首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A method of on-line optimal control for fed-batch culture of bakers yeast production is proposed. The feed rate is taken as the control variable. The specific growth rate of the yeast is the output variable and is determined from the balance equation of oxygen. A moving model is obtained by using the data from the feed rate and the specific growth rate. Based on the moving model, an optimal feed rate for fed-batch culture is then achieved.  相似文献   

2.
To support a high growth rate of microorganism in fed-batch culture with high cell density, a modified DO-stat method was developed. In this method, an exponential substrate feed was coupled with the usual DO-stat method, i.e., a fixed amount of substrate per DO signal was exponentially fed to the culture based on the estimation of the substrate consumption rate and thereafter the feed was stopped in order to prevent the oversupply of substrate until an abrupt increase in the concentration of dissolved oxygen (DO) in the broth appeared. After that, the feed was started again and this cyclic operation was repeated throughout the cultivation. This method was applied to the fed-batch cultivation of ethanol utilizing yeast, Candida brassicae. At high cell densities (> 10 g/l), this modified method was more effective than the usual one in keeping a higher growth rate.  相似文献   

3.
An automated two-component substrate feeding strategy with a pH-stat modal fed-batch culture using a high pH limit was developed to effectively porduce esterase from a hyperprotein exreting Bacillus brevis HPD31 harboring a plasmid pHSC131 which carries a Bacillus stearothermo philus esterase gene. First, the effect of single- and multi-substrate feedings on the growth and activity of the excreted esterase was investigated. Then a two-component (polypepton + glucose) feeding using different feed rates was studied. Highest activity of the excreted esterase (34 U/mL) was obtained when the concentrations of poly-pepton and glucose in the nutrient feed solution were 250 and 41.60 g/L respectively. The absence and excessive amount of glucose in the nutrient feed solution was ineffective for the exracellular esterase formation because without glucose the increase in cell concentration was minimum while excessive amount of glucose favored cell growth at the expense of the esterase production. It is believed that the mechanism of enzyme excretion is growth dependent and that a higher cell growth of the host is in effect unfavorable for the enzyme production. The feed rate, automatically controlled by the direct signal of the pH change, at 0.30 mL/pulse was found optimum for the esterase production while lower (0.15 mL/pulse) and higher (0.67 mL/pulse) feed rates did not produce good results. The activity of the excreted esterase was increased more than eight times from 4 U/mL obtained in the conventional batch culture to 34 U/mL obtained in this study. The esterase productivity was likewise increased more than threefold. (c) 1992 John Wiley & Sons, Inc.  相似文献   

4.
A simple, accurate model capable of predicting cell growth and methanol utilization during the mixed substrate fed-batch fermentation of MutS recombinant Pichia pastoris was developed and was used to design an exponential feeding strategy for mixed substrate fed-batch fermentation at a constant specific growth rate. Mixed substrate feeding has been shown to boost productivity in recombinant fed-batch culture of P. pastoris, while fixed growth rate exponential feeding during fed-batch culture is a useful tool in process optimization and control.  相似文献   

5.
A feedback control system of the glucose feed rate in a bakers' yeast fed-batch culture was developed by keeping the ethanol concentration constant. A PID controller and on–off controller were applied and discussed with the aid of the porous Teflon tubing method. Experimental results showed the effectiveness of the control system for avoiding the glucose effect and glucose starvation. It was shown that the feedback control system developed hare could achieve a maximum specific growth rate of 0.3 h?1 or a maximum cell yield of 0.5 g cell/g glucose in the fedhyphen;batch culture.  相似文献   

6.
Summary A computer-based algorithm was used for the open-loop control of specific growth rate in fed-batch cultures of recombinant E.coli.. The control of nutrient feed rate to an exponential trajectory resulted in growth of the culture at a constant specific growth rate. Stable specific growth rates between 0.08 and 0.4 h–1 were achieved.  相似文献   

7.
Detailed knowledge of mammalian cell culture proliferation kinetics is important to determine fed-batch strategies for industrial bioreactor operations. In particular, predicting the end of exponential proliferation in batch culture is a critical process parameter during culture scale-up. Using automated flow cytometry we show that an increase in the non-viable sub-population in CHO cell culture can predict the onset of stationary phase by approximately 40 h. This enables a completely automated culture scale-up process as well as a reliable and reproducible control of fed-batch additions during culture expansion. It is shown that the automated scale-up results in a significantly higher total cell count in the reactor than manual scale up initiated in stationary growth phase. During individual, subsequent culture expansions, a significant variation in the proliferation rate was observed despite control of bulk culture parameters. Thus, automated flow cytometry is critical to uncovering useful process parameters that enable new control strategies. Such improved process supervision derived from knowledge-based data analysis is central to the FDA's Process Analytical Technology (PAT) initiative and is expected to result in better and higher quality products.  相似文献   

