首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molybdate transport through the plant sulfate transporter SHST1   总被引:1,自引:0,他引:1  
Molybdenum is an essential micronutrient required by plants. The mechanism of molybdenum uptake in plants is poorly understood, however, evidence has suggested that sulfate transporters may be involved. The sulfate transporter from Stylosanthes hamata, SHST1, restored growth of the sulfate transport yeast mutant, YSD1, on media containing low amounts of molybdate. Kinetic analysis using 99MoO4(2-) demonstrated that SHST1 enhanced the uptake of molybdate into yeast cells at nM concentrations. Uptake was not inhibited by sulfate, but sulfate transport via SHST1 was reduced with molybdate. These results are the first measurement of molybdate transport by a characterised plant sulfate transport protein.  相似文献   

2.
Molybdenum Metabolism in Plants   总被引:1,自引:0,他引:1  
Abstract: Among the micronutrients essential for plant growth and for microsymbionts, Mo is required in minute amounts. However, since Mo is often sequestered by Fe- or Al-oxihydrox-ides, especially in acidic soils, the concentration of the water-soluble molybdate anion available for uptake by plants may be limiting for the plant, even when the total Mo content of the soil is sufficient. In contrast to bacteria, no specific molybdenum uptake system is known for plants, but since molybdate and sulfate behave similarly and have similar structure, uptake of molybdate could be mediated unspecifically by one of the sulfate transporters. Transport into the different plant organs proceeds via xylem and phloem. A pterin-bound molybdenum is the cofactor of important plant enzymes involved in redox processes: nitrate reductase, xanthine dehydrogenase, aIdehyde oxidase, and probably sulfite oxidase. Biosynthesis of the molybdenum cofactor (Moco) starts with a guanosine-X-phos-phate. Subsequently, a sulfur-free pterin is synthesized, sulfur is added, and finally molybdenum is incorporated. In addition to the molybdopterin enzymes, small molybdopterin binding proteins without catalytic function are known and are probably involved in the storage of Moco. In symbiotic systems the nitrogen supply of the host plant is strongly influenced by the availability of Mo in soil, since both bacterial nitrogenase and NADPH-dependent nitrate reductase of mycorrhizal fungi are Mo enzymes.  相似文献   

3.
The transition element molybdenum is essential for (nearly) all organisms and occurs in more than 30 enzymes catalyzing diverse redox reactions; however, only three Mo-enzymes have been found in plants so far. (1) Nitrate reductase catalyzes the key step in inorganic nitrogen assimilation, (2) aldehyde oxidase(s) recently have been shown to catalyze the last step in the biosynthesis of the phytohormones indole acetic acid and abscisic acid, respectively, and (3) xanthine dehydrogenase is involved in purine catabolism. These enzymes are homodimeric proteins harboring an electron transport chain that involves different prosthetic groups (FAD, heme, or Fe-S, Mo). Among different Mo-enzymes, the alignment of amino acid sequences helps to define regions that are well conserved (domains) and other regions that are highly variable in sequence (interdomain hinge regions). The existence of additional plant Mo-enzymes (like sulfite oxidase) also has to be considered. In this review we focus on structure-function relationships and stress the functional importance of the enzymes for the plant. With the exception of bacterial nitrogenase, Mo-enzymes share a similar pterin compound at their catalytic sites, the molybdenum cofactor. Molybdenum itself seems to be biologically inactive unless it is complexed by the cofactor. This molybdenum cofactor combines with diverse apoproteins where it is responsible for the correct anchoring and positioning of the Mo-center within the holo-enzyme so that the Mo-center can interact with other components of the enzyme's electron transport chain. The organic moiety of the molybdenum cofactor is a unique pterin named molybdopterin. The core structure of molybdopterin is conserved in all organisms. Accordingly, its biosynthetic pathway seems to be conserved because a similar set of cofactor genes has been found in bacteria and higher plants. We describe a model for the biosynthesis of the plant molybdenum cofactor involving the complex interaction of seven proteins.  相似文献   

