首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hu J  Jia X  Li Q  Yang X  Wang K 《Biochemistry》2004,43(10):2688-2698
Binding of La(3+) to calmodulin (CaM) and its effects on the complexes of CaM and CaM-binding peptide, polistes mastoparan (Mas), were investigated by nuclear magnetic resonance (NMR) spectroscopy, fluorescence and circular dichroism spectroscopy, and by the fluorescence stopped-flow method. The four binding sites of La(3+) on CaM were identified as the same as the binding sites of Ca(2+) on CaM through NMR titration of La(3+) to uniformly (15)N-labeled CaM. La(3+) showed a slightly higher affinity to the binding sites on the N-terminal domain of CaM than that to the C-terminal. Large differences between the (1)H-(15)N heteronuclear single quantum coherence (HSQC) spectra of Ca(4)CaM and La(4)CaM suggest conformational differences between the two complexes. Fluorescence and CD spectra also exhibited structural differences. In the presence of Ca(2+) and La(3+), a hybrid complex, Ca(2)La(2)CaM, was formed, and the binding of La(3+) to the N-terminal domain of CaM seemed preferable over binding to the C-terminal domain. Through fluorescence titration, it was shown that La(4)CaM and Ca(2)La(2)CaM had similar affinities to Mas as Ca(4)CaM. Fluorescence stopped-flow experiments showed that the dissociation rate of La(3+) from the C-terminal domain of CaM was higher than that from the N-terminal. However, in the presence of Mas, the dissociation rate of La(3+) decreased and the dissociation processes from both global domains were indistinguishable. In addition, compared with the case of Ca(4)CaM-Mas, the slower dissociations of Mas from La(4)CaM-Mas and Ca(2)La(2)CaM-Mas complexes indicate that in the presence of La(3+), the CaM-Mas complex became kinetically inert. A possible role of La(3+) in the Ca(2+)-CaM-dependent pathway is discussed.  相似文献   

2.
Calmodulin (CaM) activates the skeletal muscle ryanodine receptor (RyR1) at nanomolar Ca(2+) concentrations but inhibits it at micromolar Ca(2+) concentrations, indicating that binding of Ca(2+) to CaM may provide a molecular switch for modulating RyR1 channel activity. To directly examine the Ca(2+) sensitivity of RyR1-complexed CaM, we used an environment-sensitive acrylodan adduct of CaM. The resulting (ACR)CaM probe displayed high-affinity binding to, and Ca(2+)-dependent regulation of, RyR1 similar to that of unlabeled wild-type (WT) CaM. Upon addition of Ca(2+), (ACR)CaM exhibited a substantial (>50%) decrease in fluorescence (K(Ca) = 2.7 +/- 0.8 microM). A peptide derived from the RyR1 CaM binding domain (RyR1(3614)(-)(43)) caused an even more pronounced Ca(2+)-dependent fluorescence decrease, and a >or=10-fold leftward shift in its K(Ca) (0.2 +/- 0.1 microM). In the presence of intact RyR1 channels in SR vesicles, (ACR)CaM fluorescence spectra were distinct from those in the presence of RyR1(3614)(-)(43), although a Ca(2+)-dependent decrease in fluorescence was still observed. The K(Ca) for (ACR)CaM fluorescence in the presence of SR (0.8 +/- 0.4 microM) was greater than in the presence of RyR1(3614)(-)(43) but was consistent with functional determinations showing the conversion of (ACR)CaM from channel activator (apoCaM) to inhibitor (Ca(2+)CaM) at Ca(2+) concentrations between 0.3 and 1 microM. These results indicate that binding to RyR1 targets evokes significant changes in the CaM structure and Ca(2+) sensitivity (i.e., CaM tuning). However, changes resulting from binding of CaM to the full-length, tetrameric channels are clearly distinct from changes caused by the RyR1-derived peptide. We suggest that the Ca(2+) sensitivity of CaM when in complex with full-length channels may be tuned to respond to physiologically relevant changes in Ca(2+).  相似文献   

