首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
晋西北黄土区幼龄柠条细根的净生长速率   总被引:3,自引:1,他引:2  
以晋西北黄土区5年生柠条(Caragana korshinskii)人工林为研究对象,使用微根管技术对林地100cm土层深度的柠条细根生长动态进行观测。以根长密度(RLD,mm.cm-3)为基本参数,以净生长量(RLDnet,mm.mm-3)和净生长速率(RLDNGR,mm.cm-.3d-1)为相应导出参数,对2007年生长季(4-9月份)柠条细根的RLDNGR及其与环境因子气温、降雨量、土壤温度、土壤水分的关系进行了探讨。结果表明:柠条细根的RLDnet为(2.923±1.767)mm.cm-3;RLDNGR为(0.113±0.069)mm.cm-.3d-1。50-100cm土层是柠条细根生长的活跃区,其细根RLDNGR是0-50cm土层细根的1.5倍。柠条细根生长的季节变化趋势呈单峰型,4月初至8月初RLDNGR逐渐增大,8月中旬RLDNGR达到最大,之后逐渐减小,9月下旬RLDNGR出现负值。统计分析表明,柠条细根的RLDNGR与气温呈显著正相关。年生长季柠条细根的累计净生长量为14.613mm.cm-3;累计净生产力为1.461×108m.hm-2。  相似文献   

2.
陈建文  史建伟  王孟本 《生态学报》2016,36(13):4021-4033
采用微根管技术(Minirhizotron technique)对晋西北黄土丘陵区幼林(5a)与成林(30a)柠条(Caragana korshinskii)细根动态进行了为期5a的原位观测。基于2008—2011年的观测数据,对两林龄柠条不同土层细根现存量动态进行了比较研究,并探讨了两林龄柠条细根现存量与不同年际间水热条件的差异。结果表明:在0—100 cm土壤剖面,柠条幼林与成林细根现存量的峰值均位于50 cm土层以下,成林细根现存量峰值位于50—60 cm土层,幼林细根现存量峰值则从观测期初的90—100 cm土层到观测期末的80—90 cm土层。各观测年内,两林地各土层每年生长季初(3—4月)会出现细根现存量的积累;30—100 cm土层中,幼林细根最大现存量出现时间均较成林早,而生长季末(9—10月),所有土层幼林细根现存量下降均较成林快。柠条细根现存量的垂直分布主要受土壤水分影响,季节变化受温度的影响更大,年际间细根现存量的差异主要是由于年降雨量变化;幼林细根现存量受降水、土壤水分、土壤温度等的影响比成林大。  相似文献   

3.
幼龄柠条细根现存量与环境因子的关系   总被引:8,自引:1,他引:7       下载免费PDF全文
以晋西北黄土高原区柠条(Caragana korshinskii)幼龄人工林为研究对象, 应用微根管技术(Minirhizotron technique)对林地100 cm土层范围的柠条细根生长动态进行了观测。以2007年生长季(5~9月)的根长密度(RLD, mm·cm-3)数据为基础, 对柠条细根现存量(RLDst, mm·cm-3)及其与环境因子(≥10 ℃积温、同期土壤积温、积降雨量和土壤水分等)的关系作了研究。结果表明, 40~90 cm土层是柠条细根的主要分布区和生长活跃区, 其细根占细根总量的59.7%。柠条细根现存量的季节变化特征为: 5月至9月上旬RLDst持续增加, 9月下旬RLDst略有降低。柠条细根现存量季节变化与≥10 ℃积温、同期土壤积温和积降雨量均存在极显著正相关关系。  相似文献   

