首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coffea arabica (the Arabica coffee) is an allotetraploid species originating from a recent hybridization between two diploid species: C. canephora and C. eugenioides. Transposable elements can drive structural and functional variation during the process of hybridization and allopolyploid formation in plants. To learn more about the evolution of the C. arabica genome, we characterized and studied a new Copia LTR-Retrotransposon (LTR-RT) family in diploid and allotetraploid Coffea genomes called Divo. It is a complete and relatively compact LTR-RT element (~5 kb), carrying typical Gag and Pol Copia type domains. Reverse Trancriptase (RT) domain-based phylogeny demonstrated that Divo is a new and well-supported family in the Bianca lineage, but strictly restricted to dicotyledonous species. In C. canephora, Divo is expressed and showed a genomic distribution along gene rich and gene poor regions. The copy number, the molecular estimation of insertion time and the analysis at orthologous locations of insertions in diploid and allotetraploid coffee genomes suggest that Divo underwent a different and recent transposition activity in C. arabica and C. canephora when compared to C. eugenioides. The analysis of this novel LTR-RT family represents an important step toward uncovering the genome structure and evolution of C. arabica allotetraploid genome.  相似文献   

2.
Coffee is one of the most widely consumed beverages and represents a multibillion-dollar global industry. Accurate identification of coffee cultivars is essential for efficient management, exchange, and use of coffee genetic resources. To date, a universal platform that can allow data comparison across different laboratories and genotyping platforms has not been developed by the coffee research community. Using expressed sequence tags (EST) of Coffea arabica, C. canephora and C. racemosa from public databases, we developed 7538 single nucleotide polymorphism (SNP) markers and selected 180 for validation using 25 C. arabica and C. canephora accessions from Puerto Rico. Based on the validation result, we designated a panel of 55 SNP markers that are polymorphic across the two species. The average minor allele frequency and information index of this SNP panel are 0.281 and 0.690, respectively. This panel enabled the differentiation of all tested accessions of C. canephora, which accounts for 79.2 % of the total polymorphism in the samples. Only 21.8 % of the polymorphic SNPs were detected in the 12 C. arabica cultivars, which, nonetheless, were able to unambiguously differentiate the 12 Arabica cultivars into ten unique genotypes, including two synonymous groups. Several local Puerto Rican cultivars with partial Timor pedigree, including Limaní, Frontón, and TARS 18087, showed substantial genetic difference from the other common Arabica cultivars, such as Catuai, Borbón, and Mundo Nuevo. This coffee SNP panel provides robust and universally comparable DNA fingerprints, thus can serve as a genotyping tool to assist coffee germplasm management, propagation of planting material, and coffee cultivar authentication.  相似文献   

3.
Two experiments were carried out to evaluate the effects of Pratylenchus brachyurus and P. coffeae on Coffea arabica. The first experiment was conducted in a greenhouse to determine the effects of Pratylenchus brachyurus and P. coffeae on seedlings of Coffea arabica cv. Mundo Novo. Both Pratylenchus spp. reduced the growth of coffee seedlings. Higher contents of soluble sugars were detected in the leaves of infected plants. The reproduction rate of P. brachyurus was very low on cv. Mundo Novo, indicating an intolerance to this nematode. In a second experiment, C. arabica cultivars Mundo Novo and Catuaf both were intolerant hosts of P. brachyurus.  相似文献   

4.
The use of single nucleotide polymorphism (SNP) molecular markers has provided advances in selection methodologies used in breeding programs of different crops, reducing cost and time of cultivar release. Despite the great economic and social importance of Coffea arabica, studies with SNP markers are scarce and a small number of SNP are available for this species, when compared with other crops of agronomic importance. Thus, the objective of this study was to identify and validate SNP molecular markers for the species Coffea arabica and to introduce these markers to genetic breeding by means of an accurate analysis of the diversity and genetic structure of breeding populations of this species. After quality filtering, 11,187 SNP markers were selected from the coffee population obtained from crosses between the genotypes Catuaí and Híbrido de Timor. A great number of markers were distributed in the 11 chromosomes, within transcribed regions, and were used to estimate the genetic dissimilarity among the individuals of the breeding population. Dendrogram analysis and a Bayesian approach demonstrated the formation of two groups and the discrimination of all genotypes evaluated. The expressive number of SNP molecular markers distributed throughout C. arabica genome was efficient to discriminate all the accessions evaluated in the experiment, clustering them according to their genealogies. This work identified mixtures within the progenies. The genotyping data also provided detailed information about the parental genotypes and led to the identification of new candidate parents to be introduced to the breeding program. The study discussed population structure and its consequence in obtaining improved varieties of C. arabica.  相似文献   