4.
Symbiotic nitrogen fixation in legume root nodules requires a steady supply of molybdenum for synthesis of the iron‐molybdenum cofactor of nitrogenase. This nutrient has to be provided by the host plant from the soil, crossing several symplastically disconnected compartments through molybdate transporters, including members of the MOT1 family. Medicago truncatula Molybdate Transporter (MtMOT) 1.2 is a Medicago truncatula MOT1 family member located in the endodermal cells in roots and nodules. Immunolocalization of a tagged MtMOT1.2 indicates that it is associated to the plasma membrane and to intracellular membrane systems, where it would be transporting molybdate towards the cytosol, as indicated in yeast transport assays. Loss‐of‐function mot1.21 mutant showed reduced growth compared with wild‐type plants when nitrogen fixation was required but not when nitrogen was provided as nitrate. While no effect on molybdenum‐dependent nitrate reductase activity was observed, nitrogenase activity was severely affected, explaining the observed difference of growth depending on nitrogen source. This phenotype was the result of molybdate not reaching the nitrogen‐fixing nodules, since genetic complementation with a wild‐type MtMOT1.2 gene or molybdate‐fortification of the nutrient solution, both restored wild‐type levels of growth and nitrogenase activity. These results support a model in which MtMOT1.2 would mediate molybdate delivery by the vasculature into the nodules.  相似文献   

5.
高等植物中的钼   总被引:1,自引:0,他引:1  
喻敏  王运华 《植物学报》1999,16(5):547-554
阐述了高等植物缺钼症状,分析了植物体存在的钼酶及钼辅因子的生理生化特性和生理功能及钼辅因子的可能合成途径,并提出以后的研究方向。  相似文献   

6.
The chemistry common to molybdenum at the active centers of molybdoenzymes and at the surface of heterogeneous catalysts is described. Oxomolybdenum(VI) compounds catalyze selective oxidation of unsaturated hydrocarbons, e.g., propene to acrolein. Similarly, oxomolybdenum species take part in reactions catalyzed by molybdoenzymes, e.g., xanthine oxidase, sulfite oxidase, nitrate reductase. In these reactions H+, O2- or HO-, and electrons transfer between substrate molecules and molybdenum atoms and groups at the active centres. The chemistry involved is the acid-base and redox chemistry of molybdenum. Molybdenum disulfide catalyzes hydrogenation of unsaturated hydrocarbons, e.g., acetylene. The active site is a coordinately unsaturated molybdenum atom in a sulfur-ligand environment. The enzyme nitrogenase, which is a protein-bound iron-molybdenum sulfide, is also an excellent hydrogenation catalyst. Both catalysts exploit the chemistry of lower-valent molybdenum coordinated by sulfur. The extent to which understanding of the catalysis can be transferred between the two types of catalyst is assessed.  相似文献   

7.
Molybdenum insertion into the dithiolene group on the 6-alkyl side-chain of molybdopterin is a highly specific process that is catalysed by the MoeA and MogA proteins in Escherichia coli. Ligation of molybdate to molybdopterin generates the molybdenum cofactor, which can be inserted directly into molybdoenzymes binding the molybdopterin form of the molybdenum cofactor, or is further modified in bacteria to form the dinucleotide form of the molybdenum cofactor. The ability of various metals to bind tightly to sulfur-rich sites raised the question of whether other metal ions could be inserted in place of molybdenum at the dithiolene moiety of molybdopterin in molybdoenzymes. We used the heterologous expression systems of human sulfite oxidase and Rhodobacter sphaeroides dimethylsulfoxide reductase in E. coli to study the incorporation of different metal ions into the molybdopterin site of these enzymes. From the added metal-containing compounds Na(2)MoO(4), Na(2)WO(4), NaVO(3), Cu(NO(3))(2), CdSO(4) and NaAsO(2) during the growth of E. coli, only molybdate and tungstate were specifically inserted into sulfite oxidase and dimethylsulfoxide reductase. Other metals, such as copper, cadmium and arsenite, were nonspecifically inserted into sulfite oxidase, but not into dimethylsulfoxide reductase. We showed that metal insertion into molybdopterin occurs beyond the step of molybdopterin synthase and is independent of MoeA and MogA proteins. Our study shows that the activity of molybdoenzymes, such as sulfite oxidase, is inhibited by high concentrations of heavy metals in the cell, which will help to further the understanding of metal toxicity in E. coli.  相似文献   