4.
柠条细根的分布和动态及其与土壤资源有效性的关系   总被引:3,自引:0,他引:3  
史建伟  王孟本  陈建文  张国明 《生态学报》2011,31(14):3990-3998
受土壤资源有效性时空异质性的影响,植物细根会表现出明显的垂直分布和季节变化特征。揭示这些特征对认识细根的养分和水分吸收规律,预测C在地下的分配特点具有重要意义。本研究运用Minirhizotron技术对晋西黄土丘陵区30年生柠条(Caragana korshinskii Kom.)人工林0-100cm土层深度范围内细根的密度( FRD, N cm-2)、根长密度( FRLD, mm cm-2)、平均直径(FRDi, mm)和根表面积(FRSA, mm2 cm-2)的垂直分布特征和季节动态进行了一个生长季的观测,并分析了这些参数与土壤温度、水分和有效氮之间的关系。结果表明:(1)FRD、FRLD和FRSA均表现出随土层深度增加而先增大后减小的趋势,以40-60cm土层之值最大(分别占总数的34.3%、35.5%和37.3%);而FRDi随土层深度增加而减小,其最大值为0.31970.0231mm,最小值为0.28840.0109 mm;(2)受土壤资源有效性季节变化的影响,FRD、FRLD和FRSA在不同土层(除0-20cm外)表现出相似的季节动态,即随季节变化而先增大后减小,春季小(分别为0.2204 N cm-2,1.8482 mm cm-2,2.2647 mm2 cm-2)而秋季大(分别为0.5316 N cm-2,4.4046mm cm-2,4.3007mm2 cm-2);FRDi则表现由粗逐渐变细的过程,春季最粗(0.3659mm)而秋季最细(0.2712mm);(3) 各细根参数与土壤温度、水分和有效氮在各土层存在不同程度的相关性。从简单相关分析来看,细根的季节性变化主要受土壤温度和水分的影响,有效氮的影响不明显。FRD、FRLD和FRSA在0-20cm土层主要受土壤水分影响(r=-0.729--0.914, p<0.05),而在20-100cm土层则主要受土壤温度的影响,且显著性随土层加深而增加(r=-0.028-0.832, p<0.05)。各土层细根与土壤有效资源间的相关性反映了细根功能的季节性差异。综合分析表明,各细根参数季节变化的54.0%-98.6%是由土壤温度和水分的交互作用而引起。  相似文献   

5.
柠条人工幼林细根生长和死亡的季节变化   总被引:1,自引:2,他引:1  
以晋西北黄土区5年生柠条(Caragana korshinskiiKom.)人工林为研究对象,应用微根管技术对林地100cm土层范围的柠条细根动态进行了观测。以细根根长密度(RLD,mm.cm-3)、生长速率(RLDgr,mm.cm-.3d-1)、死亡速率(RLDdr,mm.cm-.3d-1)和生死之比(Rgd)为基本参数,对生长季(2007年4-9月)柠条细根的生长和死亡特点及其与环境因子(如气温、降雨量、土壤温度、土壤水分等)的关系做了探讨。结果表明:(1)在生长季,柠条细根的平均RLDgr和RLDdr分别为0.1264mm.cm-.3d-1和0.0354mm.cm-.3d-1;(2)下层(50-100cm)细根的RLDgr大于上层(0-50cm);但是下层细根的RLDdr小于上层;(3)柠条细根RLDgr的季节变化趋势为4-7月份迅速增大,8月份达峰值,之后迅速减小;细根RLDdr的季节变化趋势则为4-7月初缓慢增大,之后迅速增大,在生长季末(9月下旬)达到最大;(4)柠条细根Rgd在生长季呈逐渐减小趋势,但是仅季末Rgd1,说明在生长季柠条的细根动态是一个以生长占优势的生死交织过程;(5)RLDgr与气温存在极显著正相关(P0.01),与土壤温度存在显著正相关(P0.05);但是RLDdr与各个环境因子的相关性均不显著(P0.05)。  相似文献   