5.
In 2012 to 2014, Philippine green coffee beans from Coffea arabica in Benguet and Ifugao; Coffea canephora var. Robusta in Abra, Cavite, and Ifugao; and Coffea liberica and Coffea excelsea from Cavite were collected and assessed for the distribution of fungi with the potential to produce ochratoxin A (OTA). The presence of fungal species was evaluated both before and after surface sterilization. There were remarkable ecological and varietal differences in the population of OTA-producing species from the five provinces. Aspergillus ochraceus, A. westerdijkiae, and Penicillium verruculosum were detected from Arabica in Benguet and Ifugao while Aspergillus carbonarius, Aspergillus niger, and Aspergillus japonicus were isolated in Excelsa, Liberica, and Robusta varieties from Abra, Cavite, and Davao. Contamination by Aspergillus and Penicillium species was found on 59 and 19 %, respectively, of the 57 samples from five provinces. After disinfection with 1 % sodium hypochlorite, the levels of infection by Aspergillus and Penicillium fell to 40 and 17 %, respectively. A total of 1184 fungal isolates were identified to species level comprising Aspergillus sections Circumdati (four species), Clavati (one), Flavi (one), Fumigati (one), Nigri (three), and Terrie (one). Within section Circumdati, 70 % of A. ochraceus produced OTA as high as 16238 ng g?1 while 40 % of A. westerdijkiae produced maximum OTA of 36561 ng g?1 in solid agar. Within section Nigri, 16.76 % of A. niger produced OTA at the highest 18439 ng g?1, 10 % of A. japonicus at maximum level of 174 ng g?1, and 21.21 % of A. carbonarius yielded maximum OTA of 1900 ng g?1. Of the 12 species of Penicillium isolated, P. verruculosum was ochratoxigenic, with a maximum OTA production of 12 ng g?1.  相似文献   

6.
7.
Plant reference genes for development and stress response studies   总被引:2,自引:0,他引:2  
Many reference genes are used by different laboratories for gene expression analyses to indicate the relative amount of input RNA/DNA in the experiment. These reference genes are supposed to show least variation among the treatments and with the control sets in a given experiment. However, expression of reference genes varies significantly from one set of experiment to the other. Thus, selection of reference genes depends on the experimental conditions. Sometimes the average expression of two or three reference genes is taken as standard. This review consolidated the details of about 120 genes attempted for normalization during comparative expression analysis in 16 different plants. Plant species included in this review are Arabidopsis thaliana, cotton (Gossypium hirsutum), tobacco (Nicotiana benthamiana and N. tabacum), soybean (Glycine max), rice (Oryza sativa), blueberry (Vaccinium corymbosum), tomato (Solanum lycopersicum), wheat (Triticum aestivum), potato (Solanum tuberosum), sugar cane (Saccharum sp.), carrot (Daucus carota), coffee (Coffea arabica), cucumber (Cucumis sativus), kiwi (Actinidia deliciosa) and grape (Vitis vinifera). The list includes model and cultivated crop plants from both monocot and dicot classes. We have categorized plant-wise the reference genes that have been used for expression analyses in any or all of the four different conditions such as biotic stress, abiotic stress, developmental stages and various organs and tissues, reported till date. This review serves as a guide during the reference gene hunt for gene expression analysis studies.  相似文献   

8.
Direct somatic embryogenesis is favoured over indirect methods for the in vitro propagation of Coffea canephora, as the frequency of somaclonal variation is usually reduced. Ethylene action inhibitors improve the tissue culture response and thus silver nitrate (AgNO3) is used for direct somatic embryogenesis in coffee. It was observed that silver thiosulphate (STS) that is a more potent ethylene action inhibitor, induced a much robust response in C. canephora cotyledonary leaf explants with 7.49?±?0.57 and 7.08?±?0.12 embryos/explant at 60 and 80 µM AgNO3, respectively compared to 3.3?±?0.18 embryos/explant at 40 µM AgNO3. Transient transformation indicated that STS improved the transformation potential of embryos by enhancing Agrobacterium tumefaciens adherence to surfaces. In vitro adherence assays demonstrated that the cell wall material from STS-derived embryos provide a better substratum for adherence of Agrobacterium. Furthermore, blocking this substratum with anti-mannan hybridoma supernatant negatively effects the adherence. The presence of galactose and mannose residues in the decomposed cellulose fraction of STS treated somatic embryos are indicative of de-branching and re-modelling of galactomannan in response to ethylene inhibition. Genes of mannan biosynthesis, degradation and de-branching enzyme were affected to different extents in embryos derived in AgNO3 and STS containing somatic embryogenesis medium. The results indicate that ethylene-mediated cell wall galactomannan remodelling is vital for improving the transgenic potential in coffee.  相似文献   