3.
The small IQ motif proteins PEP-19 (62 amino acids) and RC3 (78 amino acids) greatly accelerate the rates of Ca(2+) binding to sites III and IV in the C-domain of calmodulin (CaM). We show here that PEP-19 decreases the degree of cooperativity of Ca(2+) binding to sites III and IV, and we present a model showing that this could increase Ca(2+) binding rate constants. Comparative sequence analysis showed that residues 28 to 58 from PEP-19 are conserved in other proteins. This region includes the IQ motif (amino acids 39-62), and an adjacent acidic cluster of amino acids (amino acids 28-40). A synthetic peptide spanning residues 28-62 faithfully mimics intact PEP-19 with respect to increasing the rates of Ca(2+) association and dissociation, as well as binding preferentially to the C-domain of CaM. In contrast, a peptide encoding only the core IQ motif does not modulate Ca(2+) binding, and binds to multiple sites on CaM. A peptide that includes only the acidic region does not bind to CaM. These results show that PEP-19 has a novel acidic/IQ CaM regulatory motif in which the IQ sequence provides a targeting function that allows binding of PEP-19 to CaM, whereas the acidic residues modify the nature of this interaction, and are essential for modulating Ca(2+) binding to the C-domain of CaM.  相似文献   

4.
An increasing number of ion channels have been found to be regulated by the direct binding of calmodulin (CaM), but its structural features are mostly unknown. Previously, we identified the Ca(2+)-dependent and -independent interactions of CaM to the voltage-gated sodium channel via an IQ-motif sequence. In this study we used the trypsin-digested CaM fragments (TR(1)C and TR(2)C) to analyze the binding of Ca(2+)-CaM or Ca(2+)-free (apo) CaM with a sodium channel-derived IQ-motif peptide (NaIQ). Circular dichroic spectra showed that NaIQ peptide enhanced alpha-helicity of the CaM C-terminal lobe, but not that of the CaM N-terminal lobe in the absence of Ca(2+), whereas NaIQ enhanced the alpha-helicity of both the N- and C-terminal lobes in the presence of Ca(2+). Furthermore, the competitive binding experiment demonstrated that Ca(2+)-dependent CaM binding of target peptides (MLCKp or melittin) with CaM was markedly suppressed by NaIQ. The results suggest that IQ-motif sequences contribute to prevent target proteins from activation at low Ca(2+) concentrations and may explain a regulatory mechanism why highly Ca(2+)-sensitive target proteins are not activated in the cytoplasm.  相似文献   

5.
The C-domain of troponin C, the Ca(2+)-binding subunit of the troponin complex, has two high-affinity sites for Ca(2+) that also bind Mg(2+) (Ca(2+)/Mg(2+) sites), whereas the N-domain has two low-affinity sites for Ca(2+). Two more sites that bind Mg(2+) with very low affinity (K(a)<10(3)M(-1)) have been detected by several laboratories but have not been localized or studied in any detail. Here we investigated the effects of Ca(2+) and Mg(2+) binding to isolated C-domain, focusing primarily on low-affinity sites. Since TnC has no Trp residues, we utilized a mutant with Phe 154 replaced by Trp (F154W/C-domain). As expected from previous reports, the changes in Trp fluorescence revealed different conformations induced by the addition of Ca(2+) or Mg(2+) (Ca(2+)/Mg(2+) sites). Exposure of hydrophobic surfaces of F154W/C-domain was monitored using the fluorescence intensity of bis-anilino naphthalene sulfonic acid. Unlike the changes reported by Trp, the increments in bis-ANS fluorescence were much greater (4.2-fold) when Ca(2+)+Mg(2+) were both present or when Ca(2+) was present at high concentration. Bis-ANS fluorescence increased as a function of [Ca(2+)] in two well-defined steps: one at low [Ca(2+)], consistent with the Ca(2+)/Mg(2+) sites (K(a) approximately 1.5 x 10(6)M(-1)), and one of much lower affinity (K(a) approximately 52.3M(-1)). Controls were performed to rule out artifacts due to aggregation, high ionic strength and formation of the bis-ANS-TnC complex itself. With a low concentration of Ca(2+) (0.6mM) to occupy the Ca(2+)/Mg(2+) sites, a large increase in bis-ANS binding also occurred as Mg(2+) occupied a class of low-affinity sites (K(a) approximately 59 M(-1)). In skinned fibers, a high concentration of Mg(2+) (10-44 mM) caused TnC to dissociate from the thin filament. These data provide new evidence for a class of weak binding sites for divalent cations. They are located in the C-domain, lead to exposure of a large hydrophobic surface, and destabilize the binding of TnC to the regulatory complex even when sites III and IV are occupied.  相似文献   