6.
落叶松人工林细根动态与土壤资源有效性关系研究   总被引:35,自引:4,他引:35       下载免费PDF全文
树木细根在森林生态系统C和养分循环中具有重要的作用。由于温带土壤资源有效性具有明显的季节变化, 导致细根生物量、根长密度 (Rootlengthdensity, RLD) 和比根长 (Specificrootlength, SRL) 的季节性变化。以 17年生落叶松 (Larixgmelini) 人工林为研究对象, 采用根钻法从 5月到 10月连续取样, 研究了不同土层细根 (直径≤ 2mm) 生物量、RLD和SRL的季节动态, 以及这些根系指标动态与土壤水分、温度和N有效性的关系。结果表明 :1) 落叶松细根年平均生物量 (活根 +死根 ) 为 189.1g·m-2 ·a-1, 其中 5 0 %分布在表层 (0~ 10cm), 33%分布在亚表层 (11~ 2 0cm), 17%分布在底层 (2 1~ 30cm) 。活根和死根生物量在 5~ 7月以及 9月较高, 8月和 10月较低。从春季 (5月 ) 到秋季 (10月 ), 随着活细根生物量的减少, 死细根生物量增加 ;2 ) 土壤表层 (0~ 10cm) 具有较高的RLD和SRL, 而底层 (2 1~ 30cm) 最低。春季 (5月 ) 总RLD和SRL最高, 分别为 10 6 2 1.4 5m·m-3 和 14.83m·g-1, 到秋季 (9月 ) 树木生长结束后达到最低值, 分别为 2 198.2 0m·m-3 和 3.77m·g-1;3) 细根生物量、RLD和SRL与土壤水分、温度和有效N存在不同程度的相关性。从单因子分析来看, 土壤水分和有效N对细根的影响明显大于温度, 对活根的影响大于死根。由于土壤资源有效性的季节变化, 使得C的地下分配格局发生改变。各土层细根与有效性资源之间的相关性反映了细根功能季节性差异。细根 (生物量、RLD和SRL) 的季节动态 (5 8%~ 73%的变异 ) 主要由土壤资源有效性的季节变化引起。  相似文献   

7.
刘媛  席慧青  陈姝含  邸楠  席本野 《生态学报》2023,43(24):10363-10375
通过林木根系研究中不同吸收根的判定标准下根系空间分布特征的差异对比,阐明根系分级标准对吸收根空间分布格局的影响,提升根系研究精度,明确林木根系有效“觅食”区域。在7年生毛白杨林分中于5株样树周围挖取780个土柱,选取根系形态指标:根系平均直径(RD)、根系表面积密度(RAD)、根长密度(RLD)和根系体积密度(RVD)研究其垂向与径向的分布动态,并分析不同吸收根判定标准对毛白杨细根空间分布以及各形态指标的影响。结果表明:选取2 mm作为吸收根判定标准确实会导致运输根被误判为吸收根,但其空间分布特征仍能反映吸收根的真实空间分布格局。而且在该判定标准下,判定标准对于实际的细根形态和空间分布情况是否会产生的影响由于监测指标的不同以及研究位置的变化而不同。其中RAD、RLD和RVD的空间分布特征基本相同,但RVD的差值比例远高于其他指标,且深土层的差值比例普遍高于浅土层。因此,以2 mm为吸收根判定标准时,选取RLD和RAD更能准确反映吸收根的真实空间分布格局,且该标准更适用于在进行相对较浅的土层中开展研究,采用2 mm为阈值划分吸收根研究细根垂直分布特征时建议以各形态指标在各个土层所占比例来...  相似文献   

8.
柠条细根的空间分布特征及其季节动态   总被引:3,自引:0,他引:3  
以晋西北黄土区30年生柠条(Caragana korshinskii Kom.)人工林为研究对象,2007年应用Minirhizotron技术,分别在距茎干水平距离0、50、100 cm处设点,对林地0-100 cm土层深度范围内的柠条细根空间分布及其生长季的动态进行了研究。结果表明:(1)生长季柠条细根根长密度(RLD)总平均值为1.3423 mm/cm2。在水平方向上,距茎干水平距离50 cm处分布最多(1.5369 mm/cm2),其次为0 cm处(1.3855 mm/cm2), 100cm处分布最少(1.1044 mm/cm2)。在垂直深度上,各土层RLD平均值大小顺序为40-60 cm>60-80 cm>20-40 cm>0-20 cm>80-100 cm;(2)在0-100 cm土层范围内,月平均RLD在生长季的波动范围为0.4405 2.1040 mm/cm2,其中9月份最多,4月份最少;RLD在5个土层深度3个水平距离处随季节变化均表现先增加后减少的趋势,且不同空间位置RLD峰值变化均在秋季(8 10月份)波动。细根的这种时空分布差异,可能主要受林下土壤资源空间异质性及其季节性变化的影响,但也不排除其它因素的影响(如真菌,植食性昆虫)。  相似文献   