9.
10.
Selecting superior genotypes is facilitated by marker-assisted selection (MAS), which is particularly suitable for transferring disease resistance alleles because it nullifies environmental effects and allows selection of resistant individuals in the absence of the pathogen or race, enabling preventive breeding. Molecular markers linked to two major genes (SH3 and SH?), conferring resistance to coffee rust, and those linked to the Ck-1 gene, conferring resistance to coffee berry disease (CBD), have previously been identified. These markers were validated and used in a progeny of crosses between Indian selections with Coffea arabica cultivars. Eleven resistant individuals homozygous for SH3 were identified by MAS. Of these, seven carry SH? from Híbrido de Timor and the gene introduced from Coffea liberica (SH3). SH? was characterized as derived from Coffea canephora. Thus, it was possible to identify C. arabica genotypes carrying important genes for rust resistance introgressed from other coffee species. MAS also allowed identification of sources of CBD resistance for use in preventive breeding for resistance to this serious disease. Using two validated molecular markers, two coffee plants carrying Ck-1 were identified: the UFV 328-60 genotype (F2) was resistant and homozygous based on both molecular markers but exhibited no markers related to SH3 and SH?, and the UFV 317-12 genotype (F1) was resistant and homozygous but resistant and heterozygous based on CBD-Sat207 and CBD-Sat235, respectively. Along with possessing Ck-1, the latter carries SH?. Overall, plants carrying different genes for resistance to rust and CBD were identified. These plants are important sources for gene pyramiding in breeding programs aimed at multiple and durable resistance.  相似文献   

11.
12.
This work evaluated the bacterial diversity during coffee wet fermentation of the three coffee varieties—Mundo Novo (MN), Ouro Amarelo (OA), and Catuaí Vermelho (CV). Isolates were identified by polyphasic techniques: biochemical tests, matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) and DNA sequencing. Chemical compositions were determined by high (HPLC) and gas chromatography-mass spectrometry (GC-MS) and the roasted beans were sensorial evaluated using the cupping test. Thirty-six mesophilic bacteria and six lactic acid bacteria were identified. Lactobacillus plantarum and Leuconostoc mesenteroides were often found in all varieties. Citric acid was the acid detected in higher concentrations. The volatile profile of the green coffee beans changed during the fermentation in the tank, but more significantly, during the roasting process. These volatiles belonged to the classes of acids, alcohols, aldehydes, and hydrocarbons. Temporal dominance of sensations analysis showed sensorial sensations of acidity (OA and CV), bitterness, chocolate, nuts (MN), and sweetness (CV). The characteristics of each coffee variety were distinct, mainly in relation to total bacteria population, volatile compounds, and sensorial profile. In conclusion polyphasic methodology was efficiently done for bacteria identification; the dominant bacteria might be used for starter cultures and the chemical and sensory analyses helped to understand the changes in coffee fermentation. Our findings are relevant to future select starter bacteria for coffee processing to improve quality and standardization of quality.  相似文献   

13.
14.
15.
The coffee berry borer (CBB), Hypothenemus hampei (Ferrari), is the most important insect pest of coffee worldwide. In this study, we used headspace solid-phase microextraction coupled with gas chromatography–mass spectrometry to sample and identify volatile compounds from Robusta coffee berries, Coffea canephora Pierre ex Froehner, infested with CBB and with mechanical damage. Furthermore, we evaluated the behavioral responses of the CBB and two of its parasitoids, Prorops nasuta Waterstone and Phymastichus coffea LaSalle, to three selected coffee volatile compounds in a Y-tube olfactometer. We found in the effluvia of red coffee berry compounds not previously reported for this coffee species. Our results show that Robusta coffee berries release induced volatiles either by insect herbivory or by mechanical damage. Small amount of butyl acetate, unknown compound 2, α-longipinene, longiborneol and longiborneol acetate are produced only in infested coffee berries fruits. Quantitatively, nine compounds account for the difference between healthy berries, infested, or mechanically damaged berries. Trans-ocimene, 4,8-dimethyl-3,7-nonadien-2-ol, α-copaene and kaurene increased amount levels in infested berries, while amount of methyl salicylate and linalool increased in mechanically damaged coffee berries. The olfactometric bioassays showed that CBB females and its two parasitoids were attracted to methyl salicylate. In addition, H. hampei and P. nasuta were attracted to linalool, and P. nasuta and P. coffea were attracted to trans-ocimene.  相似文献   

