首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prolactin-releasing peptide (PrRP) is a novel peptide found in bovine hypothalamus as an endogenous ligand of an orphan G-protein-coupled receptor (hGR3). It is known that PrRP is widely distributed and plays roles in the central nervous system (CNS). In particular, PrRP acts as a neurotransmitter that mediates stress and activates the hypothalamo-pituitary-adrenal axis. On the other hand, only a few studies have so far been performed on PrRP in peripheral tissues. Among peripheral tissues, appreciable levels of PrRP are found only in the adrenal gland; however, the PrRP-producing cells in the adrenal gland have not been identified. In this study, we detected PrRP mRNA in the rat adrenal medulla. So, we tried to identify the PrRP-producing cells in primary culture cells of the adrenal medulla. We found immunopositive PrRP cells among the cultured cells from the adrenal gland, but not in the adrenal gland tissue, by means of immunocytochemistry. The PrRP immunopositive cells were double positive for tyrosine hydroxylase (TH) and for phenylethanolamine N-methyltransferase (PNMT), which indicates that PrRP may be produced in a part of the adrenaline cells in the adrenal gland. This is the first report that PrRP is produced in the adrenaline-containing cells of the adrenal gland.  相似文献   

2.
M M Pinto 《Acta cytologica》1985,29(5):863-866
Myelolipoma, a rare benign tumor of the adrenal gland composed of adipose tissue and hemopoietic elements, is usually asymptomatic and described as an incidental finding at autopsy. Computed tomographic (CT) body scans revealed radiographic evidence of myelolipoma, i.e., low-density masses with calcification, in a patient with a known squamous-cell carcinoma of the lung. These nonspecific findings, described in a variety of other tumors involving the adrenal gland, were confirmed by CT-guided fine needle aspiration (FNA) biopsy. While the routine use of FNA biopsies of the adrenal gland in patients who do not have cancer remains controversial, it is mandatory to biopsy any masses in the adrenal gland in patients who have cancer; this case illustrates the value of CT-guided FNA biopsy in rendering a diagnosis of myelolipoma of the adrenal gland.  相似文献   

3.
Large amounts of D-aspartate (D-Asp) are present in the rat adrenal and pituitary glands. D-Asp is thought to be synthesized in the mammalian body and also accumulates in various tissues following intraperitoneal or intravenous administration. This report examines the origins of D-Asp in the adrenal and pituitary glands. We administered D-Asp to male rats intraperitoneally and immunolocalized this exogenous D-Asp in adrenal and pituitary tissue, using an anti-D-Asp antiserum which was previously developed in our laboratory. D-Asp levels in the rat adrenal gland have been shown to undergo a transient increase at 3 weeks of age and to decrease rapidly thereafter. We found that in the adrenal gland, exogenous D-Asp administered intraperitoneally was incorporated into the same region of the adrenal cortex in which endogenous D-Asp was present. By Northern and Western blot analysis and immunohistochemistry of glutamate (Glu) transporter, we also found that expression of the Glu transporter (GLAST), which has an affinity for D-Asp, transiently increased at 3 weeks of age and that localization patterns of the Glu transporter within the tissue were almost coincident with those of endogenous D-Asp. These observations suggest that D-Asp in the adrenal cortex of 3-week-old male rats is primarily acquired by uptake from the vascular system. We have previously shown that D-Asp is specifically localized in prolactin (PRL)-containing cells in the anterior lobe of the adult rat pituitary gland. Here we report that in the pituitary gland, exogenous D-Asp accumulated in endothelial cells, but not in PRL-containing cells. Northern and Western blot analysis and immunohistochemistry of Glu transporter revealed that developmental changes in the Glu transporter (GLAST) expression did not correlate with tissue levels of D-Asp and that the Glu transporter was not expressed in PRL-containing cells. These observations suggest that, in contrast to the adrenal gland, most of the D-Asp in the pituitary gland of adult male rats originates inside the gland itself.  相似文献   