8.
The harmful effect of molybdenum on animals is well established, but there is comparatively little knowledge of the conditions in which molybdenum is poisonous to plants. Obvious differences in response to molybdenum poisoning in different soils have been previously noted, but no adequate explanation has been put forward.
Tomatoes grown in ordinary loam showed little outward sign of poisoning with heavy doses of sodium molybdate, but some depression of crop occasionally occurred, especially when the dose was divided into early and late treatments. The response varied with season and variety. On certain light and fen soils the plants were killed at an early stage with the heavier dressing of molybdate, and seriously injured with the lighter dose, the leaves showing the golden colour characteristic of molybdenum poisoning in various plants.
The reaction of different crops varied considerably in the same soil with similar treatments. On old cucumber soil tomatoes showed no sign of toxicity even with the heavy dressing, flax was progressively damaged with increasing doses, while Solanum nodiflorum was most seriously affected even with the lighter dressing of molybdate. It was impossible to predict the reaction between soil, poison and crop without actual experiment.
The growth of flax was greatly impeded on a manganese-deficient fen soil, and the molybdenum toxicity was masked in consequence. When the deficiency was corrected the poisonous effect of molybdenum on this soil was very marked, even with the lower dressing.
The composting of loam with peat usually, but not invariably, resulted in a reduction of the toxicity of molybdenum. The different results obtained with several crops on a variety of soils still yield no definite clue to the factors which determine the relative toxicity of molybdenum to plant growth and such points as soil acidity, response to climatic conditions and nutritive deficiencies are among those which need further investigation.  相似文献   

9.
Potassium and phosphorus transport and signaling in plants   总被引:2,自引:0,他引:2  
Nitrogen(N), potassium(K), and phosphorus(P) are essential macronutrients for plant growth and development, and their availability affects crop yield. Compared with N, the relatively low availability of K and P in soils limits crop production and thus threatens food security and agricultural sustainability. Improvement of plant nutrient utilization efficiency provides a potential route to overcome the effects of K and P deficiencies. Investigation of the molecular mechanisms underlying how plants sense, absorb, transport, and use K and P is an important prerequisite to improve crop nutrient utilization efficiency. In this review, we summarize current understanding of K and P transport and signaling in plants, mainly taking Arabidopsis thaliana and rice(Oryza sativa) as examples. We also discuss the mechanisms coordinating transport of N and K, as well as P and N.  相似文献   

10.
Plant molybdoenzymes and their response to stress   总被引:3,自引:0,他引:3  
Molybdenum-containing enzymes catalyse basic reactions in the nitrogen, sulphur and carbon metabolism. Mo-enzymes contain at their catalytic sites an organometallic structure termed the molybdenum cofactor or Moco. In higher plants, Moco is incorporated into the apoproteins of four enzymes: nitrate reductase (EC 1.6.6.1-3; NR), xanthine dehydrogenase (EC 1.1.1.204; XDH), aldehyde oxidase (EC 1.2.3.1; AO) and sulphite oxidase (EC1.8.3.1; SO). Molybdoenzymes in plants are key enzymes in nitrate assimilation, purine metabolism, hormone biosynthesis, and most probably in sulphite detoxification. They are considered to be involved in stress acclimation processes and, therefore, elucidation of the mechanisms of their response to environmental stress conditions is of agricultural importance for the improvement of plant stress tolerance. Here we would like to give a brief functional and biochemical characteristic of the four plant molybdoenzymes and to focus mainly on their sensitivity to environmental stress factors.  相似文献   

11.
钼辅因子作为氧化还原反应中的重要分子,参与硫、氮、碳的氧化还原代谢.钼辅因子主要分为两类:以铁硫簇为基础的铁钼辅因子和以亚钼蝶呤为基础的钼辅因子.钼-二-亚钼蝶呤-鸟苷二核苷钼辅因子(Mo-bis-MGD)是蝶呤型钼辅因子的重要成员之一,是硝酸盐还原酶的重要辅因子.膜结合硝酸盐还原酶介导的硝酸盐还原为细菌提供了氮源和能...  相似文献   

12.
Summary Molybdenum applied alone and in combination with sulphur was found to be readily available toBrassica juncea plants grown on loam soil moderate in available Mo (0.122 ppm) Molybdenum accumulated several times more in the vegetative portion as compared to the grain. Recovery of the applied molybdenum decreased with increase in dose of applied molybdenum.Application of 50 ppm S depressed the molybdenum content in plants to one third, when compared to its concentration in the absence of sulphur. The effect of sulphur in depressing the molybdenum concentration in plants was more conspicuous where molybdenum was applied alongwith sulphur.  相似文献   

