首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Factor C is an unusual extracellular protein capable of inducing cytodifferentiation in certain Streptomyces strains. The protein is produced by Streptomyces griseus 45H at such a low amount that the study of its mode of action was hindered by the shortage of purified protein. We report here the expression of C-terminally hexa-His-tagged factor C in Streptomyces lividans and Escherichia coli. Expression in S. lividans is low while in E. coli it is relatively high, yielding about 5--10 mg of biologically fully active protein per liter culture.  相似文献   

6.
In the yeast Saccharomyces cerevisiae, the Ras/cAMP/PKA pathway is involved in the regulation of metabolism and cell cycle progression. The pathway is tightly regulated by several control mechanisms, as the feedback cycle ruled by the activity of phosphodiesterase. Here, we present a discrete mathematical model for the Ras/cAMP/PKA pathway that considers its principal cytoplasmic components and their mutual interactions. The tau-leaping algorithm is then used to perform stochastic simulations of the model. We investigate this system under various conditions, and we test how different values of several stochastic reaction constants affect the pathway behaviour. Finally, we show that the level of guanine nucleotides, GTP and GDP, could be relevant metabolic signals for the regulation of the whole pathway.  相似文献   

7.
The CDC25 gene product is a guanine nucleotide exchange factor for Ras proteins in yeast. Recently it has been suggested that the intracellular levels of guanine nucleotides may influence the exchange reaction. To test this hypothesis we measured the levels of nucleotides in yeast cells under different growth conditions and the relative amount of Ras2-GTP. The intracellular GTP/GDP ratio was found to be very sensitive to growth conditions: the ratio is high, close to that of ATP/ADP during exponential growth, but it decreases rapidly before the beginning of stationary phase, and it drops further under starvation conditions. The addition of glucose to glucose-starved cells causes a fast increase of the GTP/GDP ratio. The relative amount of Ras2-GTP changes in a parallel way suggesting that there is a correlation with the cytosolic GTP/GDP ratio. In addition 'in vitro' mixed-nucleotide exchange experiments done on purified Ras2 protein demonstrated that the GTP and GDP concentrations influence the extent of Ras2-GTP loading giving further support to their possible regulatory role.  相似文献   

8.
When faced with nutrient deprivation, Saccharomyces cerevisiae cells enter into a nondividing resting state, known as stationary phase. The Ras/PKA (cAMP-dependent protein kinase) signaling pathway plays an important role in regulating the entry into this resting state and the subsequent survival of stationary phase cells. The survival of these resting cells is also dependent upon autophagy, a membrane trafficking pathway that is induced upon nutrient deprivation. Autophagy is responsible for targeting bulk protein and other cytoplasmic constituents to the vacuolar compartment for their ultimate degradation. The data presented here demonstrate that the Ras/PKA signaling pathway inhibits an early step in autophagy because mutants with elevated levels of Ras/PKA activity fail to accumulate transport intermediates normally associated with this process. Quantitative assays indicate that these increased levels of Ras/PKA signaling activity result in an essentially complete block to autophagy. Interestingly, Ras/PKA activity also inhibited a related process, the cytoplasm to vacuole targeting (Cvt) pathway that is responsible for the delivery of a subset of vacuolar proteins in growing cells. These data therefore indicate that the Ras/PKA signaling pathway is not regulating a switch between the autophagy and Cvt modes of transport. Instead, it is more likely that this signaling pathway is controlling an activity that is required during the early stages of both of these membrane trafficking pathways. Finally, the data suggest that at least a portion of the Ras/PKA effects on stationary phase survival are the result of the regulation of autophagy activity by this signaling pathway.  相似文献   

9.
Recent research has revealed a conserved role for the actin cytoskeleton in the regulation of aging and apoptosis among eukaryotes. Here we show that the stabilization of the actin cytoskeleton caused by deletion of Sla1p or End3p leads to hyperactivation of the Ras signaling pathway. The consequent rise in cyclic AMP (cAMP) levels leads to the loss of mitochondrial membrane potential, accumulation of reactive oxygen species (ROS), and cell death. We have established a mechanistic link between Ras signaling and actin by demonstrating that ROS production in actin-stabilized cells is dependent on the G-actin binding region of the cyclase-associated protein Srv2p/CAP. Furthermore, the artificial elevation of cAMP directly mimics the apoptotic phenotypes displayed by actin-stabilized cells. The effect of cAMP elevation in inducing actin-mediated apoptosis functions primarily through the Tpk3p subunit of protein kinase A. This pathway represents the first defined link between environmental sensing, actin remodeling, and apoptosis in Saccharomyces cerevisiae.  相似文献   