9.
关帝山华北落叶松人工林细根生物量空间分布及季节变化   总被引:2,自引:0,他引:2  
利用根钻法研究了山西关帝山华北落叶松(Larix principis—rupprechtii Mayr)人工林细根生物量的空间分布和季节变化特征。结果表明,华北落叶松不同径级细根生物量随土层深度的增加而逐渐减少,土壤表层(0—10cm)中各径级细根的生物量最高,Ⅰ级细根(根直径0~1mm)的生物量在不同土层深度间差异显著(P〈0.05);距树干不同水平距离处各径级的细根生物量差异均未达到显著水平(P〉0.05)。在0~10cm土层中,各径级细根生物量的季节变化差异显著(P〈0.05),均表现为单峰型,峰值出现在9月份;在10~20cm和20-30cm土层中,Ⅰ级和Ⅱ级(根直径1~2mm)细根生物量季节变化差异显著,Ⅲ级细根(根直径2~5mm)和Ⅰ级死根(根直径0~2mm)生物量季节变化差异不显著。  相似文献   

10.
柠条人工林幼林与成林细根动态比较研究   总被引:2,自引:0,他引:2  
陈建文  王孟本  史建伟 《生态学报》2011,31(22):6978-6988
以晋西北黄土高原区柠条(Caragana korshinskii)人工林幼林和成林为研究对象,应用微根管技术(Minirhizotron technique)对林地0-100 cm土壤剖面的柠条细根生长动态进行了观测.以2007年生长季(4-9月)观测数据为基础,对两林地的柠条细根生长速率(G,mm cm-3 d-1)和细根死亡速率(M,mm cm-3 d-1)的时空变化格局及其与气温、降水、土壤温度和土壤水分等环境因子的关系进行了研究.结果表明,在年生长季,幼林的G(0.1264 mm cm-3 d-1)和M(0.0354 mm cm-3 d-1)均高于成林(分别为0.0914 mm cm-3 d-1和0.0220 mm cm-3 d-1).在垂直分布上,幼林G出现最大值的土层深度(70-80 cm)较成林(50-60 cm)为深.两林地的G和M具有相似的季节变化特点,即G在4月到7月之间缓慢增大,8月迅速达到峰值,之后迅速减小;M自4月至9月M呈持续增高趋势.配对数据t检验结果显示,幼林与成林的C没有显著差异(P>0.05),而幼林的M显著高于成林(P<0.05).Pearson相关系数表明,幼林和成林G的垂直分布与土壤温度和土壤水分的垂直变化没有显著相关性;但是幼林和成林M的垂直分布与土壤温度的相关性显著(幼林地P<0.01;成林地P<0.05).在年生长季,幼林G与气温和土壤温度具有显著正相关性(与气温的P<0.01;与土壤温度的P<0.05);而成林G与各环境因子的相关性则均不显著(P>0.05).两林地的M与各环境因子的相关性均不显著(P>0.05).  相似文献   

11.
毛竹细根分布特征研究   总被引:1,自引:0,他引:1  
为了解毛竹(Phyllostachys edulis)细根的分布规律,对不同水平距离和土层深度0~1 mm和1~2 mm细根的生物量、比根长、组织密度和根长密度进行了分析。结果表明,随着毛竹年龄的增加,细根生物量和根长密度先上升后降低,根组织密度先降低后升高,比根长呈降低的趋势。细根生物量和根长密度以距竹秆60 cm处最大,根组织密度以20 cm处最大,比根长在40 cm处最大,但他们在距竹秆不同距离间的差异不显著。细根生物量以10~20 cm土层最大,根组织密度以20~30 cm土层最大,细根生物量、比根长、组织密度和根长密度在不同土层间的差异不显著。与1~2 mm细根相比,0~1 mm细根生物量和根组织密度更小,比根长和根长密度更大。因此,毛竹年龄对细根生长具有显著的影响,1年生毛竹有最大的比根长和较大的根组织密度,具有更强的资源利用率。毛竹细根在一定的土层范围内呈均匀分布状态,可更有效地利用特定区域的水肥资源。  相似文献   