6.
Calcineurin (CaN) binds Ca(2+)-saturated calmodulin (CaM) with relatively high affinity; however, an accurate steady-state K(d) value has not been determined. In this report, we describe, using steady-state and stopped-flow fluorescence techniques, the rates of association and dissociation of Ca(2+)-saturated CaM from CaN heterodimer (CaNA/CaNB) and CaNA only. The rate of Ca(2+)/CaM association was determined to be 4.6 x 10(7) M(-1)s(-1). The rate of Ca(2+)/CaM dissociation from CaN was slower than previously reported and was approximately 0.0012 s(-1). In preparations of CaNA alone (no regulatory CaNB subunit), the dissociation rate was slowed further to 0.00026 s(-1). From these data we calculate a K(d) for binding of Ca(2+)-saturated CaM to CaN of 28 pM. This K(d) is significantly lower than previously reported estimates of approximately 1 nM and indicates that CaN is one of the highest affinity CaM-binding proteins identified to date.  相似文献   

7.
We have determined the solution structure of calmodulin (CaM) from yeast (Saccharomyces cerevisiae) (yCaM) in the apo state by using NMR spectroscopy. yCaM is 60% identical in its amino acid sequence with other CaMs, and exhibits its unique biological features. yCaM consists of two similar globular domains (N- and C-domain) containing three Ca(2+)-binding motifs, EF-hands, in accordance with the observed 3 mol of Ca(2+) binding. In the solution structure of yCaM, the conformation of the N-domain conforms well to the one of the expressed N-terminal half-domains of yCaM [Ishida, H., et al. (2000) Biochemistry 39, 13660-13668]. The conformation of the C-domain basically consists of a pair of helix-loop-helix motifs, though a segment corresponding to the forth Ca(2+)-binding site of CaM deviates in its primary structure from a typical EF-hand motif and loses the ability to bind Ca(2+). Thus, the resulting conformation of each domain is essentially identical to the corresponding domain of CaM in the apo state. A flexible linker connects the two domains as observed for CaM. Any evidence for the previously reported interdomain interaction in yCaM was not observed in the solution structure of the apo state. Hence, the interdomain interaction possibly occurs in the course of Ca(2+) binding and generates a cooperative Ca(2+) binding among all three sites. Preliminary studies on a mutant protein of yCaM, E104Q, revealed that the Ca(2+)-bound N-domain interacts with the apo C-domain and induces a large conformational change in the C-domain.  相似文献   

8.
Apparent Ca(2+)-binding constant (K(app)) of Caenorhabditis elegans troponin C (CeTnC) was determined by a fluorescence titration method. The K(app) of the N-domain Ca(2+)-binding site of CeTnC was 7.9+/-1.6 x 10(5) M(-1) and that of the C-domain site was 1.2+/-0.6 x 10(6) M(-1), respectively. Mg(2+)-dependence of the K(app) showed that both Ca(2+)-binding sites did not bind competitively Mg(2+). The Ca(2+) dissociation rate constant (k(off)) of CeTnC was determined by the fluorescence stopped-flow method. The k(off) of the N-domain Ca(2+)-binding site of CeTnC was 703+/-208 s(-1) and that of the C-domain site was 286+/-33 s(-1), respectively. From these values we could calculate the Ca(2+)-binding rate constant (k(on)) as to be 5.6+/-2.8 x 10(8) M(-1) s(-1) for the N-domain site and 3.4+/-2.1 x 10(8) M(-1) s(-1) for the C-domain site, respectively. These results mean that all Ca(2+)-binding sites of CeTnC are low affinity, fast dissociating and Ca(2+)-specific sites. Evolutional function of TnC between vertebrate and invertebrate and biological functions of wild type and mutant CeTnCs are discussed.  相似文献   

