis, by oxidative stress. Our data indicate that activation of the p38 MAP kinase pathway plays a central role in the oxidant-induced inhibition of insulin-regulated glucose transport, and unveils an important biochemical link between the classical stress-activated and insulin signaling pathways in skeletal muscle.  相似文献   

5.
Smalley K  Eisen T 《FEBS letters》2000,476(3):198-202
Activation of p38 or p44/42 mitogen-activated protein (MAP) kinases has been shown to trigger differentiation in a number of cell types. The present study has investigated the roles of these kinases in the alpha-melanocyte stimulating hormone (alpha-MSH)-induced melanogenic and proliferative responses in B16 melanoma cells. Treatment of cells with alpha-MSH led to the time-dependent phosphorylation of both p38 and p44/42 MAP kinases. However, only inhibition of p38 MAP kinase activity with SB 203580 blocked both the alpha-MSH-induced melanogenic and anti-proliferative effects. It therefore appears that activation of the p38 pathway can promote melanogenesis and inhibit growth of B16 melanoma cells.  相似文献   

6.
In mouse embryo NIH 3T3 fibroblasts, ethanol (60-80 mM) was found to enhance the stimulatory effects of sphingosine 1-phosphate (S1P) on both DNA synthesis and cell proliferation. Well-detectable potentiating effects of ethanol on S1P-induced mitogenesis required the presence of calcium (>1 mM) and zinc (20-40 microM) in the incubation medium. The amphibian tetrapeptide bombesin, which is known to mobilize intracellular calcium in fibroblasts, had no effect alone, but it approximately doubled the combined stimulatory effects of ethanol and S1P on DNA synthesis. The synergistic mitogenic effects of ethanol and S1P were also slightly enhanced, rather than inhibited, by the alcohol dehydrogenase inhibitor 4-methylpyrazole (5 mM). Of the various growth regulatory enzymes examined, ethanol detectably enhanced the stimulatory effects of S1P on the phosphosphorylation (activation) of p42/p44 mitogen-activated protein (MAP) kinases, but not of p38 MAP kinase. Cotreatment of fibroblasts with ethanol for 10 min also enhanced the stimulatory effects of S1P on the activities of c-Raf-1 kinase and p70 S6 kinase, but neither S1P nor ethanol had effects on phosphatidylinositol 3'-kinase and Akt/PKB kinase activities. Ethanol-plus-S1P-induced DNA synthesis was partially inhibited by both PD 98059 (50 microM) and rapamycin (10 nM), inhibitors of p42/p44 MAP kinase kinase and mTOR/p70 S6 kinases, respectively. The results indicate that in NIH 3T3 fibroblasts, ethanol can enhance the mitogenic effects of S1P by a zinc- and calcium-dependent mechanism involving both the rapamycin-sensitive p70 S6 kinase-dependent and the c-Raf-1/MAP kinase-dependent growth regulatory pathways.  相似文献   

7.
A synthetic peptide modeled after the major threonine (T669) phosphorylation site of the epidermal growth factor (EGF) receptor was an efficient substrate (apparent Km approximately 0.45 mM) for phosphorylation by purified p44mpk, a MAP kinase from sea star oocytes. The peptide was also phosphorylated by a related human MAP kinase, which was identified by immunological criteria as p42mapk. Within 5 min of treatment of human cervical carcinoma A431 cells with EGF or phorbol myristate acetate (PMA), a greater than 3-fold activation of p42mapk was measured. However, Mono Q chromatography of A431 cells extracts afforded the resolution of at least three additional T669 peptide kinases, some of which may be new members of the MAP kinase family. One of these (peak I), which weakly adsorbed to Mono Q, phosphorylated myelin basic protein (MBP) and other MAP kinase substrates, immunoreacted as a 42 kDa protein on Western blots with four different MAP kinase antibodies, and behaved as a approximately 45 kDa protein upon Superose 6 gel filtration. Another T669 peptide kinase (peak IV), which bound more tightly to Mono Q than p42mapk (peak II), exhibited a nearly identical substrate specificity profile to that of p42mapk, but it immunoreacted as a 40 kDa protein only with anti-p44mpk antibody on Western blots, and eluted from Superose 6 in a high molecular mass complex of greater than 400 kDa. By immunological criteria, the T669 peptide kinase in Mono Q peak III was tentatively identified as an active form of p34cdc2 associated with cyclin A. The Mono Q peaks III and IV kinases were modestly stimulated following either EGF or PMA treatments of A431 cells, and they exhibited a greater T669 peptide/MBP ratio than p42mapk. These findings indicated that multiple proline-directed kinases may mediate phosphorylation of the EGF receptor.  相似文献   