8.
Liu L  Du G  Chen J  Wang M  Sun J 《Bioresource technology》2008,99(17):8532-8536
This study aimed to enhance hyaluronic acid (HA) production by a two-stage culture strategy based on the modeling of batch and fed-batch culture of Streptococcus zooepidemicus. Batch culture had higher specific HA synthesis rate while fed-batch culture had higher specific cell growth rate. The lower specific HA synthesis rate in fed-batch culture resulted from the competition of cell growth for the common precursors at a low substrate concentration. Based on the modeling of batch and fed-batch culture of S. zooepidemicus, a two-stage culture strategy was proposed to enhance HA production. S. zooepidemicus were cultured in a fed-batch mode with sucrose concentration maintained at 1.0+/-0.2g/L during 0-8h and then batch culture was performed during 8-20h with an initial sucrose concentration of 15g/L. With the proposed two-stage culture strategy, HA production was increased to 6.6g/L compared with 5.0g/L in batch culture with the same total sucrose. The enhanced HA production by the proposed two-stage culture strategy resulted from the decreased inhibition of cell growth and the increased transformation rate of sucrose to HA.  相似文献   

9.
The optimal of the specific growth rate was obtained with simple mathematical model in a yeast fed-batch cultures. The model was based on the mass balance around the fed-batch system and the relationship between the specific growth rate, mu, and the specific production rate of glutathione, rho(G). The optimal profile of mu was calculated as a bang-bang type, That is mu, should start from the maximum value, mu(max) and should be kept at mu(max); then mu should be switched to mu(c), which gives a maximum value of rho(G). It was proven from the maximum principle that switching was needed only once, with the switching time from mu(max) to mu(c) depending on the final required glutathione content. Finally, this ideal profile of mu for the maximum production of glutathione was realized by manipulating the substrates feed rate in the fed-batch culture. Using the extended Kalman filter and a programmed-controller/feedback-compensator (PF) system, mu could be controlled at the optimal profile obtained. As a result, the maximum production of glutathione was accomplished fairly successfully. However, further improvement in the controller performance for mu is desired. The control strategy employed here can be applied to other batch reaction processes.  相似文献   

10.
Amino acids rather than sugars are the primary limiting substrates for the culture of insect cells in a Grace's medium. When cultures are supplemented with amino acids, the yeastolate components other than the amino acids become the secondary limiting substrates. For the fed-batch culture of insect cells, a solution containing concentrated amino acids and yeastolate was supplied using an exponential feed flow rate calculated from mass balance equations. During the batch period the specific growth rate was 0.02 hу, whereas during the fed-batch period it was measured as 0.007 and 0.012 hу on the basis of the cell numbers and the dry cell weight, respectively. This difference in the specific growth rates in the fed-batch period is caused by an increase in the cell size during this period. Furthermore, in fed-batch cultures, dissolved oxygen was found to be a limiting factor for high cell-density cultures.  相似文献   

11.
A simple feeding method for controlling specific growth rate in fed-batch culture was developed. This method applies a constant feed rate using a concentrate reservoir and two mixing chambers in series to simulate the exponential feeding. Fed-batch cultures with Escherichia coli showed that the present feeding method could sustain the cells growing at predetermined specific growth rates, where the time length for exponential growth was dependent on the magnitude of the growth rate. The present feeding method is convenient to operate, requires no computerized control equipments, and thus could expect an extensive application in fed-batch culture.  相似文献   

12.
In a fed-batch culture employing the DO-stat method, a rapid increase of dissolved oxygen concentration due to a lack of substrate (the DO signal) is used as an indicator for substrate feeding. The amount of substrate to be fed in response to the appearance of the DO signal is a very important factor for obtaining an optimal fed-batch culture. To select the optimum amount of substrate to be fed at the DO signal, a calculative procedure based on the growth yield, and the relationship between the specific growth rate and substrate concentration is proposed. This procedure is demonstrated in fed-batch cultures of Protaminobacter ruber (a methanol-utilizing bacterium) and Candida brassicae (an ethanol-utilizing yeast). The optimum feed rates calculated with the procedure, 2.5 ml (methanol/l/signal) for P. ruber and 5 ml (ethanol/l/signal) for C. brassicae, both gave good agreement with the cultivation results.  相似文献   

13.
Transient continuous cultures constitute a means to speed up strain characterization, by avoiding the need for many time-consuming steady-state experiments. In this study, mixed substrate growth on glycerol and methanol of a Pichia pastoris strain expressing and secreting recombinant avidin was characterized quantitatively by performing a nutrient gradient with linear increase of the methanol fraction in the feed medium from 0.5 to 0.93 C-mol C-mol(-1) at a dilution rate of 0.06 h(-1). The influence of the methanol fraction in the feed medium on recombinant avidin productivity and on specific alcohol oxidase activity were also examined. Results showed that, compared with cultures on methanol as sole carbon source, the specific recombinant avidin production rate was the same provided the methanol fraction in the feed medium was higher than 0.6 C-mol C-mol(-1). The volumetric avidin production rate was even 1.1-fold higher with a methanol fraction in the feed medium of 0.62 C-mol C-mol(-1) as a result of the higher biomass yield on mixed substrate growth compared with methanol alone. Moreover, since heat production and oxygen uptake rates are lower during mixed substrate growth on glycerol and methanol, mixed substrate cultures present technical advantages for the performance of high cell density P. pastoris cultures. Results obtained in a high cell density fed-batch culture with a mixed feed of 0.65 C-mol C-mol(-1) methanol and 0.35 C-mol C-mol(-1) glycerol were in agreement with results obtained during the transient nutrient gradient.  相似文献   