9.
Calmodulin (CaM) is the primary calcium sensor in eukaryotes. Calcium binds cooperatively to pairs of EF-hand motifs in each domain (N and C). This allows CaM to regulate cellular processes via calcium-dependent interactions with a variety of proteins, including ion channels. One neuronal target is NaV1.2, voltage-dependent sodium channel type II, to which CaM binds via an IQ motif within the NaV1.2 C-terminal tail (residues 1901-1938) [Mori, M., et al. (2000) Biochemistry 39, 1316-1323]. Here we report on the use of circular dichroism, fluorescein emission, and fluorescence anisotropy to study the interaction between CaM and NaV1.2 at varying calcium concentrations. At 1 mM MgCl2, both full-length CaM (CaM1-148) and a C-domain fragment (CaM76-148) exhibit tight (nanomolar) calcium-independent binding to the NaV1.2 IQ motif, whereas an N-domain fragment of CaM (CaM1-80) binds weakly, regardless of calcium concentration. Equilibrium calcium titrations of CaM at several concentrations of the NaV1.2 IQ peptide showed that the peptide reduced the calcium affinity of the CaM C-domain sites (III and IV) without affecting the N-domain sites (I and II) significantly. This leads us to propose that the CaM C-domain mediates constitutive binding to the NaV1.2 peptide, but that interaction then distorts calcium-binding sites III and IV, thereby reducing their affinity for calcium. This contrasts with the CaM-binding domains of voltage-dependent Ca2+ channels, kinases, and phosphatases, which increase the calcium binding affinity of the C-domain of CaM.  相似文献   

10.
Calmodulin (CaM), a Ca(2+)-binding protein, is a well-known regulator of various cellular functions. One of the targets of CaM is metabotropic glutamate receptor 7 (mGluR7), which serves as a low-pass filter for glutamate in the pre-synaptic terminal to regulate neurotransmission. Surface plasmon resonance (SPR), circular dichroism (CD) spectroscopy and nuclear magnetic spectroscopy (NMR) were performed to study the structure of the peptides corresponding to the CaM-binding domain of mGluR7 and their interaction with CaM. Unlike well-known CaM-binding peptides, mGluR7 has a random coil structure even in the presence of trifluoroethanol. Moreover, NMR data suggested that the complex between Ca(2+)/CaM and the mGluR7 peptide has multiple conformations. The mGluR7 peptide has been found to interact with CaM even in the absence of Ca(2+), and the binding is directed toward the C-domain of apo-CaM rather than the N-domain. We propose a possible mechanism for the activation of mGluR7 by CaM. A pre-binding occurs between apo-CaM and mGluR7 in the resting state of cells. Then, the Ca(2+)/CaM-mGluR7 complex is formed once Ca(2+) influx occurs. The weak interaction at lower Ca(2+) concentrations is likely to bind CaM to mGluR7 for the fast complex formation in response to the elevation of Ca(2+) concentration.  相似文献   