4.
《Endocrine practice》2011,17(3):441-447
ObjectiveTo review the association between congenital adrenal hyperplasia (CAH) and adrenal myelolipomas and report a case of bilateral, giant adrenal myelolipomas in a patient with untreated CAH due to 21-hydroxylase deficiency.MethodsWe describe the patient’s clinical presentation, imaging findings, and laboratory test results and review the relevant English-language literature concerning patients with both CAH and myelolipomas.ResultsA 45-year-old man with untreated CAH due to 21-hydroxylase deficiency presented with increasing abdominal girth and abdominal pain. Computed tomography of the abdomen demonstrated very low-density adrenal masses (22 × 11 cm on the left side and 6 × 5.5-cm on the right side) consistent with adrenal myelolipomas. The left adrenal myelolipoma was resected (24.4 × 19.0 × 9.5 cm; 2557 g). The mass was composed of mature adipose tissue with areas of hematopoietic cells of myeloid, erythroid, and megakaryocytic cell lines. Islands of adrenal cortical cells were scattered between the adipose and hematopoietic tissue. Including the present case, we identified 31 patients with both CAH and myelolipomas who have been described in the English-language literature. The details of these cases were reviewed.ConclusionsPersons with CAH may be at increased risk of developing adrenal myelolipomas, particularly if their CAH is poorly controlled. How and whether chronic exposure of the adrenal glands to high corticotropin levels increases the risk of developing myelolipomas remains a matter of speculation. (Endocr Pract. 2011;17:441-447)  相似文献   

5.
6.
7.
The morphology of the adrenal gland has been studied for a number of animal species all over the world, yet the detailed data about ostrich chick has not been reported. In the present study, the morphological features of the adrenal gland in African ostrich chicks were investigated by means of gross anatomy, light and electron microscope. Differences between the left and right adrenal glands were found in shape, size and location. The interrenal tissue and chromaffin cell interdigitated irregularly. The interrenal tissue was divided into a peripheral zone (PZ) and a central inner zone (CZ), and the PZ was further distinguished into an outer area (subcapsular zone, SCZ) and an inner area (IZ). The cellular arrangement in these zones showed evident zonation that resembled the mammalian. This phenomenon had been previously described only for the pelicanus. The cytoplasm of interrenal cells in SCZ was stained lightly than in IZ and CZ, and contained several vacuoles. Additionally, unlike CZ cells, SCZ cells appeared to contain more mitochondria and less lipid droplets. Two types of chromaffin cells: epinephrine cells and norepinephrine cells could be detected. The type 1 granules possessed a central core and a variable distance between membrane and core; the type 2 granules had an eccentric core, which leant to one side of granule and sticked to the membrane, giving a lager lacouna appearance in another side of the granule.  相似文献   

8.
In mammals, circadian rhythms of various organs and tissues are synchronized by pacemaker neurons in the suprachiasmatic nucleus (SCN) of the hypothalamus. Glucocorticoids released from the adrenal glands can synchronize circadian rhythms in other tissues. Many hormones show circadian rhythms in their plasma concentrations; however, whether organs outside the SCN can serve as master synchronizers to entrain circadian rhythms in target tissues is not well understood. To further delineate the function of the adrenal glands and the interactions of circadian rhythms in putative master synchronizing organs and their target tissues, here we report a simple co-culture system using a dual-color luciferase assay to monitor circadian rhythms separately in various explanted tissues and fibroblasts. In this system, circadian rhythms of organs and target cells were simultaneously tracked by the green-emitting beetle luciferase from Pyrearinus termitilluminans (ELuc) and the red-emitting beetle luciferase from Phrixothrix hirtus (SLR), respectively. We obtained tissues from the adrenal glands, thyroid glands, and lungs of transgenic mice that expressed ELuc under control of the promoter from a canonical clock gene, mBmal1. The tissues were co-cultured with Rat-1 fibroblasts as representative target cells expressing SLR under control of the mBmal1 promoter. Amplitudes of the circadian rhythms of Rat-1 fibroblasts were potentiated when the fibroblasts were co-cultured with adrenal gland tissue, but not when co-cultured with thyroid gland or lung tissue. The phases of Rat-1 fibroblasts were reset by application of adrenal gland tissue, whereas the phases of adrenal gland tissue were not influenced by Rat-1 fibroblasts. Furthermore, the effect of the adrenal gland tissue on the fibroblasts was blocked by application of a glucocorticoid receptor (GR) antagonist. These results demonstrate that glucocorticoids are strong circadian synchronizers for fibroblasts and that this co-culture system is a useful tool to analyze humoral communication between different tissues or cell populations.  相似文献   

