首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Cadherins are a family of cell-cell adhesion molecules which play a central role in controlling morphogenetic movements during development. Cadherin function is regulated by its association with the actin containing cytoskeleton, an association mediated by a complex of cytoplasmic proteins, the catenins: alpha, beta, and gamma. Phosphorylated tyrosine residues on beta-catenin are correlated with loss of cadherin function. Consistent with this, we find that only nontyrosine phosphorylated beta-catenin is associated with N-cadherin in E10 chick retina tissue. Moreover, we demonstrate that a PTP1B-like tyrosine phosphatase associates with N-cadherin and may function as a regulatory switch controlling cadherin function by dephosphorylating beta-catenin, thereby maintaining cells in an adhesion-competent state. The PTP1B-like phosphatase is itself tyrosine phosphorylated. Moreover, both direct binding experiments performed with phosphorylated and dephosphorylated molecules, and treatment of cells with tyrosine kinase inhibitors indicate that the interaction of the PTP1B-like phosphatase with N-cadherin depends on its tyrosine phosphorylation. Concomitant with the tyrosine kinase inhibitor-induced loss of the PTP1B-like phosphatase from its association with N-cadherin, phosphorylated tyrosine residues are retained on beta-catenin, the association of N- cadherin with the actin containing cytoskeleton is lost and N-cadherin- mediated cell adhesion is prevented. Tyrosine phosphatase inhibitors also result in the accumulation of phosphorylated tyrosine residues on beta-catenin, loss of the association of N-cadherin with the actin- containing cytoskeleton, and prevent N-cadherin mediated adhesion, presumably by directly blocking the function of the PTP1B-like phosphatase. We previously showed that the binding of two ligands to the cell surface N-acetylgalactosaminylphosphotransferase (GalNAcPTase), the monoclonal antibody 1B11 and a proteoglycan with a 250-kD core protein, results in the accumulation of phosphorylated tyrosine residues on beta-catenin, uncoupling of N-cadherin from its association with the actin containing cytoskeleton, and loss of N- cadherin function. We now report that binding of these ligands to the GalNAcPTase results in the absence of the PTP1B-like phosphatase from its association with N-cadherin as well as the loss of the tyrosine kinase and tyrosine phosphatase activities that otherwise co- precipitate with N-cadherin. Control antibodies and proteoglycans have no such effect. This effect is similar to that observed with tyrosine kinase inhibitors, suggesting that the GalNAcPTase/proteoglycan interaction inhibits a tyrosine kinase, thereby preventing the phosphorylation of the PTP1B-like phosphatase, and its association with N-cadherin. Taken together these data indicate that a PTP1B-like tyrosine phosphatase can regulate N-cadherin function through its ability to dephosphorylate beta-catenin and that the association of the phosphatase with N-cadherin is regulated via the interaction of the GalNAcPTase with its proteoglycan ligand. In this manner the GalNAcPTase-proteoglycan interaction may play a major role in morphogenetic cell and tissue interactions during development.  相似文献   

2.
3.
The classical cadherins (e.g. N-, E-, and P- cadherin) are well established homophilic adhesion molecules; however, the mechanism that governs cadherin specificity remains contentious. The classical cadherins contain an evolutionarily conserved His-Ala-Val (HAV) sequence, and linear peptides harboring this motif are capable of inhibiting a variety of cadherin-dependent processes. We now demonstrate that short cyclic HAV peptides can inhibit N-cadherin function. Interestingly, the nature of the amino acids that flank the HAV motif determine both the activity and specificity of the peptides. For example, when the HAV motif is flanked by a single aspartic acid, which mimics the natural HAVD sequence of N-cadherin, the peptide becomes a much more effective inhibitor of N-cadherin function. In contrast, when the HAV motif is flanked by a single serine, which mimics the natural HAVS sequence of E-cadherin, it loses its ability to inhibit the N-cadherin response. Our results demonstrate that subtle changes in the amino acids that flank the HAV motif can account for cadherin specificity and that small cyclic peptides can inhibit cadherin function. An emerging role for cadherins in a number of pathological processes suggests that the cyclic peptides reported in this study might be developed as therapeutic agents.  相似文献   