11.
Wang X  Kleerekoper QK  Xiong LW  Putkey JA 《Biochemistry》2010,49(48):10287-10297
PEP-19 (Purkinje cell protein 4) is an intrinsically disordered protein with an IQ calmodulin (CaM) binding motif. Expression of PEP-19 was recently shown to protect cells from apoptosis and cell death due to Ca(2+) overload. Our initial studies showed that PEP-19 causes novel and dramatic increases in the rates of association of Ca(2+) with and dissociation of Ca(2+) from the C-domain of CaM. The goal of this work was to study interactions between the C-domain of CaM (C-CaM) and PEP-19 by solution nuclear magnetic resonance (NMR) to identify mechanisms by which PEP-19 regulates binding of Ca(2+) to CaM. Our results show that PEP-19 causes a greater structural change in apo C-CaM than in Ca(2+)-C-CaM, and that the first Ca(2+) binds preferentially to site IV in the presence of PEP-19 with exchange characteristics that are consistent with a decrease in Ca(2+) binding cooperativity. Relatively weak binding of PEP-19 has distinct effects on chemical and conformational exchange on the microsecond to millisecond time scale. In apo C-CaM, PEP-19 binding causes a redistribution of residues that experience conformational exchange, leading to an increase in the number of residues around Ca(2+) binding site IV that undergo conformational exchange on the microsecond to millisecond time scale. This appears to be caused by an allosteric effect because these residues are not localized to the PEP-19 binding site. In contrast, PEP-19 increases the number of residues that exhibit conformational exchange in Ca(2+)-C-CaM. These residues are primarily localized to the PEP-19 binding site but also include Asp93 in site III. These results provide working models for the role of protein dynamics in the regulation of binding of Ca(2+) to CaM by PEP-19.  相似文献   

12.
The regulatory function of cardiac troponin I (cTnI) involves three important contiguous regions within its C-domain: the inhibitory region (IR), the regulatory region (RR), and the mobile domain (MD). Within these regions, the dynamics of regional structure and kinetics of transitions in dynamic state are believed to facilitate regulatory signaling. This study was designed to use fluorescence anisotropy techniques to acquire steady-state and kinetic information on the dynamic state of the C-domain of cTnI in the reconstituted thin filament. A series of single cysteine cTnI mutants was generated, labeled with the fluorophore tetramethylrhodamine, and subjected to various anisotropy experiments at the thin filament level. The structure of the IR was found to be less dynamic than that of the RR and the MD, and Ca(2+) binding induced minimal changes in IR dynamics: the flexibility of the RR decreased, whereas the MD became more flexible. Anisotropy stopped-flow experiments showed that the kinetics describing the transition of the MD and RR from the Ca(2+)-bound to the Ca(2+)-free dynamic states were significantly faster (53.2-116.8 s(-1)) than that of the IR (14.1 s(-1)). Our results support the fly casting mechanism, implying that an unstructured MD with rapid dynamics and kinetics plays a critical role to initiate relaxation upon Ca(2+) dissociation by rapidly interacting with actin to promote the dissociation of the RR from the N-domain of cTnC. In contrast, the IR responds to Ca(2+) signals with slow structural dynamics and transition kinetics. The collective findings suggested a fourth state of activation.  相似文献   

13.
We have used a highly environment-sensitive fluorescent probe 6-bromoacetyl-2-dimethylaminonaphthalene (badan) to study the interaction between calmodulin (CaM) and a CaM-binding peptide of the ryanodine receptor (CaMBP) and its sub-fragments F1 and F4. Badan was attached to the Thr34Cys mutant of CaM (CaM-badan). Ca(2+) increase in a physiological range of Ca(2+) (0.1-2 microM) produced about 40 times increase in the badan fluorescence. Upon binding to CaMBP, the badan fluorescence of apo-CaM showed a small increase at a slow rate; whereas that of Ca-CaM showed a large decrease at a very fast rate. Upon binding of CaM to the badan-labeled CaMBP, the badan fluorescence showed a small and slow increase at low Ca(2+), and a large and fast increase at high Ca(2+). Thus, the badan probe attached to CaM Cys(34) can be used to monitor conformational changes occurring not only in CaM, but also those in the CaM-CaMBP interface. Based on our results we propose that both the interaction interface and the global conformation of the CaM-CaMBP complex are altered by calcium.  相似文献   