12.
Pavón  Numa P.  Briones  Oscar 《Plant Ecology》2000,146(2):131-136
In a semidesert community in México (Zapotitlán de las Salinas, Puebla) the vertical distribution of roots and root biomass was estimated at 0–100 cm depth on two sampling dates, November 1995 (wet season) and January 1998 (dry season). Root productivity at 7 to 14.5 cm depth was estimated with the in-growth core technique every two months from March 1996 to February 1998. The relationship between environmental factors and seasonal root productivity was analyzed. Finally, we tested the effect of an irrigation equivalent to 20 mm of rain on root production. Seventy four percent of the total number of roots were found at 0-40 cm depth. Very fine roots (<1 mm diameter) were found throughout the soil profile (0-100 cm). In contrast, fine roots (1-3 mm diameter) were found only from 0–90 cm depth, and coarse roots (>3 mm diameter) from 0–60 cm depth. The root biomass was 971.5 g m–2 (S.D. = 557.39), the very fine and fine roots representing 62.9% of the total. Total root productivity, as estimated with the ingrowth core technique, was 0.031 Mg ha–1 over the dry season and 0.315 Mg ha–1 over the wet season. Only very fine roots were obtained at all sampling dates. Rainfall was significantly correlated with very fine root production. The difference between fine root production in non-watered (0.054 g m–2) and watered (0.429 g m–2) treatments was significant. The last value was the same as that predicted for a rain of 20 mm, according to the exponential model describing the relation between the production of very fine roots and rainfall at the site.  相似文献   

13.
 该文研究了华北落叶松(Larix principis-rupprechtii)人工林细根生物量水平分布和季节变化特征。采用钻土芯法(土钻内径7.0 cm), 在距树干20、50和100 cm处设取样点, 每个样点处分3层(0~10、11~20和21~30 cm)钻取土芯, 取样时间为5、7、9和10月。华北落叶松人工林细根(≤2 mm)生物量全年平均值为224.89 g&#8226;m–2, 在水平分布上表现为100 cm处细根生物量最大(244.20 g&#8226;m–2), 其次为20 cm处(221.03 g&#8226;m–2), 50 cm处最少(209.45 g&#8226;m–2)。在0~30 cm土层, 总细根(包括活跟和死根)生物量季节变化范围在169.67~263.09 g&#8226;m–2之间, 9月细根生物量最大, 5月细根生物量最少。0~10 cm土层细根生物量季节变化差异显著(p<0.05), 11~20和21~30 cm差异不显著(p>0.05)。距树干100和20 cm处(0~10 cm土层), 细根生物量的季节变化差异明显(p<0.05), 9月总细根生物量最大(172.82和185.68 g&#8226;m–2), 5月总细根生物量最少(69.28和73.47 g&#8226;m–2); 50 cm处季节变化差异不明显(p>0.05)。细根生物量分布和季节变化不仅受土壤垂直格局影响同时也与距树干不同水平距离有很大的关系。  相似文献   