4.
Cadherin-mediated adhesion depends on the association of its cytoplasmic domain with the actin-containing cytoskeleton. This interaction is mediated by a group of cytoplasmic proteins: α-and β- or γ- catenin. Phosphorylation of β-catenin on tyrosine residues plays a role in controlling this association and, therefore, cadherin function. Previous work from our laboratory suggested that a nonreceptor protein tyrosine phosphatase, bound to the cytoplasmic domain of N-cadherin, is responsible for removing tyrosine-bound phosphate residues from β-catenin, thus maintaining the cadherin–actin connection (Balsamo et al., 1996). Here we report the molecular cloning of the cadherin-associated tyrosine phosphatase and identify it as PTP1B. To definitively establish a causal relationship between the function of cadherin-bound PTP1B and cadherin-mediated adhesion, we tested the effect of expressing a catalytically inactive form of PTP1B in L cells constitutively expressing N-cadherin. We find that expression of the catalytically inactive PTP1B results in reduced cadherin-mediated adhesion. Furthermore, cadherin is uncoupled from its association with actin, and β-catenin shows increased phosphorylation on tyrosine residues when compared with parental cells or cells transfected with the wild-type PTP1B. Both the transfected wild-type and the mutant PTP1B are found associated with N-cadherin, and recombinant mutant PTP1B binds to N-cadherin in vitro, indicating that the catalytically inactive form acts as a dominant negative, displacing endogenous PTP1B, and rendering cadherin nonfunctional. Our results demonstrate a role for PTP1B in regulating cadherin-mediated cell adhesion.  相似文献   

5.
Beta-catenin is an integral component of E-cadherin dependent cell-cell junctions. Here we show that beta-catenin co-localizes with IQ-domain GTPase-activating protein 1 (IQGAP1), adenomatous polyposis coli (APC), and N-cadherin at actin-positive membrane ruffles in NIH 3T3 fibroblasts. We used deletion mapping to identify the membrane ruffle-targeting region of beta-catenin, localizing it to amino acids 47-217, which overlap the IQGAP1 binding site. Knockdown by small interference RNA (siRNA) revealed IQGAP1-dependent membrane targeting of beta-catenin, APC, and N-cadherin. Transient overexpression of IQGAP1 or N-cadherin increased beta-catenin at membrane ruffles. IQGAP1/APC regulates cell migration, and using a wound healing assay we demonstrate that siRNA-mediated loss of beta-catenin also caused a modest reduction in the rate of cell migration. More significantly, we discovered that beta-catenin is internalized by Arf6-dependent macropinocytosis near sites of membrane ruffling. The beta-catenin macropinosomes co-stained for APC, N-cadherin, and to a lesser extent IQGAP1, and internalization of each binding partner was abrogated by siRNA-dependent knockdown of beta-catenin. In addition, beta-catenin macropinosomes co-localized with the lysosomal marker, lysosome associated membrane protein 1, consistent with their recycling by the late endosomal machinery. Our findings expand on current knowledge of beta-catenin function. We propose that in motile cells beta-catenin is recruited by IQGAP1 and N-cadherin to active membrane ruffles, wherein beta-catenin mediates the internalization and possible recycling of the membrane-associated proteins N-cadherin and APC.  相似文献   