8.
Previous studies demonstrated that neutrophil adherence induces ICAM-1-dependent cytoskeletal changes in TNF-alpha-treated pulmonary microvascular endothelial cells that are prevented by a pharmacological inhibitor of p38 MAP kinase. This study determined whether neutrophil adherence induces activation of p38 MAP kinase in endothelial cells, the subcellular localization of phosphorylated p38, which MAP kinase kinases lead to p38 activation, which p38 isoform is activated, and what the downstream targets may be. Confocal microscopy showed that neutrophil adhesion for 2 or 6 min induced an increase in phosphorylated p38 in endothelial cells that was punctate and concentrated in the central region of the endothelial cells. Studies using small interfering RNA (siRNA) to inhibit the protein expression of MAP kinase kinase 3 and 6, either singly or in combination, showed that both MAP kinase kinases were required for p38 phosphorylation. Studies using an antisense oligonucleotide to p38alpha demonstrated that inhibition of the protein expression of p38alpha 1) inhibited activation of p38 MAP kinase without affecting the protein expression of p38beta; 2) prevented phosphorylation of heat shock protein 27, an actin binding protein that may induce actin polymerization upon phosphorylation; 3) attenuated cytoskeletal changes; and 4) attenuated neutrophil migration to the EC borders. Thus MAP kinase kinase3- and 6-dependent activation of the alpha-isoform of p38 MAP kinase is required for the cytoskeletal changes induced by neutrophil adherence and influences subsequent neutrophil migration toward endothelial cell junctions.  相似文献   

9.
Stathmin, a ubiquitous cytosolic phosphoprotei which may play a role in integrating the effects of diverse signals regulating proliferation, differentiation and other cell functions, was found to be phosphorylated rapidly and stoichiometrically by mitogen-activated protein (MAP) kinasein vitro. Ser-25 was identified as the major site and Ser-38 as a minor site of phosphorylation, while the p42 and p44 isoforms of MAP kinase were the only significant stathmin kinases detected in PC12 cells after stimulation by nerve growth factor (NGF). The results suggest that MAP kinases are the enzymes responsible for increasing the level of phosphorylation of Ser-25, which has been observed previously in PC12 cells following stimulation by NGF.Submitted February 1993.  相似文献   

10.
Statins, specific inhibitors of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase, are now widely used for treatment of patients with hypercholesterolemia. In addition to the reduction of cholesterol biosynthesis, accumulating evidence indicates that statins have several pleiotropic effects especially on cardiovascular system. However, the exact role of statin in cardiac myocytes remains unclear. In the present study, we investigated whether atorvastatin induces vascular endothelial growth factor (VEGF) release in cardiac myocytes, and the underlying mechanism. We observed that atorvastatin significantly stimulated VEGF release in a dose-dependent manner. It induced the phosphorylation of p44/p42 mitogen-activated protein (MAP) kinase and p38 MAP kinase but not SAPK (stress-activated protein kinase)/JNK (c-Jun N-terminal kinase). The atorvastatin-induced VEGF release was enhanced by PD98059, which is a specific inhibitor of the upstream kinase that activates p44/p42 MAP kinase (MEK). Further, it was significantly reduced by SB203580, a specific inhibitor of p38 MAP kinase. Furthermore, the atorvastatin-induced phosphorylation of p38 MAP kinase was attenuated by SB203580, whereas it was enhanced by PD98059. Taken together, these results suggest that the atorvastatin-induced VEGF release in cardiac myocytes is positively regulated by p38 MAP kinase and negatively regulated byp44/p42 MAP kinase and that the atorvastatin-induced phosphorylation of p38 MAP kinase is regulated by p44/p42 MAP kinase in these cells.  相似文献   

11.
12.
Although it is known that transforming growth factor (TGF)-beta induces vascular endothelial growth factor (VEGF) synthesis in vascular smooth muscle cells, the underlying mechanisms are still poorly understood. In the present study, we examined whether the mitogen-activated protein (MAP) kinase superfamily is involved in TGF-beta-stimulated VEGF synthesis in aortic smooth muscle A10 cells. TGF-beta stimulated the phosphorylation of p42/p44 MAP kinase and p38 MAP kinase, but not that of SAPK (stress-activated protein kinase)/JNK (c-Jun N-terminal kinase). The VEGF synthesis induced by TGF-beta was not affected by PD98059 or U0126, specific inhibitors of the upstream kinase that activates p42/p44 MAP kinase. We confirmed that PD98059 or U0126 did actually suppress the phosphorylation of p42/p44 MAP kinase by TGF-beta in our preparations. PD169316 and SB203580, specific inhibitors of p38 MAP kinase, significantly reduced the TGF-beta-stimulated synthesis of VEGF (each in a dose-dependent manner). PD169316 or SB203580 attenuated the TGF-beta-induced phosphorylation of p38 MAP kinase. These results strongly suggest that p38 MAP kinase plays a part in the pathway by which TGF-beta stimulates the synthesis of VEGF in aortic smooth muscle cells.  相似文献   