9.
Effects of orexin on cultured porcine adrenal medullary and cortex cells   总被引:2,自引:0,他引:2  
New orexigenic peptides called orexins have recently been described in the neurons of the lateral hypothalamus and perifornical area. No orexins have been found in the adipose tissues or visceral organs, including the adrenal gland. However, expression of the orexin receptor (OXR) in the rat adrenal gland has been reported. With regard to the effects of orexins on peripheral organs, we previously reported that orexins suppress catecholamine synthesis and secretion in the rat pheochromocytoma cell line PC12. To further clarify the pharmacological effects of orexins on peripheral organs, we examined the effects of orexin-A on catecholamine, cortisol, and aldosterone secretion, using cultured porcine adrenal glands. We initially confirmed the expression of the orexin receptor (OXR-1) in cultured porcine adrenal medulla and cortex. Orexin-A (1000 nM) significantly increased the release of both epinephrine (E) and norepinephrine (NE) from porcine adrenal medullary cells. Similarly, orexin-A (> or = 100 nM) significantly increased the release of both cortisol and aldosterone from porcine adrenal cortex cells. Orexin-A (100 nM) significantly inhibited basal and the PACAP-induced increase in cAMP levels in adrenal medullary cells. Conversely, orexin-A (>o = 100 nM) significantly increased the cAMP level in adrenal cortex cells. These results indicate that orexin-A induces the release of catecholamine from porcine adrenal medullary cells, and aldosterone and cortisol from the cortex cells and has opposite effects on cAMP levels in adrenal medulla and cortex.  相似文献   

10.
Inhibin immunoreactivity was estimated in a number of gonadal and non-gonadal tumors. Dog Sertoli cell tumors and human granulosa cell and Leydig cell tumors contained high concentrations of inhibin-like material. Levels, comparable with those in normal testes and ovaries were detected in human testicular non-seminomas and in ovarian cystadenomas, thecomas and adenofibromas. No activity was found in human testicular Sertoli/Leydig cell tumors and seminomas and in ovarian adenocarcinomas, teratomas and a dysgerminoma. Furthermore, human adrenal cortical tissue (tumor and hyperplastic adrenal) contained inhibin immunoreactivity. No activity was found in human tumors of the stomach, gut, liver, kidney, pancreas and mammary gland or in meningiomas. It is concluded that inhibin is not a good marker for specific gonadal tumors. Inhibin might have intratumor actions a growth or differentiation factor.  相似文献   

11.
Somatostatin (somatotropin-release inhibitory factor, SRIF) exerts multiple inhibitory actions throughout the central nervous system and the periphery by binding to specific membrane-bound SRIF receptors (sstrs) of which five subtypes (sstr1-5) have now been identified. Individual sstr subtypes have been suggested to mediate selective biological actions of SRIF. Although the adrenal gland is a known target of SRIF action, the sstr subtypes involved in its actions are unclear. This study examined the expression of sstr1-5 in rat adrenal gland by RT-PCR analysis and in situ hybridization (ISH) histochemistry. Using RT-PCR expression combined with Southern blotting, sstr1, -2, -4, and -5 mRNAs were shown in the adrenal gland. ISH histochemistry revealed strong expression of sstr2 mRNA alone localized to the zona glomerulosa of the adrenal cortex and moderate labeling in scattered cells of the adrenal medulla, indicating a possible role for sstr2 in mediating SRIF physiology in this tissue by altering adrenal aldosterone and catecholamine secretion. These data also point to potential roles for sstr subtypes sstr1, -4, and -5 in the adrenal gland.  相似文献   