6.
In this study, we show that the neurite outgrowth response stimulated by N-cadherin is inhibited by a recently developed and highly specific fibroblast growth factor receptor (FGFR) antagonist. To test whether the N-cadherin response also requires FGF function, we developed peptide mimetics of the receptor binding sites on FGFs. Most mimetics inhibit the neurite outgrowth response stimulated by FGF in the absence of any effect on the N-cadherin response. The exceptions to this result were two mimetics of a short FGF1 sequence, which has been shown to interact with the region of the FGFR containing the histidine-alanine-valine motif. These peptides inhibited FGF and N-cadherin responses with similar efficacy. The histidine-alanine-valine region of the FGFR has previously been implicated in the N-cadherin response, and a candidate interaction site has been identified in extracellular domain 4 of N-cadherin. We now show that antibodies directed to this site on N-cadherin inhibit the neurite outgrowth response stimulated by N-cadherin, and peptide mimetics of the site inhibit N-cadherin and FGF responses. Thus, we can conclude that N-cadherin contains a novel motility motif in extracellular domain 4, and that peptide mimetics of this motif can interact with the FGFR.  相似文献   

7.
Cadherins are transmembrane glycoproteins that function as Ca2+-dependent cell-cell adhesion molecules and are linked to the actin cytoskeleton via catenins. Previously, we showed that, although E-cadherin lacking its cytoplasmic tail is active in aggregation assays, partially truncated E-cadherin lacking the carboxyl-terminal catenin-binding site is not. Contrary to this observation, a similar N-cadherin construct is found to be functional. Chimeric constructs, in which the membrane-proximal region of the partially truncated E-cadherin was replaced by that of N-cadherin, are active in aggregation assays. N-cadherin constructs in the opposite manner are nonfunctional. Although deletion of the membrane-proximal region, which eliminates the binding site for p120, results in activation of the nonfunctional E-cadherin mutant polypeptides, amino acid substitutions in the membrane-proximal region, which uncouple p120 binding, do not. The p120 uncoupling could not activate a full-length E-cadherin construct, which was beta-catenin-uncoupled by amino acid substitutions in the catenin-binding site. These results indicate that the membrane-proximal region determines the activity of these cadherin constructs but that p120 does not seem directly involved in the modulation of E-cadherin activity.  相似文献   

8.
9.
10.
N-cadherin is a member of the classical cadherin family of homophilic binding molecules. Peptide competition studies have identified the HAVDI and INPISGQ sequences as functional binding motifs in extracellular domain 1 (ECD1) of N-cadherin. Whereas monomeric versions of these motifs function as specific N-cadherin antagonists, we now show that cyclic peptides containing a tandem repeat of the individual motifs function as N-cadherin agonists. In this context, when presented to neurons as soluble molecules, the dimeric versions of the motifs stimulate neurite outgrowth in a similar manner to native N-cadherin. The response to the dimeric agonist peptides was inhibited by monomeric versions of the same motif and also by recombinant N-cadherin ECD1 protein. The responses were also inhibited by antibodies to a fibroblast growth factor receptor (FGFR) binding motif in ECD4 of N-cadherin and by a specific FGFR antagonist (PD17304). These data suggest that the peptides function by binding to and clustering N-cadherin in neurons and thereby activating an N-cadherin/FGFR signaling cascade. The novel agonists will be invaluable for dissecting out those cadherin functions that rely on signaling as opposed to adhesion and clearly have the potential to be developed as therapeutic agents for the promotion of cell survival and axonal regeneration.  相似文献   