13.
Aims: To isolate and characterize a potent molybdenum‐reducing bacterium. Methods and Results: A minimal salt medium supplemented with 10 mmol l?1 molybdate, glucose (1·0%, w/v) as a carbon source and ammonium sulfate (0·3%, w/v) as a nitrogen source was used in the screening process. A molybdenum‐reducing bacterium was isolated and tentatively identified as Pseudomonas sp. strain DRY2 based on carbon utilization profiles using Biolog GN plates and partial 16S rDNA molecular phylogeny. Strain DRY2 produced 2·4, 3·2 and 6·2 times more molybdenum blue compared to Serratia marcescens strain DRY6, Enterobacter cloacae strain 48 and Eschericia coli K12, respectively. Molybdate reduction was optimum at 5 mmol l?1 phosphate. The optimum molybdate concentration that supported molybdate reduction at 5 mmol l?1 phosphate was between 15 and 25 mmol l?1. Molybdate reduction was optimum at 40°C and at pH 6·0. Phosphate concentrations higher than 5 mmol l?1 strongly inhibited molybdate reduction. Inhibitors of electron transport system such as antimycin A, rotenone, sodium azide and cyanide did not inhibit the molybdenum‐reducing enzyme activity. Chromium, copper, mercury and lead inhibited the molybdenum‐reducing activity. Conclusions: A novel molybdenum‐reducing bacterium with high molybdenum reduction capacity has been isolated. Significance and Impact of the Study: Molybdenum is an emerging global pollutant that is very toxic to ruminants. The characteristics of this bacterium suggest that it would be useful in the bioremediation of molybdenum pollutant.  相似文献   

14.
The molybdenum cofactor (Moco) is synthesized by an ancient and conserved biosynthetic pathway. In plants, the two-domain protein Cnx1 catalyzes the insertion of molybdenum into molybdopterin (MPT), a metal-free phosphorylated pyranopterin carrying an ene-dithiolate. Recently, we identified a novel biosynthetic intermediate, adenylated molybdopterin (MPT-AMP), which is synthesized by the C-terminal G domain of Cnx1. Here, we show that MPT-AMP and molybdate bind in an equimolar and cooperative way to the other N-terminal E domain (Cnx1E). Tungstate and sulfate compete for molybdate, which demonstrates the presence of an anion-binding site for molybdate. Cnx1E catalyzes the Zn(2+)-/Mg(2+)-dependent hydrolysis of MPT-AMP but only when molybdate is bound as co-substrate. MPT-AMP hydrolysis resulted in stoichiometric release of Moco that was quantitatively incorporated into plant apo-sulfite oxidase. Upon Moco formation AMP is release as second product of the reaction. When comparing MPT-AMP hydrolysis with the formation of Moco and AMP a 1.5-fold difference in reaction rates were observed. Together with the strict dependence of the reaction on molybdate the formation of adenylated molybdate as reaction intermediate in the nucleotide-assisted metal transfer reaction to molybdopterin is proposed.  相似文献   

15.
16.
Heat treatment (90 sec at 70°) is shown to convert the bound molybdenum co-factor of tobacco cell-free extracts and bovine milk xanthine oxidase into a form capable of complementing the Neurospora crassa mutant nit-1.In the presence of 1 mM ascorbic acid, 25 mM molybdate and, for plant extracts, sulphydryl group protecting agents, the molybdenum co-factor can survive incubations up to 100° whilst maintaining its biological activity. Especially with plant extracts, the efficiency of heat treatment is considerably higher than that of the acidification procedure which is often utilized for releasing molybdenum co-factor.  相似文献   