10.
The number of revertants with restored ability to form colony increases in a time-dependent manner during long-term selective starvation of dense mutant microbial cultures. This is due to starvation-associated (also called adaptive) mutations that arise in a replication independent manner. Here we report that in Saccharomyces cerevisiae the frequency of starvation-associated reversions of mutant genes whose products are necessary for amino acids biosynthesis are influenced by Ras2/cAMP signaling pathway. This signaling pathway is a yeast general regulatory pathway involved in nutritional sensing, UV response, sporulation control and life span control and its changes are manifested in both, cell cycle and life cycle. Inactivation of the RAS2 gene causes an increase in number of starvation-associated revertants in comparison to an isogenic wild type strain and a strain with constitutively activated Ras2/cAMP signaling pathway. Therefore, we suggest that starvation-associated mutagenesis is different from spontaneous mutagenesis and is related to the cellular capacity to adopt distinct physiological states in response to environmental signals.  相似文献   

11.
12.
13.
14.
15.
The in vivo dynamics of the pentose phosphate pathway has been studied with transient experiments in continuous culture of Saccharomyces cerevisiae. Rapid sampling was performed with a special sampling device after disturbing the steady state with a pulse of glucose. The time span of observation was 120 s after the pulse. During this short time period the dynamic effect of protein biosynthesis can be neglected. The metabolites of interest (glucose 6-phosphate, NADP, NADPH, 6-phosphogluconate, and MgATP2-) we determined with enzymatic assays and HPLC. The experimental observations were then used for the identification of kinetic rate equations and parameters under in vivo conditions. In accordance with results from in vitro studies the in vivo diagnosis supports an ordered Bi-Bi mechanism with noncompetitive inhibition by MgATP2- for the enzyme glucose-6-phosphate dehydrogenase. In the case of 6-phosphogluconate dehydrogenase an ordered Bi-Ter mechanism with a competitive inhibition by MgATP2- has been found. Because the MgATP2- concentration decreases abruptly after the pulse of glucose the inhibitory effect vanishes and the flux through the pentose phosphate pathway increases. This regulation phenomenon guarantees the balance of fluxes through glycolysis and pentose phosphate pathway during the dynamic time period.  相似文献   

16.
Identification of a Ras palmitoyltransferase in Saccharomyces cerevisiae   总被引:7,自引:0,他引:7  
Most Ras proteins are posttranslationally modified by a palmitoyl lipid moiety through a thioester linkage. However, the mechanism by which this occurs is not known. Here, evidence is presented that the Ras2 protein of Saccharomyces cerevisiae is palmitoylated by a Ras protein acyltransferase (Ras PAT) encoded by the ERF2 and ERF4 genes. Erf2p is a 41-kDa protein localized to the membrane of the endoplasmic reticulum and contains a conserved DHHC cysteine-rich domain (DHHC-CRD). Erf2p co-purifies with Erf4p (26 kDa) when it is expressed in yeast or in Escherichia coli. The Erf2p/Erf4p complex is required for Ras PAT activity, and mutations within conserved residues (Cys(189), His(201), and Cys(203)) of the Erf2p DHHC-CRD domain abolish Ras PAT activity. Furthermore, a palmitoyl-Erf2p intermediate is detected suggesting that Erf2p is directly involved in palmitate transfer. ERF2 and ERF4 are the first genes identified that encode a palmitoyltransferase for a Ras GTPase.  相似文献   

17.
Interactions between Eph receptor tyrosine kinases (RTKs) and membrane-anchored ephrin ligands critically regulate axon pathfinding and development of the cardiovascular system, as well as migration of neural cells. Similar to other RTKs, ligand-activated Eph kinases recruit multiple signalling and adaptor proteins, several of which are involved in growth regulation. However, in contrast to other RTKs, activation of Eph receptors fails to promote cell proliferation or to transform rodent fibroblasts, indicating that Eph kinases may initiate signalling pathways that are distinct from those transmitted by other RTKs. Here we show that stimulation of endogenous EphA kinases with ephrin-A1 potently inhibits the Ras/MAPK cascade in a range of cell types, and attenuates activation of mitogen-activated protein kinase (MAPK) by receptors for platelet-derived growth factor (PDGF), epidermal growth factor (EGF) and vascular endothelial growth factor (VEGF). In prostatic epithelial cells and endothelial cells, but not fibroblasts, treatment with ephrin-A1 inhibits cell proliferation. Our results identify EphA kinases as negative regulators of the Ras/MAPK pathway that exert anti-mitogenic functions in a cell-type-specific manner.  相似文献   

18.
Using crude membrane preparations of Saccharomyces cerevisiae, we have demonstrated that glucose and glucose analogues which are not efficiently phosphorylated activate the guanine nucleotide-dependent adenylate cyclase in vitro. The activation appears to be mediated by the Ras proteins. Moreover, data are presented indicating that glucose and its analogues activate adenylate cyclase by stimulating the exchange of guanine nucleotides at its regulatory component. Thus, it has been possible to show the action of a physiological effector on the nucleotide exchange reaction in a member of the ras superfamily.  相似文献   

19.
20.

Background  

Current advances in genomics, proteomics and other areas of molecular biology make the identification and reconstruction of novel pathways an emerging area of great interest. One such class of pathways is involved in the biogenesis of Iron-Sulfur Clusters (ISC).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号