11.
Regions of protein-tyrosine phosphatase (PTP) 1B that are distant from the active site yet affect inhibitor binding were identified by a novel library screen. This screen was based on the observation that expression of v-Src in yeast leads to lethality, which can be rescued by the coexpression of PTP1B. However, this rescue is lost when yeast are grown in the presence of PTP1B inhibitors. To identify regions of PTP1B (amino acids 1-400, catalytic domain plus 80-amino acid C-terminal tail) that can affect the binding of the difluoromethyl phosphonate (DFMP) inhibitor 7-bromo-6-difluoromethylphosphonate 3-naphthalenenitrile, a library coexpressing PTP1B mutants and v-Src was generated, and the ability of yeast to grow in the presence of the inhibitor was evaluated. PTP1B inhibitor-resistant mutations were found to concentrate on helix alpha7 and its surrounding region, but not in the active site. No resistant amino acid substitutions were found to occur in the C-terminal tail, suggesting that this region has little effect on active-site inhibitor binding. An in-depth characterization of a resistant substitution localizing to region alpha7 (S295F) revealed that this change minimally affected enzyme catalytic activity, but significantly reduced the potency of a panel of structurally diverse DFMP PTP1B inhibitors. This loss of inhibitor potency was found to be due to the difluoro moiety of these inhibitors because only the difluoro inhibitors were shifted. For example, the inhibitor potency of a monofluorinated or non-fluorinated analog of one of these DFMP inhibitors was only minimally affected. Using this type of library screen, which can scan the nearly full-length PTP1B sequence (catalytic domain and C-terminal tail) for effects on inhibitor binding, we have been able to identify novel regions of PTP1B that specifically affect the binding of DFMP inhibitors.  相似文献   

12.
《The Journal of cell biology》1994,126(6):1353-1360
A novel member of the cadherin family of cell adhesion molecules has been characterized by cloning from rat liver, sequencing of the corresponding cDNA, and functional analysis after heterologous expression in nonadhesive S2 cells. cDNA clones were isolated using a polyclonal antibody inhibiting Ca(2+)-dependent intercellular adhesion of hepatoma cells. As inferred from the deduced amino acid sequence, the novel molecule has homologies with E-, P-, and N-cadherins, but differs from these classical cadherins in four characteristics. Its extracellular domain is composed of five homologous repeated domains instead of four characteristic for the classical cadherins. Four of the five domains are characterized by the sequence motifs DXNDN and DXD or modifications thereof representing putative Ca(2+)-binding sites of classical cadherins. In its NH2-terminal region, this cadherin lacks both the precursor segment and the endogenous protease cleavage site RXKR found in classical cadherins. In the extracellular EC1 domain, the novel cadherin contains an AAL sequence in place of the HAV sequence motif representing the common cell adhesion recognition sequence of E-, P-, and N-cadherin. In contrast to the conserved cytoplasmic domain of classical cadherins with a length of 150-160 amino acid residues, that of the novel cadherin has only 18 amino acids. Examination of transfected S2 cells showed that despite these structural differences, this cadherin mediates intercellular adhesion in a Ca(2+)-dependent manner. The novel cadherin is solely expressed in liver and intestine and was, hence, assigned the name LI-cadherin. In these tissues, LI- cadherin is localized to the basolateral domain of hepatocytes and enterocytes. These results suggest that LI-cadherin represents a new cadherin subtype and may have a role in the morphological organization of liver and intestine.  相似文献   

13.
Activation of the type 1 histamine (H1) or the type 2 protease-activated (PAR-2) G protein-coupled receptors interrupts E-cadherin adhesion and decreases the transepithelial resistance (TER) of epithelium. Several reports suggest that cadherin adhesive function depends on the association of cadherin with beta-catenin and that this association is regulated by phosphorylation of tyrosines in beta-catenin. We tested the hypothesis that loss of cadherin adhesion and compromise of TER on activation of the H1 or PAR-2 receptor is due to phosphorylation of tyrosines in beta-catenin. L cells were stably transfected to express E-cadherin (L-E-cad cells) and H1 (L-H1-E-cad cells). L cells and Madin-Darby canine kidney (MDCK) cells constitutively express PAR-2. Stably transfected L-E-cad, L-H1-E-cad, and MDCK cells were also stably transfected with FLAG-tagged wild-type (WT) or mutant beta-catenin, converting tyrosine 142, 489, or 654 to the nonphosphorylatable mimetic, phenylalanine (WT, Y142F, Y489F, or Y654F). Activation of H1 or PAR-2 interrupted adhesion to an immobilized E-cadherin-Fc fusion protein of L-H1-E-cad, L-E-cad, and MDCK cells expressing WT or Y142F beta-catenin but did not interrupt adhesion of L-H1-E-cad, L-E-cad, and MDCK cells expressing the Y489F or Y654F mutant beta-catenins. PAR-2 activation decreased the TER of monolayers of MDCK cells expressing WT or Y142F beta-catenin 40-45%. However, PAR-2 activation did not decrease the TER of monolayers of MDCK cells expressing Y489F or Y654F beta-catenin. The protein tyrosine phosphatase PTP1B binds to the cadherin cytoplasmic domain and dephosphorylates beta-catenin. Inhibition of PTP1B interrupted adhesion to E-cadherin-Fc of MDCK cells expressing WT beta-catenin but did not affect the adhesion of MDCK cells expressing Y489F or Y654F beta-catenin. Similarly, inhibition of PTP1B compromised the TER of MDCK cells expressing WT beta-catenin but did not affect the TER of MDCK cells expressing Y489F or Y654F beta-catenin. We conclude that phosphorylation of tyrosines 489 and 654 in beta-catenin is a necessary step in the process by which G protein-coupled H1 and PAR-2 receptors interrupt E-cadherin adhesion. We also conclude that activation of PAR-2 has no effect on the TER without first interrupting E-cadherin adhesion.  相似文献   