14.
Livesley  S.J.  Gregory  P.J.  Buresh  R.J. 《Plant and Soil》2000,227(1-2):149-161
Complementarity in the distribution of tree and crop root systems is important to minimise competition for resources whilst maximising resource use in agroforestry systems. A field study was conducted on a kaolinitic Oxisol in the sub-humid highlands of western Kenya to compare the distribution and dynamics of root length and biomass of a 3-year-old Grevillea robusta A. Cunn. ex R. Br. (grevillea) tree row and a 3-year-old Senna spectabilis DC. (senna) hedgerow grown with Zea mays L. (maize). Tree roots were sampled to a 300 cm depth and 525 cm distance from the tree rows, both before and after maize cropping. Maize roots were sampled at two distances from the tree rows (75–150 cm and 450–525 cm) to a maximum depth of 180 cm, at three developmental stages. The mean root length density (Lrv) of the trees in the upper 15 cm was 0.55 cm cm−3 for grevillea and 1.44 cm cm−3 for senna, at the start of the cropping season. The Lrv of senna decreased at every depth during the cropping season, whereas the Lrv of grevillea only decreased in the crop rooting zone. The fine root length of the trees decreased by about 35% for grevillea and 65% for senna, because of maize competition, manual weeding, seasonal senescence or pruning regime (senna). At anthesis, the Lrv of maize in the upper 15 cm was between 0.8 and 1.5 cm cm−3. Maize root length decreased with greater proximity to the tree rows, potentially reducing its ability to compete for soil resources. However, the specific root length (m g−1) of maize was about twice that of the trees, so may have had a competitive uptake advantage even when tree root length was greater. Differences in maize fine root length and biomass suggest that competition for soil resources and hence fine root length may have been more important for maize grown with senna than grevillea. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
We investigated the effects of seasonal changes in soil moisture on the morphological and growth traits of fine roots (<2?mm in diameter) in a mature Turkey-oak stand (Quercus cerris L.) in the Southern Apennines of Italy. Root samples (diameter:?<0.5, 0.5?C1.0, 1.0?C1.5, and 1.5?C2.0?mm) were collected with the Auger method. Mean annual fine-root mass and length on site was 443?g?m?2 (oak fine roots 321?g?m?2; other species 122?g?m?2) and 3.18?km?m?2 (oak fine roots 1.14?km?m?2; other species 2.04?km?m?2), respectively. Mean specific root length was 8.3?m?g?1. All fine-root traits displayed a complex pattern that was significantly related to season. In the four diameter classes, both fine-root biomass and length peaked in summer when soil water content was the lowest and air temperature the highest of the season. Moreover, both fine-root biomass and length were inversely related with soil moisture (p?<?0.001). The finest roots (<0.5?mm in diameter) constituted an important fraction of total fine-root length (79?%), but only 21?% of biomass. Only in this root class, consequent to change in mean diameter, specific root length peaked when soil water content was lowest showing an inverse relationship (p?<?0.001). Furthermore, fine-root production and turnover decreased with increasing root diameter. These results suggest that changes in root length per unit mass, and pulses in root growth to exploit transient periods of low soil water content may enable trees to increase nutrient and water uptake under seasonal drought conditions.  相似文献   

16.
Fine root turnover is a major pathway for carbon and nutrient cycling in terrestrial ecosystems and is most likely sensitive to many global change factors. Despite the importance of fine root turnover in plant C allocation and nutrient cycling dynamics and the tremendous research efforts in the past, our understanding of it remains limited. This is because the dynamics processes associated with soil resources availability are still poorly understood. Soil moisture, temperature, and available nitrogen are the most important soil characteristics that impact fine root growth and mortality at both the individual root branch and at the ecosystem level. In temperate forest ecosystems, seasonal changes of soil resource availability will alter the pattern of carbon allocation to belowground. Therefore, fine root biomass, root length density (RLD) and specific root length (SRL) vary during the growing season. Studying seasonal changes of fine root biomass, RLD, and SRL associated with soil resource availability will help us understand the mechanistic controls of carbon to fine root longevity and turnover. The objective of this study was to understand whether seasonal variations of fine root biomass, RLD and SRL were associated with soil resource availability, such as moisture, temperature, and nitrogen, and to understand how these soil components impact fine root dynamics in Larix gmelinii plantation. We used a soil coring method to obtain fine root samples (⩽2 mm in diameter) every month from May to October in 2002 from a 17-year-old L. gmelinii plantation in Maoershan Experiment Station, Northeast Forestry University, China. Seventy-two soil cores (inside diameter 60 mm; depth intervals: 0–10 cm, 10–20 cm, 20–30 cm) were sampled randomly from three replicates 25 m × 30 m plots to estimate fine root biomass (live and dead), and calculate RLD and SRL. Soil moisture, temperature, and nitrogen (ammonia and nitrates) at three depth intervals were also analyzed in these plots. Results showed that the average standing fine root biomass (live and dead) was 189.1 g·m−2·a−1, 50% (95.4 g·m−2·a−1) in the surface soil layer (0–10 cm), 33% (61.5 g·m−2·a−1), 17% (32.2 g·m−2·a−1) in the middle (10–20 cm) and deep layer (20–30cm), respectively. Live and dead fine root biomass was the highest from May to July and in September, but lower in August and October. The live fine root biomass decreased and dead biomass increased during the growing season. Mean RLD (7,411.56 m·m−3·a−1) and SRL (10.83 m·g−1·a−1) in the surface layer were higher than RLD (1 474.68 m·m−3·a−1) and SRL (8.56 m·g−1·a−1) in the deep soil layer. RLD and SRL in May were the highest (10 621.45 m·m−3 and 14.83m·g−1) compared with those in the other months, and RLD was the lowest in September (2 198.20 m·m−3) and SRL in October (3.77 m·g−1). Seasonal dynamics of fine root biomass, RLD, and SRL showed a close relationship with changes in soil moisture, temperature, and nitrogen availability. To a lesser extent, the temperature could be determined by regression analysis. Fine roots in the upper soil layer have a function of absorbing moisture and nutrients, while the main function of deeper soil may be moisture uptake rather than nutrient acquisition. Therefore, carbon allocation to roots in the upper soil layer and deeper soil layer was different. Multiple regression analysis showed that variation in soil resource availability could explain 71–73% of the seasonal variation of RLD and SRL and 58% of the variation in fine root biomass. These results suggested a greater metabolic activity of fine roots living in soil with higher resource availability, which resulted in an increased allocation of carbohydrate to these roots, but a lower allocation of carbohydrate to those in soil with lower resource availability. __________ Translated from Acta Phytoecologica Sinica, 2005, 29(3): 403–410 [译自: 植物生态学报, 2005, 29(3): 403–410]  相似文献   