12.
Opioid peptides in adrenal gland   总被引:4,自引:0,他引:4  
H Y Yang  T Hexum  E Costa 《Life sciences》1980,27(13):1119-1125
Enkephalin-like immunoreactive peptides have been observed in adrenal glands of all species studied with the highest contents found in dogs and cows, and the lowest in rats. These peptides are located both in gland cells and in afferent nerve terminals. Bovine adrenal glands contain opioid peptides in many molecular forms. The peptides include a group of low molecular weight forms (M.W. <1000) which are capable of binding to the opiate receptor, and a group of high molecular weight forms (M.W. >1000) which contain enkephalin within their peptide sequence, but are devoid of opioid activity unless treated with trypsin. The physiological role(s) of the adrenal enkephalin-like material is not clear at present. However, it has been observed that nicotine-stimulated release of catecholamine from isolated chromaffin cells can be reduced by opiate agonists, suggesting that enkephalin-like peptide in nerve terminals may act on chromaffin cells. Several lines of evidence suggest that enkephalin-like peptides in gland cells can be released into the bloodstream.  相似文献   

13.
Nitric oxide (NO) acts as an intercellular messenger molecule in the nervous system. In the adrenal gland sympathetic preganglionic fibers innervating the medulla, as well as intrinsic neural ganglion cells, contain nitric oxide synthase (NOS). Nitric oxide stimulates the soluble enzyme guanylate cyclase forming cyclic GMP (cGMP). Using sodium nitroprusside (SNP) as nitric oxide donor we have studied the putative target cells for nitric oxide in the rat adrenal gland, both in vivo and in vitro. The guinea pig and a few mouse adrenal glands were studied after SNP perfusion for comparison. Our results show that after vascular perfusion with a high concentration (3 mM) of SNP both noradrenaline and adrenaline chromaffin cells express cGMP-like immunoreactivity in all three species. After incubation of rat adrenal slices with SNP primarily the noradrenaline chromaffin cells are cGMP-positive. In contrast, detectable levels of cGMP-like immunoreactivity were not found in neuronal ganglion cells. In the adrenal cortex cGMP-like immunoreactivity was seen in blood vessel walls, in small cells with processes forming a reticular network, at least partly presumably representing endothelial cells, as well as in some presumable nerve terminals. These findings support the view that chromaffin cells, especially the noradrenergic ones and blood vessels, are targets for nitric oxide in the adrenal gland.  相似文献   

14.
Extrarenal renin has been identified in a number of tissues, including the brain, the submaxillary gland, uterus, ovary, vascular endothelium, testes, pituitary gland, and the adrenal cortex. In some tissues, including the adrenal cortex, all of the components of the renin-angiotensin system have been identified; however, no specific physiologic role has been clearly demonstrated for these extrarenal renin-angiotensin systems. We have studied the role of the renin-angiotensin system in the adrenal cortex of the rat and have found that renin is localized and synthesized in the zona glomerulosa cells. Its production can be influenced by alterations in electrolyte balance, as well as the genetic background of the rat. In adrenal capsular explant cultures, a converting enzyme inhibitor can lower angiotensin II production and reduce the stimulation of aldosterone by potassium, suggesting that this system is involved in the aldosterone response to potassium. In addition to rat adrenals, renin has been identified in human adrenal tissue and human adrenal tumors, including aldosteronomas, and a patient with hypertension has been reported to have an adrenal tumor that appeared to be secreting renin into the circulation.  相似文献   