17.
Plants represent an important source of molybdenum in the human diet. Recently, MOT1 has been identified as a transport protein responsible for molybdate import in Arabidopsis thaliana L.; however, the function of the homologous protein MOT2 has not been resolved. Interestingly, MOT2‐GFP analysis indicated a vacuolar location of this carrier protein. By site directed mutagenesis at the N‐terminal end of MOT2, we identified a di‐leucine motif that is essential for driving the protein into the vacuolar membrane. Molybdate quantification in isolated vacuoles showed that this organelle serves as an important molybdate store in Arabidopsis cells. When grown on soil, leaves from mot2 T‐DNA mutants contained more molybdate, whereas mot2 seeds contained significantly less molybdate than corresponding wild‐type (Wt) tissues. Remarkably, MOT2 mRNA accumulates in senescing leaves and mot2 leaves from plants that had finished their life cycle had 15‐fold higher molybdate levels than Wt leaves. Reintroduction of the endogenous MOT2 gene led to a Wt molybdate phenotype. Thus, mot2 mutants exhibit impaired inter‐organ molybdate allocation. As total concentrations of the molybdenum cofactor (Moco) and its precursor MPT correlates with leaf molybdate levels, we present novel evidence for an adjustment of Moco biosynthesis in response to cellular MoO42? levels. We conclude that MOT2 is important for vacuolar molybdate export, an N‐terminal di‐leucine motif is critical for correct subcellular localisation of MOT2 and activity of this carrier is required for accumulation of molybdate in Arabidopsis seeds. MOT2 is a novel element in inter‐organ translocation of an essential metal ion.  相似文献   

18.
Molybdenum Oxidation by Thiobacillus ferrooxidans   总被引:2,自引:1,他引:1       下载免费PDF全文
Thiobacillus ferrooxidans AP19-3 oxidized molybdenum blue (Mo5+) enzymatically. Molybdenum oxidase in the plasma membrane of this bacterium was purified ca. 77-fold compared with molybdenum oxidase in cell extract. A purified molybdenum oxidase showed characteristic absorption maxima due to reduced-type cytochrome oxidase at 438 and 595 nm but did not show absorption peaks specific for c-type cytochrome. The optimum pH of molybdenum oxidase was 5.5. The activity of molybdenum oxidase was completely inhibited by sodium cyanide (5 mM) or carbon monoxide, and an oxidized type of cytochrome oxidase in a purified molybdenum oxidase was reduced by molybdenum blue, indicating that cytochrome oxidase in the enzyme plays a crucial role in molybdenum blue oxidation.  相似文献   

19.
Molybdoenzymes and molybdenum cofactor in plants   总被引:21,自引:0,他引:21  
The transition element molybdenum (Mo) is essential for (nearly) all organisms and occurs in more than 40 enzymes catalysing diverse redox reactions, however, only four of them have been found in plants. (1) Nitrate reductase catalyses the key step in inorganic nitrogen assimilation, (2) aldehyde oxidase(s) have been shown to catalyse the last step in the biosynthesis of the phytohormone abscisic acid, (3) xanthine dehydrogenase is involved in purine catabolism and stress reactions, and (4) sulphite oxidase is probably involved in detoxifying excess sulphite. Among Mo-enzymes, the alignment of amino acid sequences permits domains that are well conserved to be defined. With the exception of bacterial nitrogenase, Mo-enzymes share a similar pterin compound at their catalytic sites, the molybdenum cofactor. Mo itself seems to be biologically inactive unless it is complexed by the cofactor. This molybdenum cofactor combines with diverse apoproteins where it is responsible for the correct anchoring and positioning of the Mo-centre within the holo-enzyme so that the Mo-centre can interact with other components of the enzyme's electron transport chain. A model for the three-step biosynthesis of Moco involving the complex interaction of six proteins will be described. A putative Moco-storage protein distributing Moco to the apoproteins of Mo-enzymes will be discussed. After insertion, xanthine dehydrogenase and aldehyde oxidase, but not nitrate reductase and sulphite oxidase, require the addition of a terminal sulphur ligand to their Mo-site, which is catalysed by the sulphur transferase ABA3.  相似文献   

20.
根系氮吸收过程及其主要调节因子   总被引:5,自引:0,他引:5  
氮(N)是植物根系吸收最多的矿质元素之一.全球变化将使土壤中N的有效性发生改变,影响陆地生态系统碳分配格局与过程.研究根系N吸收及其调控对预测生态系统结构和功能具有重要理论意义.由于土壤中存在多种形态的N源,长期的生物进化和环境适应导致植物根系对不同形态N的吸收部位、机理及调控有较大差别.因此,植物长期生长在以某一形态N源为主的土壤上就形成了不同的N吸收机制和策略.本文简述了近年来在植物根系N吸收和调控方面的最新研究进展,重点评述了不同形态N在土壤中的生物有效性,根系N吸收部位,N在木质部中的装载和运输,不同形态N(NO3^-、NH4^+和有机氮)的吸收机制,以及根系N吸收的自身信号调控和环境因子对根系N吸收的影响.在此基础上,提出了目前根系N吸收研究中存在的几个问题.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号