14.
H I Magazine  H M Johnson 《Biochemistry》1991,30(23):5784-5789
A receptor binding region of mouse interferon gamma (IFN gamma) has previously been localized to the N-terminal 39 amino acids of the molecule by use of synthetic peptides and monoclonal antibodies. In this report, a detailed analysis of the synthetic peptide corresponding to this region, IFN gamma (1-39), is presented. Circular dichroism (CD) spectroscopy indicated that the peptide has stable secondary structure under aqueous conditions and adopts a combination of alpha-helical and random structure. A peptide lacking two N-terminal amino acids, IFN gamma (3-39), had similar secondary structure and equivalent ability to compete for receptor binding, while peptides lacking four or more N-terminal residues had reduced alpha-helical structure and did not inhibit 125I-IFN gamma binding. Substitution of proline, a helix-destabilizing amino acid, for leucine (residue 8) of a predicted amphipathic alpha-helix (residues 3-12), IFN gamma (1-39) [Pro]8, resulted in a substantial reduction in the helical content of the peptide, supporting the presence of helical structure in this region. However, destabilization of the helix did not reduce the competitive ability of the peptide. A peptide lacking eight C-terminal residues, IFN gamma (1-31), did not block 125I-IFN gamma binding and had no detectable alpha-helical structure, suggesting a requirement of the predicted second alpha-helix (residues 20-34) for receptor interaction and helix stabilization. Substitution of phenylalanine for tyrosine at position 14, IFN gamma (1-39) [Phe]14, a central location of a predicted omega-loop structure, did not affect the secondary structure associated with the region yet resulted in a 30-fold increase in receptor competition.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Interleukin-16 (IL-16) activates CD4(+) cells, possibly by direct interaction with CD4. IL-16 structure and function are highly conserved across species, suggesting similar conservation of a putative IL-16 binding site on CD4. Comparison of the human CD4 amino acid sequence with that of several different species revealed that immunoglobulin-like domain 4 is the most conserved extracellular region. Potential interaction of this domain with IL-16 was studied by testing murine D4 sequence-based oligopeptides for inhibition of IL-16 chemoattractant activity and inhibition of IL-16 binding to CD4 in vitro. Three contiguous 12-residue D4 region peptides (designated A, B, and C) blocked IL-16 chemoattractant activity, with peptide B the most potent. Peptides A and B were synergistic for inhibition, but peptide C was not. Peptides A and B also blocked IL-16 binding to CD4 in vitro, whereas peptide C did not. CD4, in addition to its known function as a receptor for major histocompatibility complex class II, contains a binding site for IL-16 in the D4 domain. The D4 residues required for IL-16 binding overlap those previously shown to participate in CD4-CD4 dimerization following class II major histocompatibility complex binding, providing a mechanistic explanation for the known function of IL-16 to inhibit the mixed lymphocyte reaction.  相似文献   