15.
Ghrelin is the endogenous ligand for the growth hormone secretagogue receptor. We investigated the distribution and morphological characteristics of ghrelin-immunopositive (ghrelin-ip) cells in the African ostrich adrenal gland. We found that the adrenal gland of the African ostrich consisted of three parts: capsule, inter-renal tissue and chromaffin cells. The inter-renal tissue and chromaffin cells interdigitated irregularly. The inter-renal tissue consisted of a peripheral zone and a central inner zone. The peripheral zone could be divided into an outer subcapsular zone and an inner zone. The subcapsular zone cells were arranged as a bow, while the inner area cells formed cords that were perpendicular to the capsule. The central inner zone exhibited irregular clumps and the cells were morphologically similar to chromaffin cells. Ghrelin-ip cells were located throughout the adrenal gland except the capsule. The majority of ghrelin-ip cells were found among the chromaffin cells. The number of ghrelin-ip cells in the inter-renal tissue decreased gradually from the central inner zone, to the inner zone to the subcapsular zone. The ghrelin-ip cells were oval or irregular in shape and exhibited cytoplasmic staining. Our findings suggest that ghrelin may play a role in regulating adrenal hormone secretion in the African ostrich.  相似文献   

16.
Atrial natriuretic peptide (ANP) actions are mediated by highly selective and specific receptors. Three subtypes have been characterized and cloned: ANP receptor-A (or GC-A), -B (or GC-B) and -C (the so-called clearance receptor). In rat adrenal gland, the mRNA for each subtype was detected using 35S-dUTP or digoxigenin-11-dUTP specific labeled probes, and in situ hybridization at light and electron microscopic levels respectively. The three subtypes were expressed the most abundantly in the zona glomerulosa. The amount of GC-A mRNA expression, quantified using macroautoradiography and densitometry, was higher than the amounts of GC-B mRNA and ANPR-C mRNA both in zona glomerulosa and medullary of adrenal gland. At electron microscopic level, the three subtypes of ANPR were revealed in glomerulosa cells. A noticeable signal was also present in the medullary area, especially for GC-A mRNA, in adrenaline-containing chromaffin cells. No signal was detected in noradrenaline-containing chromaffin cells. The subcellular localization of the three mRNAs is similar: in the cytoplasmic matrix and in the euchromatin of the nucleus in each cell of glomerulosa, and in the same compartments of the adrenaline-containing chromaffin cells. These data indicate that the adrenal gland is an important target tissue for ANP action both in glomerulosa cells and adrenaline-containing chromaffin cells. The mRNA expression levels were different for each ANPR subtype.  相似文献   

17.
Human adrenocortical cells have been shown to express cytokeratins and vimentin. Nestin is an intermediate filament protein that is mainly expressed in the developing nervous system and that has been recently reported in rat adrenal gland as well. Using immunohistochemical and biochemical approaches, the present study demonstrates that nestin is constantly expressed in situ in the cortex of normal human adrenal glands. Nestin expressing cells were prevalently located in the zona reticularis but some positive cells could be spotted in the zona fasciculata as well. Moreover, patches of nestin-positive cells have been constantly detected on sections of cortical adenomas. In contrast, adrenal carcinomas displayed a variable number of nestin-immunoreactive cells that in some cases were virtually absent. Samples of renal clear cell carcinoma metastasis in the adrenals were also examined which did not show nestin-immunoreactivity. We propose that a positive nestin-immunoreaction could be useful in differential diagnosis of clear cell tumors in adrenal glands.  相似文献   