14.
Jaren OR  Kranz JK  Sorensen BR  Wand AJ  Shea MA 《Biochemistry》2002,41(48):14158-14166
Calmodulin (CaM) is an intracellular calcium-binding protein essential for many pathways in eukaryotic signal transduction. Although a structure of Ca(2+)-saturated Paramecium CaM at 1.0 A resolution (1EXR.pdb) provides the highest level of detail about side-chain orientations in CaM, information about an end state alone cannot explain driving forces for the transitions that occur during Ca(2+)-induced conformational switching and why the two domains of CaM are saturated sequentially rather than simultaneously. Recent studies focus attention on the contributions of interdomain linker residues. Electron paramagnetic resonance showed that Ca(2+)-induced structural stabilization of residues 76-81 modulates domain coupling [Qin and Squier (2001) Biophys. J. 81, 2908-2918]. Studies of N-domain fragments of Paramecium CaM showed that residues 76-80 increased thermostability of the N-domain but lowered the Ca(2+) affinity of sites I and II [Sorensen et al. (2002) Biochemistry 41, 15-20]. To probe domain coupling during Ca(2+) binding, we have used (1)H-(15)N HSQC NMR to monitor more than 40 residues in Paramecium CaM. The titrations demonstrated that residues Glu78 to Glu84 (in the linker and cap of helix E) underwent sequential phases of conformational change. Initially, they changed in volume (slow exchange) as sites III and IV titrated, and subsequently, they changed in frequency (fast exchange) as sites I and II titrated. These studies provide evidence for Ca(2+)-dependent communication between the domains, demonstrating that spatially distant residues respond to Ca(2+) binding at sites I and II in the N-domain of CaM.  相似文献   

15.
Dynamic light scattering (DLS) has been used to assess the influence of eleven different synthetic peptides, comprising the calmodulin (CaM)-binding domains of various CaM-binding proteins, on the structure of apo-CaM (calcium-free) and Ca(2+)-CaM. Peptides that bind CaM in a 1:1 and 2:1 peptide-to-protein ratio were studied, as were solutions of CaM bound simultaneously to two different peptides. DLS was also used to investigate the effect of Ca(2+) on the N- and C-terminal CaM fragments TR1C and TR2C, and to determine whether the two lobes of CaM interact in solution. The results obtained in this study were comparable to similar solution studies performed for some of these peptides using small-angle x-ray scattering. The addition of Ca(2+) to apo-CaM increased the hydrodynamic radius from 2.5 to 3.0 nm. The peptides studied induced a collapse of the elongated Ca(2+)-CaM structure to a more globular form, decreasing its hydrodynamic radius by an average of 25%. None of the peptides had an effect on the conformation of apo-CaM, indicating that either most of the peptides did not interact with apo-CaM, or if bound, they did not cause a large conformational change. The hydrodynamic radii of TR1C and TR2C CaM fragments were not significantly affected by the addition of Ca(2+). The addition of a target peptide and Ca(2+) to the two fragments of CaM, suggest that a globular complex is forming, as has been seen in nuclear magnetic resonance solution studies. This work demonstrates that dynamic light scattering is an inexpensive and efficient technique for assessing large-scale conformational changes that take place in calmodulin and related proteins upon binding of Ca(2+) ions and peptides, and provides a qualitative picture of how this occurs. This work also illustrates that DLS provides a rapid screening method for identifying new CaM targets.  相似文献   