13.
14.
In RAW 264.7 macrophages lipopolysaccharide (LPS) stimulated the activation of p42 and p44 MAP kinases and their upstream activator mitogen-activated protein (MAP) kinase kinase (MAPKK), and induced the 69-kDa isoform of cyclo-oxygenase-2 (COX-2) and the 130-kDa isoform of nitric oxide synthase (iNOS). PD 098059, a specific inhibitor of the activation of MAPKK, prevented LPS-mediated activation of MAPKK (IC50 = 3.0 +/- 0.1 microM, n = 3) and p42/44 MAP kinases and substantially reduced the induction of COX-2 by approximately 40%-70%, but was without effect upon the induction of iNOS. In parallel, LPS also stimulated the activation of p38 MAP kinase and the MAPKAP kinase-2, a downstream target of p38 MAP kinase. SB 203580, a specific inhibitor of p38 MAP kinase prevented the activation of p38 MAP kinase (IC50 = 3.3 +/- 1.4 microM, n = 3) and MAPKAP kinase-2 by LPS and reduced the induction of COX-2 by approximately 50-90%, with no significant effect upon iNOS expression. These studies indicate the involvement of both the classical p42/44 MAP kinases and p38 MAP kinase in the regulation of COX-2 but not iNOS induction following exposure to LPS.  相似文献   

15.
Meiotic maturation of Xenopus and sea star oocytes involves the activation of a number of protein-serine/threonine kinase activities, including a myelin basic protein (MBP) kinase. A 44-kDa MBP kinase (p44mpk) purified from mature sea star oocytes is shown here to be phosphorylated at tyrosine. Antiserum to purified sea star p44mpk was used to identify antigenically related proteins in Xenopus oocytes. Two tyrosine-phosphorylated 42-kDa proteins (p42) were detected with this antiserum in Xenopus eggs. Xenopus p42 chromatographs with MBP kinase activity on a Mono Q ion-exchange column. Tyrosine phosphorylation of Xenopus p42 approximately parallels MBP kinase activity during meiotic maturation. These results suggest that related MBP kinases are activated during meiotic maturation of Xenopus and sea star oocytes. Previous studies have suggested that Xenopus p42 is related to the mitogen-activated protein (MAP) kinases of culture mammalian cells. We have cloned a MAP kinase relative from a Xenopus ovary cDNA library and demonstrate that this clone encodes the Xenopus p42 that is tyrosine phosphorylated during oocyte maturation. Comparison of the sequences of Xenopus p42 and a rat MAP kinase (ERK1) and peptide sequences from sea star p44mpk indicates that these proteins are close relatives. The family members appear to be tyrosine phosphorylated, and activated, in different contexts, with the murine MAP kinase active during the transition from quiescence to the G1 stage of the mitotic cell cycle and the sea star and Xenopus kinases being active during M phase of the meiotic cell cycle.  相似文献   

16.
This study examined the effects of high glucose on cell proliferation and its related signal pathways using mouse embryonic stem (ES) cells. Here, we showed that high glucose level significantly increased [3H]thymidine incorporation, BrdU incorporation, the number of cells, [3H]leucine, and [3H]proline incorporation in a time-( >3 hr) and dose-(> 25 mM) dependent manner. Moreover, high glucose level increased the cellular reactive oxygen species (ROS), Akt, and mitogen-activated protein kinases (MAPKs) phosphorylation. Subsequently, these signaling molecules involved in high glucose-induced increase of [3H]thymidine incorporation. High glucose level also increased cyclin D1, cyclin E, cyclin-dependent kinase (CDK) 2, and CDK 4 protein levels, which is cell cycle regulatory proteins acting in G1-S phase of cell cycle. Inhibition of phosphatidylinositol 3-kinase (PI3-K) (LY 294002: PI3-kinase inhibitor, 10(-6) M), Akt (Akt inhibitor, 10(-5) M), and p44/42 MAPKs (PD 98059: MEK inhibitor, 10(-5) M) decreased these proteins. High glucose level phosphorylated the RB protein, which was decreased by inhibition of PI3-K and Akt. In conclusion, high glucose level stimulates mouse ES cell proliferation via the PI3-K/Akt and MAPKs pathways.  相似文献   