17.
M. Amato  A. Pardo 《Plant and Soil》1994,161(2):299-303
Data are presented on the differences in root length density (RLD), dry matter (DM), and root diameter values determined on wheat and faba bean using sieves of different mesh size to separate roots from soil during sample preparation. Screens with 0.2, 1, and 2 mm (0.04, 1, and 4 mm2) aperture were used. Roots collected on the 2-mm sieve represented on average 55% of the weight and only 10% of the total length collected using a 0.2-mm sieve. With a 1-mm sieve 75% of weight was retained, but only 34% of the length. In the 0–20 cm soil layer average RLD and DM values ranged between 1.3 and 2.5 cm cm-3 and 215 and 136 g m-2 for faba bean and wheat respectively with 2 mm screens and 14.6 and 18.1 cm cm-3 and 313 and 202 g m-2 with 0.2 mm sieves. RLD was more affected than weight since losses from coarse screens were largely due to fine root fractions, although the 1-and 2-mm screens retained a small amount of fine roots that were long or attached to main structures. Variability was higher for measurements on coarser screens. The use of screens much coarser than the diameter of fine roots is not recommended for the study of surface-related phenomena in which root length quantification is necessary, while it may be acceptable for gross comparisons of root weight and spatial extent.  相似文献   

18.
Growing root tips usually constituted less than 1 per cent and mycorrhizal roots less than 6 per cent of the total root surface under a 34-year-old pine stand. Growing root tips usually constituted less than 1 per cent of the total root surface under a yellow poplar stand, although one sample taken in May contained 9 per cent of unsuberized roots. The water permeability of various types of roots was measured under a pressure gradient of 31 cm of mercury. It differed widely among individual roots, ranging from an average of 6.6. mm3/cm2/hr for suberized pine roots 1.33 mm in diameter, to 36.6 mm3 for suberized pine roots 3 mm in diameter, and 178 mm3/ cm2/hr for unsuberized roots grown in water culture. Water intake through a group of unsuberized roots grown in soil averaged 37.4 mm3/cm2/hr. The permeability of yellow poplar roots varied even more, ranging from essentially zero to 30,000 mm3/cm2/hr. It is concluded that the major part of water absorption in pine occurs through suberized roots, some through mycorrhizal roots, and relatively little through growing root tips. Likewise, in yellow-poplar most of the water probably enters through suberized roots. Further study is needed of the role of suberized roots in water and salt absorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号