16.
The Ca(2+)-calmodulin (CaM)-dependent activation of myosin light chain kinase is inhibited by ruthenium red competitively with respect to Ca2+, with a Ki value of 8.6 microM. The binding of Ca2+ to CaM is inhibited by micromolar concentrations of ruthenium red. In the absence of Ca2+, CaM has two binding sites for ruthenium red with the dissociation constants of 0.36 and 8.7 microM, respectively. Ca2+ antagonizes the binding of ruthenium red to the low-affinity site on CaM. Binding of ruthenium red to the high-affinity site is not affected by Ca2+. The low- and high-affinity sites for ruthenium red are shown to be located in the NH2-terminal half and the COOH-terminal half of CaM, respectively. Lower concentrations of ruthenium red are needed for enzyme inactivation than for the dissociation of enzyme-CaM-Sepharose complex, suggesting these events have different Ca2+ requirements. Moreover, ruthenium red inhibits Ca(2+)-induced contraction of depolarized vascular smooth muscle in a competitive manner with respect to Ca2+. These results suggest that ruthenium red may be a new type of CaM antagonist that inhibits the binding of Ca2+ to CaM and thereby inhibits Ca(2+)-CaM-dependent enzymes and smooth muscle contraction competitively with respect to Ca2+.  相似文献   

17.
Calcium-, calmodulin-dependent phosphorylation of cardiac sarcoplasmic reticulum increases the rate of calcium transport. The complex dependence of calmodulin-dependent phosphoester formation on free calcium and total calmodulin concentrations can be satisfactorily explained by assuming that CaM X (Ca2+)4 is the sole calmodulin-calcium species which activates the calcium-, calmodulin-dependent, membrane-bound protein kinase. The apparent dissociation constant of the E X CaM X (Ca2+)4 complex determined from the calcium dependence of calmodulin-dependent phosphoester formation over a 100-fold range of total calmodulin concentrations (0.01-1 microM) was 0.9 nM; the respective apparent dissociation constant at 0.8 mM free calcium, 1 mM free magnesium with low calmodulin concentrations (0.1-50 nM) was 2.60 nM. These results are in good agreement with the apparent dissociation constant of 2.54 nM of high affinity calmodulin binding determined by 125I-labelled calmodulin binding to sarcoplasmic reticulum fractions at 1 mM free calcium, 1 mM free magnesium and total calmodulin concentration ranging from 0.1 to 150 nM, i.e. conditions where approximately 98% of the total calmodulin is present as CaM X (Ca2+)4. The apparent dissociation constant of the calcium-free calmodulin-enzyme complex (E X CaM) is at least 100-fold greater than the apparent dissociation constant of the E X CaM X (Ca2+)4 complex, as judged from non-saturation 125I-labelled calmodulin binding at total calmodulin concentrations of up to 150 nM, in the absence of calcium.  相似文献   

18.
Ca(2+)-activated calmodulin (CaM) regulates many target enzymes by docking to an amphiphilic target helix of variable sequence. This study compares the equilibrium Ca2+ binding and Ca2+ dissociation kinetics of CaM complexed to target peptides derived from five different CaM-regulated proteins: phosphorylase kinase. CaM-dependent protein kinase II, skeletal and smooth myosin light chain kinases, and the plasma membrane Ca(2+)-ATPase. The results reveal that different target peptides can tune the Ca2+ binding affinities and kinetics of the two CaM domains over a wide range of Ca2+ concentrations and time scales. The five peptides increase the Ca2+ affinity of the N-terminal regulatory domain from 14- to 350-fold and slow its Ca2+ dissociation kinetics from 60- to 140-fold. Smaller effects are observed for the C-terminal domain, where peptides increase the apparent Ca2+ affinity 8- to 100-fold and slow dissociation kinetics 13- to 132-fold. In full-length skeletal myosin light chain kinase the inter-molecular tuning provided by the isolated target peptide is further modulated by other tuning interactions, resulting in a CaM-protein complex that has a 10-fold lower Ca2+ affinity than the analogous CaM-peptide complex. Unlike the CaM-peptide complexes, Ca2+ dissociation from the protein complex follows monoexponential kinetics in which all four Ca2+ ions dissociate at a rate comparable to the slow rate observed in the peptide complex. The two Ca2+ ions bound to the CaM N-terminal domain are substantially occluded in the CaM-protein complex. Overall, the results indicate that the cellular activation of myosin light chain kinase is likely to be triggered by the binding of free Ca2(2+)-CaM or Ca4(2+)-CaM after a Ca2+ signal has begun and that inactivation of the complex is initiated by a single rate-limiting event, which is proposed to be either the direct dissociation of Ca2+ ions from the bound C-terminal domain or the dissociation of Ca2+ loaded C-terminal domain from skMLCK. The observed target-induced variations in Ca2+ affinities and dissociation rates could serve to tune CaM activation and inactivation for different cellular pathways, and also must counterbalance the variable energetic costs of driving the activating conformational change in different target enzymes.  相似文献   