17.
The mitogen-activated protein (MAP) kinases are essential signaling molecules that mediate many cellular effects of growth factors, cytokines, and stress stimuli. Full activation of the MAP kinases requires dual phosphorylation of the Thr and Tyr residues in the TXY motif of the activation loop by MAP kinase kinases. Down-regulation of MAP kinase activity can be initiated by multiple serine/threonine phosphatases, tyrosine-specific phosphatases, and dual specificity phosphatases (MAP kinase phosphatases). This would inevitably lead to the formation of monophosphorylated MAP kinases. However, the biological functions of these monophosphorylated MAP kinases are currently not clear. In this study, we have prepared MAP kinase p38alpha, a member of the MAP kinase family, in all phosphorylated forms and characterized their biochemical properties. Our results indicated the following: (i) p38alpha phosphorylated at both Thr-180 and Tyr-182 was 10-20-fold more active than p38alpha phosphorylated at Thr-180 only, whereas p38alpha phosphorylated at Tyr-182 alone was inactive; (ii) the dual-specific MKP5, the tyrosine-specific hematopoietic protein-tyrosine phosphatase, and the serine/threonine-specific PP2Calpha are all highly specific for the dephosphorylation of p38alpha, and the dephosphorylation rates were significantly affected by different phosphorylated states of p38alpha; (iii) the N-terminal domain of MPK5 has no effect on enzyme catalysis, whereas deletion of the MAP kinase-binding domain in MKP5 leads to a 370-fold decrease in k(cat)/K(m) for the dephosphorylation of p38alpha. This study has thus revealed the quantitative contributions of phosphorylation of Thr, Tyr, or both to the activation of p38alpha and to the substrate specificity for various phosphatases.  相似文献   

18.
We previously reported that p70 S6 kinase takes part in bone morphogenetic protein-4 (BMP-4)-stimulated vascular endothelial growth factor (VEGF) synthesis in osteoblast-like MC3T3-E1 cells. Recently, we showed that BMP-4-induced osteocalcin synthesis is regulated by p44/p42 MAP kinase and p38 MAP kinase in these cells. In the present study, we investigated whether the MAP kinases are involved in the BMP-4-stimulated synthesis of VEGF in MC3T3-E1 cells. PD-98059 and U-0126, inhibitors of the upstream kinase of p44/p42 MAP kinase, failed to affect BMP-4-stimulated VEGF synthesis. SB-203580 and PD-169316, inhibitors of p38 MAP kinase, significantly reduced VEGF synthesis, whereas SB-202474, a negative control for p38 MAP kinase inhibitor, had little effect on VEGF synthesis. The BMP-4-stimulated phosphorylation of p38 MAP kinase was not affected by rapamycin, an inhibitor of p70 S6 kinase. On the contrary, SB-203580 and PD-169316 reduced the BMP-4-stimulated phosphorylation of p70 S6 kinase. In addition, anisomycin, an activator of p38 MAP kinase, phosphorylates p70 S6 kinase, and the phosphorylation was suppressed by SB-203580. LY-294002, an inhibitor of phosphatidylinositol 3-kinase, failed to suppress the phosphorylation of p38 MAP kinase induced by BMP-4. Not BMP-4 but anisomycin weakly induced the phosphorylation of phosphoinositide-dependent kinase-1. However, anisomycin had little effect on phosphorylation of either Akt or the mammalian target of rapamycin. Taken together, our results suggest that p38 MAP kinase functions in BMP-4-stimulated VEGF synthesis as a positive regulator at a point upstream from p70 S6 kinase in osteoblasts.  相似文献   

19.
We previously reported that transforming growth factor-beta (TGF-beta) activates p44/p42 mitogen-activated protein (MAP) kinase and p38 MAP kinase, resulting in the stimulation of vascular endothelial growth factor (VEGF) synthesis in osteoblast-like MC3T3-E1 cells. In the present study, we investigated the involvement of stress-activated protein kinase/c- Jun N-terminal kinase (SAPK/JNK), another member of the MAP kinase superfamily, in TGF-beta-induced VEGF synthesis in these cells. TGF-beta markedly induced SAPK/JNK phosphorylation. SP600125, a specific inhibitor of SAPK/JNK, markedly reduced TGF-beta-induced VEGF synthesis. SP600125 suppressed TGF-beta-induced SAPK/JNK phosphorylation. PD98059, an inhibitor of upstream kinase of p44/p42 MAP kinase and SB203580, an inhibitor of p38 MAP kinase, each failed to reduce TGF-beta-induced SAPK/JNK phosphorylation. A combination of SP600125 and PD98059 or SP600125 and SB203580 suppressed TGF-beta-stimulated VEGF synthesis in an additive manner. These results strongly suggest that TGF-beta activates SAPK/JNK in osteoblasts, and that SAPK/JNK plays a role in addition to p42/p44 MAP kinase and p38 MAP kinase in TGF-beta-induced VEGF synthesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号