16.
Zea mays L. is less tolerant to drought than Sorghum bicolor L. In the present study, we investigated the response of both plants to drought stress applied under field conditions by withholding water for 10 d. The plant growth in terms of shoot fresh and dry masses was more severely reduced in maize than in sorghum, consistently with reduction of leaf relative water content. Gas exchange was also more inhibited by drought in maize than in sorghum. The water use efficiency (WUE) of maize fluctuated during the day and in response to the drought stress. In contrast, sorghum was able to maintain a largely constant WUE during the day in the well-watered plants as well as in the stressed ones. Studying the expression of four aquaporin genes (PIP1;5, PIP1;6, PIP2;3, and TIP1;2) revealed that PIP1;5 in leaves and PIP2;3 in roots were highly responsive to drought in sorghum but not in maize, where they might have supported a greater water transport. The expression pattern of PIP1;6 suggests its possible role in CO2 transport in control but not droughty leaves of both the plants. TIP1;2 seemed to contribute to water transport in leaves of the control but not droughty plants. We conclude that PIP1;5 and PIP2;3 may have a prominent role in drought tolerance and maintenance of WUE in sorghum plants.  相似文献   

17.
18.
19.
Climate change is posing a major challenge to coffee production worldwide leading to a need for the development of coffee cultivars with increased drought tolerance. In several plant species, the use of DREB genes in crop improvement has achieved promising results to desiccation tolerance engineering. Recent studies reported CcDREB1D specific patterns of expression in Coffea canephora and functional evidence of this gene involvement in drought stress responses. However, knowledge on natural diversity of this gene is largely unknown. In this context, this study aimed at evaluating the sequence variability of the DREB1D gene in several Coffea genotypes. Nucleotide variation in promoters and coding regions of this gene were evaluated in a population consisting of 38 genotypes of C. canephora, C. arabica and C. eugenioides, most of them characterized by different phenotypes (tolerance vs. susceptibility) in relation to drought. The genetic diversity of the loci revealed different haplotypes for the promoter and coding regions. In particular, our findings suggest association between drought tolerance and the genetic variations on DREB1D promoter regions, but not with those from its corresponding coding regions. Gene expression studies revealed up-regulated expression of DREB1D gene upon drought mainly in leaves of drought-tolerant clones of C. canephora, and in response to drought, high, and low temperatures in leaves of C. arabica, suggesting a key role of this gene in coffee responses to abiotic stress.  相似文献   

20.
UV-B acclimation effects and UV-B damage repair induced by a 632.8-nm He-Ne laser were investigated in Arabidopsis thaliana plants in response to supplementary UV-B stress. There was an increasing trend in growth parameters in the combination-treated plants with He-Ne laser and UV-B light compared to those stressed with enhanced UV-B light alone during different developmental stages of plants. The photosynthetic efficiency (Pn) and survival rates of seedlings were significantly higher in the combination treatments than UV-B stress alone. The expression of UVR8, phytochrome B (PhyB), and their mediated signal responsive genes such as COP1, HY5, and CHS were also significantly upregulated in plants with the laser irradiation compared with other groups without the laser. Levels of flavonol accumulation in leaves and capsule yield of He-Ne laser-treated plants were increased. The phyB-9 mutants were more sensitive to enhanced UV-B stress and had no obvious improvements in plant phenotypic development and physiological damage caused by enhanced UV-B stress after He-Ne laser irradiation. Our results suggested that UVR8 and its mediated signaling pathway via interaction with COP1 can be induced by He-Ne laser, and these processes were dependent on cytoplasmic PhyB levels in plant cells, which might be one of the most important mechanisms of He-Ne laser on UV-B protection and UV-B damage repair. These current data have also elucidated that the biostimulatory effects of He-Ne laser on Arabidopsis thaliana plants would happen not only during the early growth stage but also during the entire late developmental stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号