16.
The residues in an influenza nucleoprotein (NP) cytotoxic T cell determinant necessary for cytotoxic T cell (CTL) recognition, were identified by assaying the ability of hybrid peptides to sensitize a target cell to lysis. The hybrid peptides were formed by substituting amino acids from one determinant (influenza NP 147-158) for the corresponding residues of a second peptide (HLA CW3 171-182) capable of binding to a common class I protein (H-2Kd). Six amino acids resulted in partial recognition; however, the presence of a seventh improved the potency of the peptide. Five of the six amino acids were shown to be required for recognition. The spacing of the six amino acids was consistent with the peptide adopting a helical conformation when bound. The importance of each amino acid in CTL recognition and binding to the restriction element was investigated further by assaying the ability of peptides containing point substitutions either to sensitize target cells or to compete with the natural NP sequence for recognition by CTL. The T cell response was much more sensitive to substitution than the ability of the peptide to bind the restriction element. Collectively the separate strategies identified an approximate conformation and orientation of the peptide when part of the complex and permitted a potential location in the MHC binding site to be identified. The model provides a rationalization for analogues which have previously been shown to exhibit greater affinity for the class I molecule and suggests that the binding site in major histocompatibility complex (MHC) class I molecules might have greater steric constraints that the corresponding area of class II proteins.  相似文献   

17.
Previously, we reported association of the adaptor protein Shc through its SH2 domain with the cytoplasmic domain of the adhesion molecule cadherin (Xu et al. [1997] J. Biol. Chem. 272:13463-13466). This association was dependent on tyrosine phosphorylation of cadherin and could be modulated by extracellular Ca(2+) and epidermal growth factor in intact cells. There are six tyrosine residues in the cytoplasmic domain of cadherin. To define the tyrosine residue(s) that mediate Shc recognition, site-directed mutagenesis was employed to alter Tyr851 and/or Tyr883 in cadherin, which both conform to a predicted Shc SH2 domain recognition sequence. Mutation of either Tyr851 or Tyr883, but mostly the latter, decreased Src phosphorylation of cadherin and the binding of Shc to cadherin, as determined by Sepharose bead binding and gel overlay assays. Of the two tyrosine residues, Tyr883 is the major Src phosphorylation and Shc binding site. However, the double mutant (Tyr851, 883 Phe) exhibited less Shc association than the single Tyr883 Phe mutant, suggesting a role for Tyr851 also. In addition, the binding of Shc to the cadherin cytoplasmic domain was competitively inhibited by tyrosine phosphorylated peptides containing either Tyr851 or Tyr883, but not by the corresponding non-phosphorylated peptides. Mutation of Tyr851 and/or Tyr883 did not alter the capacity of the cytoplasmic domain of cadherin to bind beta-catenin in vitro. However, Shc binding to cadherin did negatively influence beta-catenin binding to the same molecule.  相似文献   

18.
Expression of a dominant-negative, catalytically inactive form of the nonreceptor protein-tyrosine phosphatase PTP1B in L-cells constitutively expressing N-cadherin results in loss of N-cadherin-mediated cell-cell adhesion. PTP1B interacts directly with the cytoplasmic domain of N-cadherin, and this association is regulated by phosphorylation of tyrosine residues in PTP1B. The following three tyrosine residues in PTP1B are potential substrates for tyrosine kinases: Tyr-66, Tyr-152, and Tyr-153. To determine the tyrosine residue(s) that are crucial for the cadherin-PTP1B interaction we used site-directed mutagenesis to create catalytically inactive PTP1B constructs bearing additional single, double, or triple mutations in which tyrosine was substituted by phenylalanine. Mutation Y152F eliminates binding to N-cadherin in vitro, whereas mutations Y66F and Y153F do not. Overexpression of the catalytically inactive PTP1B with the Y152F mutation in L-cells constitutively expressing N-cadherin has no effect on N-cadherin-mediated adhesion, and immunoprecipitation reveals that the mutant Y152F PTP1B does not associate with N-cadherin in situ. Furthermore, among cells overexpressing the Y152F mutant endogenous PTP1B associates with N-cadherin and is tyrosine-phosphorylated.  相似文献   