18.
Chimeric animals are very useful for analysis of cell lineage, homeostasis in tissue architecture, and cell-cell interactions during both organogenesis and carcinogenesis. However, there is not a generally effective means for marking cells of chimeric mice. We have therefore developed a polyclonal antibody that is useful for this purpose. This antibody specifically recognizes those cells derived from C3H strain mice. The specificity of this antibody was checked by both immunoblotting and immunoadsorption methods. The antigens were immunohistochemically detected in cytoplasm of both epithelial and mesenchymal cells of C3H/HeN strain mouse in many different organs, but not the corresponding cell types from BALB/c or C57BL/10 or several other mouse strains. The validity of these antibodies as markers for C3H cells was further checked by tissue recombination experiments and in mixed cultures of mouse and rat cells. In each case the antibody recognized only the C3H mouse cells. Next, chimeric mice were prepared between strains C3H/HeN and BALB/c, and C3H/HeN and C57BL/10 mice. Chimeras 2-mo old were examined for antigen distribution using the indirect immunofluorescence method. Many tissues in chimeric mice were composed of cells that were both stained and unstained by the anti-C3H specific antigen. The chimeric patterns were classified into four types, A-D. In well-defined structural units such as intestinal crypts, small intestinal villi, kidney convoluted tubules, exocrine gland acini, ovarian follicles, thyroid gland follicles, stomach glands, adrenal cortex, lingual papillae, etc., (A) each unit was composed entirely of either positive or negative cells, or else (B) in some organs each unit was composed of both types of cells. In the uniform tissues without such distinguishable units, such as stratified squamous epithelium, mesenchymal tissue, corpora lutea, pituitary gland, Islets of Langerhans, adrenal medulla etc., (C) the tissue was composed of definite small cell groups made entirely of either positive or negative cells, or else (D) the tissue was composed of both types of cells which were intermingled with one another. These findings strongly suggest that the chimeric patterns demonstrated here reflect the cell proliferative unit in each tissue. This cell marker system has proven useful for analysis of cell lineage and cell renewal systems in many organs of chimeric mice.  相似文献   

19.
The Harderian gland of the gecko, Tarentola mauritanica, was studied at the histological, histochemical, and ultrastructural levels. It is a nonlobate compound acinar gland surrounded by a thin capsule of connective tissue. Numerous connective tissue-type mast cells, ultrastructurally similar to those described in other higher vertebrates, were identified in the interstitial tissue between the acini. Pyramidal or columnar-shaped secretory glandular cells were observed in the acini. In the glandular cells, two types of structures could be distinguished on the basis of their high or low electron density. Lipid droplets were found in the cytoplasm of the Harderian gland of both sexes. Histochemical tests showed that the Harderian gland of the gecko is a seromucous gland. The secretion is essentially merocrine, although an apocrine type of secretion is sometimes observed.  相似文献   

20.
ACTH-independent macronodular adrenal hyperplasia (AIMAH) is a very rare cause of endogenous Cushing's syndrome (CS). In this review, the clinical characteristics, the pathophysiology, and the management of AIMAH are described. AIMAH typically presents with overt CS, but subclinical oversecretion of cortisol has been increasingly described. The diagnosis is suspected by adrenal nodular enlargement on conventional imaging following the demonstration of ACTH-independent hypercortisolism. Final diagnosis is established by histological examination of the adrenal tissue. Bilateral adrenalectomy is the treatment of choice but unilateral adrenalectomy has been proposed in selected cases. In patients with subclinical CS, the decision to treat should be individualized. The pathophysiology of this condition has begun to be elucidated in recent years. Diverse aberrant membrane-bound receptors expressed in a non-mutated form in the adrenal gland have been found to be implicated in the regulation of steroidogenesis in AIMAH. When systematically screened, most patients with AIMAH and CS or subclinical CS exhibit an in vivo aberrant cortisol response to one or various ligands suggesting the presence of aberrant adrenal receptors. A protocol designed to screen patients for the presence of these aberrant receptors should be undertaken in all patients with AIMAH. The identification of these receptors provides the potential for novel pharmacological therapies by suppressing the endogenous ligands or blocking the receptor with specific antagonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号