14.
Controlled fed-batch by tracking the maximal culture capacity   总被引:1,自引:0,他引:1  
Fed-batch processes are well established in the biotech industry. The major reason to apply this technique is to avoid overflow metabolism and/or accumulation of toxic substrates. The basic idea of this approach is to control the physiological state of the culture, rather than just the typically exponential feed rate profile, by challenging a fed-batch cultivation repetitive in useful time intervals. The feed rate is reduced for a short period and culture responses are analysed in real time and on-line. Thus it is possible to get a positive response at the earliest detectable point of potential overfeeding. During the disturbance minute amounts of overflow metabolites will deplete simultaneously. This highly dynamic approach was applied successfully to industrially relevant production systems such as yeasts (Saccharomyces cerevisiae, Pichia pastoris) and bacteria (Escherichia coli).  相似文献   

15.
Fed-batch production of recombinant fuculose-1-phosphate aldolase (FucA) by Escherichia coli XL1 Blue MRF′ (pTrcfuc) has been automated by using a simple feedback specific growth rate control strategy. Non-induced continuous cultures were conducted in order to characterize substrate consumption and carbon dioxide production yields and rates. In fed-batch cultures, substrate feeding rate was adjusted using on-line biomass estimation based on exhaust gas analysis and macroscopic mass balances. Overexpression of recombinant protein induced by isopropyl-β-d-thiogalactopyranoside (IPTG) under trc promoter did not affect significantly the control of specific growth rate during 7 h after induction. Growth and protein production curves were parallel until high level of protein expression started to inhibit cell growth. The proposed specific growth rate control strategy has been successfully applied to both non-induced and induced fed-batch cultures that do not exhibit severe growth rate depression.  相似文献   

16.
Batch kinetics for sorbitol to sorbose bioconversion was studied at 20% sorbitol concentration. The culture featured 90% conversion of sorbitol to sorbose in 20 hours. Increasing the initial substrate concentration in the bioreactor decreased the culture specific growth rate. At 40% initial sorbitol concentration no culture growth was observed. The batch kinetics and substrate inhibition studies were used to develop the Mathematical Model of the system. The model parameters were identified using the original batch kinetic data (S o =20%). The developed mathematical model was adopted to fed-batch cultivation with the exponential nutrient feeding. The fed-batch model was simulated and implemented experimentally. No substrate inhibition was observed in the fed-batch mode and it provided an overall productivity of 12.6?g/l-h. The fed-batch model suitably described the experimentally observed results. The model is ready for further optimization studies.  相似文献   

17.
Optimal operation of repeatedly fed-batch was determined by the continuous maximum principle for the constant yield case. The objective of maximum cell productivity for a fixed cell concentration was achieved by finding the substrate feeding policy that minimized the processing time. Analytical criteria for the optimal filling policy show that an exponential policy is optimum when the specific growth rate has a maximum, and also that operation in the simple repeated batch mode is optimum when the specific growth rate is monotonic increasing. Comparisons between optimal repeated fed-batch culture and other modes of operation were made for the case of substrate-inhibited growth. Cell productivity by repeated fed-batch exceeds both batch and continuous operation for the case of low residual substrate concentration.  相似文献   

18.
19.
A fed-batch process was developed for high cell density culture of the diatom Nitzschia laevis for enhanced production of eicosapentaenoic acid (EPA). Firstly, among the various medium components, glucose (Glu) was identified as the limiting substrate while nitrate (NO3), tryptone (Tr) and yeast extract (Ye) were found to promote cell growth by enhancing specific growth rate. Therefore, these components were considered essential and were included in the feed medium for subsequent fed-batch cultivation. With the optimized ratio of NO3:Tr:Ye being 1:2.6:1.3 (by weight), the relative proportions of glucose to the nitrogen sources in the feed were investigated. The optimal ratios of Glu:NO3 for specific growth rate and EPA productivity were both determined to be 32:1 (by weight). Finally, based on the residual glucose concentration in the culture, a continuous medium feeding strategy for fed-batch fermenter cultivation was developed, with which, the maximal cell dry weight and EPA yield obtained were 22.1 g l−1 and 695 mg l−1, respectively, which were great improvements over those of batch cultures.  相似文献   

20.
In this research a fuzzy controller was built to perform fed-batch cultures of Saccharomyces cerevisiae with a DO-stat method. The basic principle of fed-batch culture employing the DO-stat method is that a rapid increase of dissolved oxygen concentration due to a lack of substrate (the DO signal) is used as an indicator for substrate feeding. The proposed fuzzy controller can diagnose the state of fermentation and determine a proper feed rate of substrate for the culture of high density and high yield. The results indicate that cell concentration reached to 110?g/l and residual sugar kept below the level of 0.05?g/l.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号