19.
In this work, we used two approaches to localize the 90-kDa heat shock protein (hsp90)-binding site within the hormone-binding domain of the glucocorticoid receptor. In the first approach, derivatives of the glucocorticoid receptor deleted for increasing portions of the COOH terminus were translated in rabbit reticulocyte lysate, and the [35S]methionine-labeled translation products were immunoadsorbed with the 8D3 monoclonal antibody against hsp90. The data suggest that a segment from amino acids 604 to 659 (mouse) of the receptor is required for hsp90 binding. We have recently shown that the internal deletion mutant of the mouse receptor (delta 574-632) binds hsp90, although the complex is somewhat unstable (Housley, P. R., Sanchez, E. R., Danielsen, M., Ringold, G. M., and Pratt, W. B. (1990) J. Biol. Chem. 265, 12778-12781). The two observations indicate that amino acids 574-659 are involved in forming a stable receptor-hsp90 complex and that region 632-659 is especially important. To test this hypothesis directly, we synthesized three peptides corresponding to segments in region 624-665 and three peptides spanning the highly conserved sequence at amino acids 582-617, and we then tested the ability of the peptides to compete for the association of hsp90 with the L cell glucocorticoid receptor. In this assay, the immunopurified hsp90-free mouse receptor is incubated with rabbit reticulocyte lysate, which directs the association of rabbit hsp90 with the mouse receptor, simultaneously converting the receptor to the steroid binding state. All three peptides spanning region 624-665 and a peptide corresponding to segment 587-606 inhibited both hsp90 association with the receptor and reconstitution of steroid binding capacity. The data from all of the approaches support a two-site model for the hsp90-binding site in which the critical contact site occurs in region 632-659, which contains a short proline-containing hydrophobic segment and adjacent dipole-plus-cysteine motif that are conserved among all of the hsp90-binding receptors in the superfamily. A second hsp90 contact site is predicted in region 574-632, which contains the only highly conserved amino acid sequence in the receptor superfamily outside of the DNA-binding domain.  相似文献   

20.
The cytoplasmic form of protein kinase C (PKC) is inactive, probably because the pseudosubstrate region in its regulatory domain blocks the substrate-binding site in its kinase domain. Calcium ions cause a translocation to the membrane: maximum activation requires a negative lipid such as phosphatidylserine (PS) and the neutral lipid diacylglycerol (DAG) but the mechanism by which PS and DAG activate PKC is unknown. Pseudosubstrate region 19-36 of PKC-beta has six basic and one acidic amino acids and region 19-29 has five basic and no acidic amino acids. Since any binding of basic residues in the pseudosubstrate region to acidic lipids in the membrane should stabilize the active form of PKC, we studied how peptides with amino acids equivalent to residues 19-36 and 19-29 of PKC-beta bound to phospholipid vesicles. We made equilibrium dialysis, filtration, and electrophoretic mobility measurements. The fraction of bound peptide is a steep sigmoidal function of the mol fraction of negative lipid in the membrane, as predicted from a simple theoretical model that assumes the basic residues provide identical independent binding sites. The proportionality constant between the number of bound peptides/area and the concentration of peptide in the bulk aqueous phase is 1 micron for a membrane with 25% negative lipid formed in 0.1 M KCl. Equivalently, the association constant of the peptide with the membrane is 10(4) M-1, or the net binding energy is 6 kcal/mol. Thus the interaction of basic residues in the pseudosubstrate region with acidic lipids in the membrane could provide 6 kcal/mol free energy towards stabilizing the active form of PKC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号