19.
This report describes Ca2+-dependent binding of 125I-labeled calmodulin (125I-CaM) to erythrocyte membranes and identification of two new CaM-binding proteins. Erythrocyte CaM labeled with 125I-Bolton Hunter reagent fully activated erythrocyte (Ca2+ + Mg2+)-ATPase. 125I-CaM bound to CaM depleted membranes in a Ca2+-dependent manner with a Ka of 6 x 10(-8) M Ca2+ and maximum binding at 4 x 10(-7) M Ca2+. Only the cytoplasmic surface of the membrane bound 125I-CaM. Binding was inhibited by unlabeled CaM and by trifluoperazine. Reduction of the free Ca2+ concentration or addition of trifluoperazine caused a slow reversal of binding. Nanomolar 125I-CaM required several hours to reach binding equilibrium, but the rate was much faster at higher concentrations. Scatchard plots of binding were curvilinear, and a class of high affinity sites was identified with a KD of 0.5 nM and estimated capacity of 400 sites per cell equivalent for inside-out vesicles (IOVs). The high affinity sites of IOVs most likely correspond to Ca2+ transporter since: (a) Ka of activation of (Ca2+ + Mg2+)-ATPase and KD for binding were nearly identical, and (b) partial digestion of IOVs with alpha-chymotrypsin produced activation of the (Ca2+ + Mg2+)-ATPase with loss of the high affinity sites. 125I-CaM bound in solution to a class of binding proteins (KD approximately 55 nM, 7.3 pmol per mg of ghost protein) which were extracted from ghosts by low ionic strength incubation. Soluble binding proteins were covalently cross-linked to 125I-CaM with Lomant's reagent, and 2 bands of 8,000 and 40,000 Mr (Mr of CaM subtracted) and spectrin dimer were observed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis autoradiography. The 8,000 and 40,000 Mr proteins represent a previously unrecognized class of CaM-binding sites which may mediate unexplained Ca2+-induced effects in the erythrocyte.  相似文献   

20.
Yamaguchi N  Xu L  Pasek DA  Evans KE  Chen SR  Meissner G 《Biochemistry》2005,44(45):15074-15081
Ryanodine receptors (RyRs) are a family of intracellular Ca(2+) channels that are regulated by calmodulin (CaM). At low Ca(2+) concentrations (<1 microM), CaM activates RyR1 and RyR3 and inhibits RyR2. At elevated Ca(2+) concentrations (>1 microM), CaM inhibits all three RyR isoforms. Here we report that the regulation of recombinant RyR3 by CaM is sensitive to redox regulation. RyR3 in the presence of reduced glutathione binds CaM with 10-15-fold higher affinity, at low and high Ca(2+) concentrations, compared to in the presence of oxidized glutathione. However, compared to RyR1 assayed at low Ca(2+) concentrations under both reducing and oxidizing conditions, CaM binds RyR3 with reduced affinity but activates RyR3 to a greater extent. Under reducing conditions, RyR1 and RyR3 activities are inhibited with a similar affinity at [Ca(2+)] > 1 microM. Mutagenesis studies demonstrate that RyR3 contains a single conserved CaM binding site. Corresponding amino acid substitutions in the CaM binding site differentially affect CaM binding and CaM regulation of RyR3 and those of the two other isoforms. The results support the suggestion that other isoform dependent regions have a major role in the regulation of RyRs by CaM [Yamaguchi et al. (2004) J. Biol. Chem. 279, 36433-36439].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号